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Abstract
By studying the properties of Green’s function, constructing a special cone and applying fixed point theorem of cone

expansion and compression of norm type, this paper investigates the existence of at least one and two positive solutions for a
coupled system of nonlinear fractional differential equations involving fractional integral conditions and derivatives of arbitrary
order. Two examples are given to illustrate our results. c©2017 All rights reserved.
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1. Introduction

In this paper, we study the existence of positive solution for a coupled system of nonlinear fractional
differential equations (FDEs) with fractional integral conditions

CDα1u(t) = f1(t,u(t), v(t),u(m1)(t), v(m2)(t)), 0 < t < 1, n− 1 < α1 < n,
CDα2v(t) = f2(t,u(t), v(t),u(m1)(t), v(m2)(t)), 0 < t < 1, n− 1 < α2 < n,
u(k)(0) = 0, 0 6 k 6 n− 2, u(n−1)(0) = ρ1I

β1u(1), ρ1,β1 > 0,
v(k)(0) = 0, 0 6 k 6 n− 2, v(n−1)(0) = ρ2I

β2v(1), ρ2,β2 > 0,

(1.1)

where CDαi , i = 1, 2 denote the Caputo fractional derivatives of order αi and Iβi , i = 1, 2 denote the
Riemann-Liouville fractional integrals of order βi, fi ∈ C([0, 1]×R+ ×R+ ×R×R, R+), i = 1, 2 and
mi ∈ {1, 2, · · · ,n− 2}, Γ(n+βi) > ρi, i = 1, 2.

The study of the coupled system of fractional order is very significant because this kind of system can
often occur in various applications. Examples include distributed order dynamical [13], duffing system
[4], Lozenz systems [11], anomalous diffusion [17, 21], synchronization of coupled fractional-order chaotic
systems [9, 10]. There are also a large number of papers investigating the solvability of coupled system
of nonlinear fractional differential equations. For details, see [1, 5, 6, 15, 18, 22–24, 26, 27, 29]. Some
recent results on coupled systems of fractional-order different equations, including nonlocal and integral
boundary conditions can be found in [2, 16, 25, 28] and the references cited therein. At the same time,
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some new algorithms for finding solution of fractional differential equations are constructed based on
different boundary conditions in [3, 8, 19] and the references cited therein.

Inspired by the work of above mentioned papers, we investigate the existence of at least one and
two positive solutions for a coupled system of nonlinear FDEs (1.1). Though we make use a well-known
tool of fixed point theorem of cone expansion and compression of norm type, yet its exposition to the
given problem is new, which involves Riemann-Liouville fractional integral boundary conditions and
derivatives of arbitrary order. Further, we construct a special cone by studying properties of Green’s
function.

The paper is organized as follows. In Section 2, we present some basic concepts and lemmas. In
Section 3, the main results are formulated. In Section 4, two examples are given.

2. Preliminaries

First of all, we present some definitions and lemmas about fractional calculus, more details can be
found in [14, 20].

Definition 2.1. For at least n-times continuous differentiable function f : [0,∞]→ R, the Caputo derivative
of fractional order α is defined as

CDαf(x) =
1

Γ(n−α)

∫x
0
(x− t)n−α−1f(n)(t)dt, n− 1 < α < n, n = [α] + 1,

[α] denotes the integer part of number α.

Definition 2.2. The Riemann-Liouville fractional integral of order α for a continuous function f is defined
as

Iαf(x) =
1
Γ(α)

∫x
0

f(t)

(x− t)1−αdt, α > 0,

provided the integral exists.

Lemma 2.3. The fractional differential equation CDαu(t) = 0,α > 0 has a general solution

u(t) = c1 + c2t+ c3t
2 + · · ·+ cntn−1, ci ∈ R, i = 1, 2, · · · ,n, n = [α] + 1.

Lemma 2.4. For any t ∈ [a,b], then

IpIqg(t) = Ip+qg(t) = IqIpg(t), CDpIpg(t) = g(t), CDqIpg(t) = Ip−qg(t), p > q > 0.

In order to prove our main results, we need the following auxiliary lemma which is the key to define
the solution for the FDEs (1.1).

Lemma 2.5. Let x,y ∈ L[0, 1] and u, v ∈ ACn[0, 1], Γ(n+ βi) > ρi. Then the unique solution of the fractional
boundary value problem 

CDα1u(t) = x(t), t ∈ (0, 1), n− 1 < α1 < n,
CDα2v(t) = y(t), t ∈ (0, 1), n− 1 < α2 < n,

u(k)(0) = 0, 0 6 k 6 n− 2, u(n−1)(0) = ρ1I
β1u(1),

v(k)(0) = 0, 0 6 k 6 n− 2, v(n−1)(0) = ρ2I
β2v(1),

(2.1)

is 
u(t) =

∫ 1

0
G1(t, s)x(s)ds,

v(t) =

∫ 1

0
G2(t, s)y(s)ds,

(2.2)
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where ∆i =
ρiΓ(n+βi)

(Γ(n+βi) − ρi)Γ(αi +βi)
, i = 1, 2,

Gi(t, s) =


tn−1(1 − s)αi+βi−1∆i

Γ(n)
+

(t− s)αi−1

Γ(αi)
, 0 6 s 6 t 6 1,

tn−1(1 − s)αi+βi−1∆i
Γ(n)

, 0 6 t 6 s 6 1,
i = 1, 2. (2.3)

Proof. Applying Lemma 2.3, the general solutions of the fractional differential equation in (2.1) can be
given by

u(t) = c1 + c2t+ c3t
2 + · · ·+ cntn−1 + Iα1x(t), (2.4)

v(t) = d1 + d2t+ d3t
2 + · · ·+ dntn−1 + Iα2y(t). (2.5)

Applying the condition u(k)(0) = 0, v(k)(0) = 0, 0 6 k 6 n− 2 in (2.1), it is easy to know that ci = di =
0, 1 6 i 6 n− 1. In view of the conditions u(n−1)(0) = ρ1I

β1u(1) and v(n−1)(0) = ρ2I
β2v(1), applying

Lemma 2.4, we get

cn =
ρ1Γ(n+β1)

Γ(n)(Γ(n+β1) − ρ1)
Iα1+β1x(1),

dn =
ρ2Γ(n+β2)

Γ(n)(Γ(n+β2) − ρ2)
Iα2+β2y(1).

Substituting the values of ci,di, 1 6 i 6 n to (2.4) and (2.5), we obtain (2.2). The proof is completed.

Remark 2.6. If 0 6 j 6 n− 2, then Green function Gi(t, s) defined in (2.3) satisfies

G
(j)
it (t, s) =


tn−1−j(1 − s)αi+βi−1∆i

Γ(n− j)
+

(t− s)αi−1−j

Γ(αi − j)
, 0 6 s 6 t 6 1,

tn−1−j(1 − s)αi+βi−1∆i
Γ(n− j)

, 0 6 t 6 s 6 1.
(2.6)

Lemma 2.7. Function G(j)
it (t, s) defined in (2.6) satisfies

(i) G(j)
it (t, s) ∈ C

n−2([0, 1]× [0, 1],R+) and G(j)
it (t, s) > 0, t, s ∈ [0, 1];

(ii) G(j)
it (t, s) 6 Λij =

∆i
Γ(n− j)

+
1

Γ(αi − j)
, t, s ∈ [0, 1];

(iii) G(j)
it (t, s) > Υij =

∆iξ
n
i (1 − ξ ′i)

αi+βi

Γ(n− j)
, t, s ∈ [ξi, ξ ′i] ⊂ (0, 1).

Proof. From the definition of function G(j)
it (t, s) in (2.6), the conclusion of (i) and (ii) are obvious, so we

omit them. We prove only the conclusion of (iii).
As 0 < ξi 6 s 6 t 6 ξ ′i < 1,

G
(j)
it (t, s) >

∆it
n(1 − s)αi+βi

Γ(n− j)
>
∆iξ

n
i (1 − ξ ′i)

αi+βi

Γ(n− j)
= Υij,

as 0 < ξi 6 t 6 s 6 ξ ′i < 1,

G
(j)
it (t, s) >

∆it
n(1 − s)αi+βi

Γ(n− j)
>
∆iξ

n
i (1 − ξ ′i)

αi+βi

Γ(n− j)
= Υij,

the proof of (iii) is completed.
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We define the space X = {u(t)|u(t) ∈ Cm1 [0, 1]} with the norm

‖u‖X = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u(m1)(t)|.

Obviously, (X, ‖ · ‖X) is a Banach space. Also we define the space and Y = {v(t)|v(t) ∈ Cm2 [0, 1]} with the
norm

‖v‖Y = max
t∈[0,1]

|v(t)|+ max
t∈[0,1]

|v(m2)(t)|.

Again (Y, ‖ · ‖Y) is a Banach space. Then the product space (X× Y, ‖(u, v)‖X×Y) is also a Banach space
with the norm ‖(u, v)‖X×Y = ‖u‖X + ‖v‖Y .

In view of Lemma 2.5, we define the operator T : X× Y → X× Y by

T(u, v)(t) = (T1(u, v)(t), T2(u, v)(t)),

where

Ti(u, v)(t) =
∫ 1

0
Gi(t, s)fi(s,u(s), v(s),u(m1)(s), v(m2)(s))ds, i = 1, 2.

Remark 2.8. A pair of function (u, v) is said to be a positive solution of the FDEs (1.1), if u(t) > 0, v(t) > 0,
for all t ∈ (0, 1) and (u, v) satisfies FDEs (1.1).

Lemma 2.9. Suppose (u, v) is a positive solution for FDEs (1.1), then

min
t∈[ξ,ξ ′]

(u, v) def= min
t∈[ξ,ξ ′]

(u(t) + u(m1)(t)) + min
t∈[ξ,ξ ′]

(v(t) + v(m2)(t)) > γ‖(u, v)‖X×Y ,

where ξ = max{ξ1, ξ2}, ξ ′ = min{ξ ′1, ξ ′2},γ = min{(Υ10 +Υ1m1)/(Λ10 +Λ1m1), (Υ20 +Υ2m2)/(Λ20 +Λ2m2)}.

Proof. By Lemma 2.5, we can obtain immediately that (u, v) is a solution of FDEs (1.1) if and only if
(u, v) ∈ X× Y is a solution of the operator equations T(u, v) = (u, v). So we have

u(h)(t) =

∫ 1

0
G

(h)
1t (t, s)f1(s,u(s), v(s),u(m1)(s), v(m2)(s))ds, h = 0,m1.

Further, by Lemma 2.7, we have

‖u‖X = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u(m1)(t)|

6 (Λ10 +Λ1m1)

∫ 1

0
f1(s,u(s), v(s),u(m1)(s), v(m2)(s))ds.

(2.7)

On the other hand

min
t∈[ξ1,ξ ′1]

u(t) + min
t∈[ξ1,ξ ′1]

u(m1)(t) >
∫ 1

0
min

t∈[ξ1,ξ ′1]
G1(t, s)f1(s,u(s), v(s),u(m1)(s), v(m2)(s))ds

+

∫ 1

0
min

t∈[ξ1,ξ ′1]
G

(m1)
1t (t, s)f1(s,u(s), v(s),u(m1)(s), v(m2)(s))ds

> (Υ10 +Υ1m1)

∫ 1

0
f1(s,u(s), v(s),u(m1)(s), v(m2)(s))ds

> (Υ10 +Υ1m1)(Λ10 +Λ1m1)
−1‖u‖X

> γ‖u‖X.

(2.8)

Similar to (2.7) and (2.8), we can obtain

min
t∈[ξ2,ξ ′2]

v(t) + min
t∈[ξ2,ξ ′2]

v(m2)(t) > (Υ20 +Υ2m2)(Λ20 +Λ2m2)
−1‖v‖Y > γ‖v‖Y . (2.9)
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From (2.8) and (2.9), we get

min
t∈[ξ,ξ ′]

(u(t) + u(m1)(t)) + min
t∈[ξ,ξ ′]

(v(t) + v(m2)(t)) > min
t∈[ξ1,ξ ′1]

(u(t) + u(m1)(t))

+ min
t∈[ξ2,ξ ′2]

(v(t) + v(m2)(t))

> min
t∈[ξ1,ξ ′1]

u(t) + min
t∈[ξ1,ξ ′1]

u(m1)(t)

+ min
t∈[ξ2,ξ ′2]

v(t) + min
t∈[ξ2,ξ ′2]

v(m2)(t)

> γ‖u‖X + γ‖v‖Y
= γ‖(u, v)‖X×Y .

The proof is completed.

Let K =
{
(u, v) ∈ X× Y : u(t) > 0, v(t) > 0, ∀t ∈ [0, 1], min

t∈[ξ,ξ ′]
(u, v) > γ‖(u, v)‖X×Y

}
. So, we can

obtain the following lemma.

Lemma 2.10. The operator T : K→ K is a completely continuous operator.

Proof. We first show that operator T : K → K. Since Gi(t, s) > 0, fi > 0, for all t, s ∈ [0, 1], it is easy to
know Ti(u, v)(t) > 0, for all t ∈ [0, 1]. For all (u, v) ∈ K, similar to (2.8) and (2.9), we know

min
t∈[ξ1,ξ ′1]

T1(u, v)(t) + min
t∈[ξ1,ξ ′1]

T
(m1)
1 (u, v)(t) > γ‖T1(u, v)‖X,

and
min

t∈[ξ2,ξ ′2]
T2(u, v)(t) + min

t∈[ξ2,ξ ′2]
T
(m2)
2 (u, v)(t) > γ‖T2(u, v)‖Y .

Further, we have
min
t∈[ξ,ξ ′]

T(u, v)(t) = min
t∈[ξ,ξ ′]

(T1(u, v)(t), T2(u, v)(t))

= min
t∈[ξ,ξ ′]

(T1(u, v)(t) + T (m1)
1 (u, v)(t))

+ min
t∈[ξ,ξ ′]

(T2(u, v)(t) + T (m2)
2 (u, v)(t))

> min
t∈[ξ1,ξ ′1]

T1(u, v)(t) + min
t∈[ξ1,ξ ′1]

T
(m1)
1 (u, v)(t)

+ min
t∈[ξ2,ξ ′2]

T2(u, v)(t) + min
t∈[ξ2,ξ ′2]

T
(m2)
2 (u, v)(t)

> γ‖T1(u, v)‖X + γ‖T2(u, v)‖Y
= γ‖T(u, v)‖X×Y ,

so the operator T : K→ K.
Next, we show that the operator T : K → K is completely continuous. Since Gi, fi are continuous, the

operator T is continuous. Let Br = {(u, v) ∈ K : ‖(u, v)‖X×Y 6 r} be bounded set in K. Let

Mi = max{fi(t,u(t), v(t),u(m1)(t), v(m2)(t)) : 0 6 t 6 1, (u, v) ∈ Br}, i = 1, 2.

For (u, v) ∈ Br, by Lemma 2.7, we get

||T(u, v)||X×Y = ||T1(u, v)||X + ||T2(u, v)||Y

= max
t∈[0,1]

|T1(u, v)(t)|+ max
t∈[0,1]

|T1(u, v)(m1)(t)|

+ max
t∈[0,1]

|T2(u, v)(t)|+ max
t∈[0,1]

|T2(u, v)(m2)(t)|
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6 (Λ10 +Λ1m1)

∫ 1

0
f1(t,u(t), v(t),u(m1)(t), v(m2)(t))ds

+ (Λ20 +Λ2m2)

∫ 1

0
f2(t,u(t), v(t),u(m1)(t), v(m2)(t))ds

6M1(Λ10 +Λ1m1) +M2(Λ20 +Λ2m2).

Therefore, the operator T is uniformly bounded in Br.
Then, we show that the operator T is equicontinuous. Let 0 6 t1 < t2 6 1, we have

|T1(u, v)(h)(t2) − T1(u, v)(h)(t1)|

6M1

[ ∫t1

0
|G

(h)
1t (t2, s) −G(h)

1t (t1, s)|ds+
∫t2

t1

|G
(h)
1t (t2, s) −G(h)

1t (t1, s)|ds

+

∫1

t2

|G
(h)
1t (t2, s) −G(h)

1t (t1, s)|ds
]

6M1

[ ∫t1

0

( (t2 − s)α1−1−h − (t1 − s)
α1−1−h

Γ(α1 − h)
+

(tn−1−h
2 − tn−1−h

1 )(1 − s)α1+β1−1∆1

Γ(n− h)

)
ds

+

∫t2

t1

( (t2 − s)α1−1−h

Γ(α1 − h)
+

(tn−1−h
2 − tn−1−h

1 )(1 − s)α1+β1−1∆1

Γ(n− h)

)
ds

+

∫1

t2

(tn−1−h
2 − tn−1−h

1 )(1 − s)α1+β1−1∆1

Γ(n− h)
ds
]

=
M1

Γ(α1 − h+ 1)
(t
α1−h
2 − t

α1−h
1 ) +

∆1M1

Γ(n− h)
(tn−1−h

2 − tn−1−h
1 ), h = 0,m1,

and

||T1(u, v)(t2) − T1(u, v)(t1)||X = |T1(u, v)(t2) − T1(u, v)(t1)|+ |T1(u, v)(m1)(t2) − T1(u, v)(m1)(t1)|.

Thus we know that ||T1(u, v)(t2) − T(u, v)1(t1)||X → 0 independent of u and v as t2 → t1. Similarly, it is
easy to know that ||T2(u, v)(t2)− T(u, v)2(t1)||Y → 0 independent of u and v as t2 → t1. On the other hand,
we notice

||T(u, v)(t2) − T(u, v)(t1)||X×Y = ||T1(u, v)(t2) − T(u, v)1(t1)||X + ||T2(u, v)(t2) − T2(u, v)(t1)||Y ,

which implies that ||T(u, v)(t2)− T(u, v)(t1)||X×Y → 0 independent of u and v as t2 → t1. So the operator T
is equicontinuous in Br. From above the arguments, we know that the operator T is completely continuous
by Ascoli-Arzelà theorem.

Lemma 2.11 ([7, 12]). Suppose E is a real Banach space and P is cone in E, and let Ω1,Ω2 be bounded open sets
in E such that θ ∈ Ω1, Ω1 ⊂ Ω2. Let operator T : P ∩ (Ω2\Ω1)→ P be completely continuous. Suppose that one
of two conditions holds:

(i) ‖Tu‖ 6 ‖u‖, ∀u ∈ P ∩ ∂Ω1; ‖Tu‖ > ‖u‖, ∀u ∈ P ∩ ∂Ω2;

(ii) ‖Tu‖ > ‖u‖, ∀u ∈ P ∩ ∂Ω1; ‖Tu‖ 6 ‖u‖, ∀u ∈ P ∩ ∂Ω2.

Then operator T has at least one fixed point in P ∩ (Ω2\Ω1).

3. Main results

In the following subsection, we establish our main results for FDEs (1.1) by using fixed point theory
of cone expansion and compression of norm type. For convenience, we set

fiβ = lim sup
u0+u1+v0+v1→β

max
t∈[0,1]

fi(t,u0, v0,u1, v1)

u0 + u1 + v0 + v1
,
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fiβ = lim inf
u0+u1+v0+v1→β

min
t∈[0,1]

fi(t,u0, v0,u1, v1)

u0 + u1 + v0 + v1
,

where β = 0+ or +∞. Let r = 1
4 min{Λ−1

10 ,Λ−1
1m1

,Λ−1
20 ,Λ−1

2m2
},R = 1

4γ(ξ ′−ξ) max{Υ−1
10 ,Υ−1

1m1
,Υ−1

20 ,Υ−1
2m2

}.

Theorem 3.1. If f10, f20 ∈ [0, r) and f1∞, f2∞ ∈ (R,+∞], then there exists at least one positive solution for FDEs
(1.1) in K.

Proof. At first, it follows from the condition f10, f20 ∈ [0, r) that there exist µ1 > 0 and a sufficiently small
ε1 > 0 such that

fi(t,u0, v0,u1, v1) 6 (fi0 + ε1)(u0 + v0 + u1 + v1), ∀t ∈ [0, 1], (u0 + v0 + u1 + v1) 6 µ1, (3.1)

where fi0 + ε1 6 r, i = 1, 2.
Let Ω1 = {(u, v) ∈ K : ‖(u, v)‖X×Y < µ1}. For all (u, v) ∈ ∂Ω1 ∩K, using (3.1) and Lemma 2.7, we get

|T
(j)
i (u, v)(t)| 6 Λij

∫ 1

0
fi(s,u0, v0,u1, v1)ds

6 Λij(fi0 + ε1)

∫ 1

0
(u(s) + v(s) + u(m1)(s) + v(m2)(s))ds

6
1
4
‖u‖X +

1
4
‖v‖Y =

1
4
‖(u, v)‖X×Y , i = 1, 2, j = 0,m1,m2.

Thus
‖T1(u, v)‖X = max

t∈[0,1]
|T1(u, v)(t)|+ max

t∈[0,1]
|T

(m1)
1 (u, v)(t)| 6

1
2
‖(u, v)‖X×Y ,

and
‖T2(u, v)‖Y = max

t∈[0,1]
|T2(u, v)(t)|+ max

t∈[0,1]
|T

(m2)
2 (u, v)(t)| 6

1
2
‖(u, v)‖X×Y .

So, we have

‖T(u, v)‖X×Y = ‖T1(u, v)‖X + ‖T2(u, v)‖Y 6 ‖(u, v)‖X×Y , ∀(u, v) ∈ ∂Ω1 ∩K. (3.2)

On the other hand, it follows from the condition f1∞, f2∞ ∈ (R,+∞] that there exist l > µ1 > 0 and a
sufficiently small ε2 > 0, such that

fi(t,u0, v0,u1, v1) > (fi∞ − ε2)(u0 + v0 + u1 + v1), ∀t ∈ [0, 1], (u0 + v0 + u1 + v1) > l, (3.3)

where fi0 − ε2 > R, i = 1, 2.
Let Ω2 = {(u, v) ∈ K : ‖(u, v)‖X×Y < µ2}, where µ2 = max{2µ1, l/γ}. For all (u, v) ∈ ∂Ω2 ∩ K, using

Lemma 2.9, we get

min
t∈[ξ,ξ ′]

(u, v) = min
t∈[ξ,ξ ′]

(u(t) + u(m1)(t)) + min
t∈[ξ,ξ ′]

(v(t) + v(m2)(t)) > γ‖(u, v)‖X×Y = γµ2 > l.

From Lemma 2.7 and (3.3), we can obtain

min
t∈[ξi,ξ ′i]

T
(j)
i (u, v)(t) > Υij

∫ 1

0
fi(s,u0, v0,u1, v1)ds

> Υij(fi∞ − ε2)

∫ξ ′
ξ

(u(s) + v(s) + u(m1)(s) + v(m2)(s))ds

> Υij(fi∞ − ε2)(ξ
′ − ξ)γ‖(u, v)‖X×Y

>
1
4
‖(u, v)‖X×Y , i = 1, 2, j = 0,m1,m2.

Thus
‖T1(u, v)‖X > min

t∈[ξ1,ξ ′1]
|T1(u, v)(t)|+ min

t∈[ξ1,ξ ′1]
|T

(m1)
1 (u, v)(t)| >

1
2
‖(u, v)‖X×Y ,
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and
‖T2(u, v)‖Y > min

t∈[ξ2,ξ ′2]
|T2(u, v)(t)|+ min

t∈[ξ2,ξ ′2]
|T

(m2)
2 (u, v)(t)| >

1
2
‖(u, v)‖X×Y .

So, we have

‖T(u, v)‖X×Y = ‖T1(u, v)‖X + ‖T2(u, v)‖Y > ‖(u, v)‖X×Y , ∀(u, v) ∈ ∂Ω2 ∩K. (3.4)

Thus, from (3.2), (3.4), Lemma 2.10 and Lemma 2.11, the operator T has at least a fixed point (u, v) in
K∩ (Ω2 \Ω1). This means that FDEs (1.1) has at least one positive solution (u, v) satisfying u(t) > 0, v(t) >
0.

Theorem 3.2. If f1∞, f2∞ ∈ [0, r) and f10, f20 ∈ (R,+∞], then there exists at least one positive solution for FDEs
(1.1) in K.

Proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1, so we omit it.

Theorem 3.3. If f10, f2∞ ∈ (2R,+∞] and fi(t,u, v,u(m1), v(m2)) ∈ (0,mr), i = 1, 2 for all t ∈ [0, 1] and
(u, v) ∈ ∂Ω3 ∩K, where Ω3 = {(u, v) ∈ K : ‖(u, v)‖X×Y < m}, then there exist at least two positive solutions for
FDEs (1.1) in K.

Proof. At first, it follows from the condition f10 ∈ (2R,+∞] that there exist 0 < m1 < m and a sufficiently
small ε3 > 0, such that

f1(t,u0, v0,u1, v1) > (f10 − ε3)(u0 + v0 + u1 + v1), ∀t ∈ [0, 1], (u0 + v0 + u1 + v1) 6 m1, (3.5)

where f10 − ε3 > 2R.
Let Ω4 = {(u, v) ∈ K : ‖(u, v)‖X×Y < m1}. For all (u, v) ∈ ∂Ω4 ∩K, using (3.5) and Lemma 2.9, we get

||T(u, v)||X×Y > min
t∈[ξ,ξ ′]

T(u, v)(t) > min
t∈[ξ,ξ ′]

T1(u, v)(t) + min
t∈[ξ,ξ ′]

T
(m1)
1 (u, v)(t)

> (f10 − ε3)(Υ10 +Υ1m1)

∫ξ ′
ξ
(u(s) + v(s) + u(m1)(s) + v(m2)(s))ds

> (f10 − ε3)(Υ10 +Υ1m1)(ξ
′ − ξ)γ‖(u, v)‖X×Y

> ‖(u, v)‖X×Y .

(3.6)

On the other hand, it follows from the condition f2∞ ∈ (2R,+∞] that there exist m2 > m > 0 and a
sufficiently small ε4 > 0, such that

f2(t,u0, v0,u1, v1) > (f2∞ − ε4)(u0 + v0 + u1 + v1), ∀t ∈ [0, 1], u0 + v0 + u1 + v1 > m2, (3.7)

where f2∞ − ε4 > 2R.
Let Ω5 = {(u, v) ∈ K : ‖(u, v)‖ < m3}, where m3 > m2. For all (u, v) ∈ ∂Ω5 ∩ K, applying (3.7) and

Lemma 2.9, we have

‖T(u, v)‖X×Y > min
t∈[ξ,ξ ′]

T(u, v)(t) > min
t∈[ξ,ξ ′]

T2(u, v)(t) + min
t∈[ξ,ξ ′]

T
(m2)
2 (u, v)(t)

> (f2∞ − ε4)(Υ20 +Υ2m2)

∫ξ ′
ξ

(u(s) + v(s) + u(m1)(s) + v(m2)(s))ds

> (f2∞ − ε4)(ξ
′ − ξ)γ‖(u, v)‖X×Y

> |(u, v)‖X×Y .

(3.8)

Further, from the condition of Theorem 3.3, for all (u, v) ∈ ∂Ω3 ∩K, we know

‖T(u, v)‖X×Y = ‖T1(u, v)‖X + ‖T2(u, v)‖Y
6 rm(Λ10 +Λ1m1 +Λ20 +Λ2m1)

6 m = ‖(u, v)‖X×Y .
(3.9)
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Thus, from (3.6), (3.8) and (3.9), Lemma 2.10 and Lemma 2.11, the operator T has at least a fixed point
(u1, v1) in K∩ (Ω3 \Ω4) and at least a fixed point (u2, v2) in K∩ (Ω5 \Ω3). This means that FDEs (1.1) has
at least two positive solutions satisfying m1 6 ||(u1, v1)||X×Y < m < ||(u2, v2)||X×Y 6 m3.

Similar to that of Theorem 3.3, we can obtain the following results.

Theorem 3.4. If f20, f1∞ ∈ (2R,+∞] and fi(t,u, v,u(m1), v(m2)) ∈ (0,mr), i = 1, 2 for all t ∈ [0, 1] and
(u, v) ∈ ∂Ω3 ∩K, where Ω3 = {(u, v) ∈ K : ‖(u, v)‖X×Y < m}, then there exist at least two positive solutions for
FDEs (1.1) in K.

Theorem 3.5. If f10, f1∞ ∈ (2R,+∞] and fi(t,u, v,u(m1), v(m2)) ∈ (0,mr), i = 1, 2 for all t ∈ [0, 1] and
(u, v) ∈ ∂Ω3 ∩K, where Ω3 = {(u, v) ∈ K : ‖(u, v)‖X×Y < m}, then there exist at least two positive solutions for
FDEs (1.1) in K.

Theorem 3.6. If f20, f2∞ ∈ (2R,+∞] and fi(t,u, v,u(m1), v(m2)) ∈ (0,mr), i = 1, 2 for all t ∈ [0, 1] and
(u, v) ∈ ∂Ω3 ∩K, where Ω3 = {(u, v) ∈ K : ‖(u, v)‖X×Y < m}, then there exist at least two positive solutions for
FDEs (1.1) in K.

4. Some examples

In order to illustrate our results, we consider the following two examples.

Example 4.1. Consider the following coupled system of nonlinear FDEs with fractional integral conditions

CD
7
2u(t) =

(1+t)
2 [(u+ v+ u ′′ + v ′)2 + µ sin(u+ v+ u ′′ + v ′)], t ∈ (0, 1),

CD
11
3 v(t) = 1

4(u+ v+ u ′′ + v ′)3, t ∈ (0, 1),

u(0) = u ′(0) = u ′′(0) = 0, u ′′′(0) = 2I
3
2u(1),

v(0) = v ′(0) = v ′′(0) = 0, v ′′′(0) = 1
3I

5
3 v ′(1),

(4.1)

where
α1 =

7
2

, α2 =
11
3

, n = 4, m1 = 2, m2 = 1, ρ1 = 2, ρ2 =
1
3

, β1 =
3
2

, β2 =
5
3

,

f1(t,u0, v0,u1, v1) =
(1 + t)

2
[
(u0 + v0 + u1 + v1)

2 + µ sin(u0 + v0 + u1 + v1)
]
,

f2(t,u0, v0,u1, v1) =
1
4
(u0 + v0 + u1 + v1)

3.

It is obvious that Γ(n+ βi) > ρi, i = 1, 2. By direct calculation, we can obtain that ∆1 = 49.9069, ∆2 =
1.8218, r = 0.0049 and

f10 = µ, f20 = 0, f1∞ = +∞, f2∞ = +∞.

Let µ ∈ [0, 0.0049), Theorem 3.1 implies that FDEs (4.1) has at least one positive solution in K.

Example 4.2. Consider the following coupled system of nonlinear FDEs with fractional integral conditions

CD
7
2u(t) = 1+t

1000(u+ v+ u ′′ + v ′)
1
3 , t ∈ (0, 1),

CD
11
3 v(t) = 1

400(u+ v+ u ′′ + v ′)3, t ∈ (0, 1),

u(0) = u ′(0) = u ′′(0) = 0, u ′′′(0) = 2I
3
2u(1),

v(0) = v ′(0) = v ′′(0) = 0, v ′′′(0) = 1
3I

5
3 v ′(1),

(4.2)

where
α1 =

7
2

, α2 =
11
3

, n = 4, m1 = 2, m2 = 1, ρ1 = 2, ρ2 =
1
3

, β1 =
3
2

, β2 =
5
3

,
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f1(t,u0, v0,u1, v1) =
1 + t

1000
(u0 + v0 + u1 + v1)

1
3 ,

f2(t,u0, v0,u1, v1) =
1

400
(u0 + v0 + u1 + v1)

3.

Similar to that of Example 4.1, we can obtain that r = 0.0049 and f10 = +∞, f2∞ = +∞. Let m = 1, by
direct calculation, we can obtain that f1 < 0.002 < mr, f2 < 0.0025 < mr. Thus, Theorem 3.3 implies that
FDEs (4.2) has at least two positive solutions in K.
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