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Abstract
The aim of this paper is to classify the singularities of caustics, which have implications for a wide range of physical

applications, of translation surfaces. In addition, we give a particular study on ridge point, sub-parabolic ridge point, and
constant curvature line on translation surface and we find that there is no elliptic umblic on translation surface. c©2017 All rights
reserved.
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1. Introduction

The study of caustics and wave front evolution has a rich history; it dates back to the early studies
of Newton and Huygens, Cayley studied the normal wave front evolution from the triaxial ellipsoid in
the middle of the 19th century. The contemporary study of generic wave front and caustic behavior arose
in the mid-century via the classification studies of the singularities of functions and mappings. It arose
mainly via the efforts of the mathematicians, Whitney, Thom, and Arnold. With several notable excep-
tions, in particular Berry and Zeldovich, physicists seem to have largely ignored the subject, even though
it has implications for a wide range of physical applications; all forms of wave propagation, both classi-
cal and quantum mechanical; from geometric optics through to physical optics; intensity distributions in
interference and diffraction phenomena, e.g., evaluations of the Fresnel and Airy integrals; gravitational
lensing; structure formation in the early universe and in galaxies via density waves; finite size image
disruption, Hamilton Jacobi theory; stability problems; thermodynamics; elasticity theory; and states of
quantum fields in curved space times [1, 2, 8, 9, 12, 21]. For example, in physical terms the caustic is de-
scribed as the hypersurface swept by the cusped edges of moving fronts [1, 2, 4, 5, 9, 21]. The propagation
of fronts can be described in terms of space-time as a single hypersurface-the union of the momentary
fronts belonging to different isochrone hypersurfaces t =const. This hypersurface (for the case of a sim-
ple singularity corresponding to a reflection group) is locally diffeomorphic to the discriminant of the
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reflection group. The cusped edges of the momentary fronts sweep the cusped edge of the discriminant
hypersurface. Its projection into physical space along the world lines is the surface in physical space
swept out by the cusped edges of the momentary fronts. Thus the generic lines of the mathematical
definition of the caustic of a reflection group are the space-time world lines of the physical description.
The noncrystallographic Euclidean reflection groups appear in this theory as the description of the prop-
agation of fronts in a manifold with a boundary, for instance in the problem of the fastest bypassing of an
obstacle bounded by a hypersurface in ordinary Euclidean space.

A common situation where caustics are visible is when light shines on a drinking glass. The glass casts
a shadow, but also produces a curved region of bright light. In ideal circumstances (including perfectly
parallel rays, as if from a point source at infinity), a nephroid-shaped patch of light can be produced.
Rippling caustics are commonly formed when light shines through waves on a body of water. Another
familiar caustic is the rainbow. Scattering of light by raindrops causes different wavelengths of light to be
refracted into arcs of differing radius, producing the bow.

A surface M in the Euclidean space is called a translation surface if it is given by an immersion

X : U→ E3 : (s; t) 7→ (s, t, f(s) + g(t)),

where z(s, t) = f(s) + g(t) and f and g are smooth functions on some interval of R. Liu and his coauthors
gave the classification of the translation surfaces with constant mean curvature or constant Gauss curva-
ture in 3-dimensional Euclidean space E3 and 3-dimensional Minkowski space E3

1. They also classified
minimal affine translation surfaces in three dimensional Euclidean space, see [15–17, 23]. In [7], Bekkar
and Senoussi studied the translation surfaces in the 3-dimensional space satisfying ∆IIIri = µiri. In [20],
Verstraelen et al. studied the minimal translation surfaces in Euclidean space. Yoon studied the Gauss
map of translation surfaces in Minkowski 3-space, see [22]. Goemans and Woestyne studied translation
surfaces with vanishing second Gaussian curvature in Euclidean and Minkowski 3-space, see [11]. When
the ambient is the space Sol3, translation surfaces whose mean curvature vanishes were classified, see
[18]. Their works focus on differential equations as the basic tool.

The importance of the study of caustics of translation surfaces and its presence in the mathematical
theories and physics are clear. However, to the best of the authors’ knowledge, the properties of caustics
of translation surfaces have not been considered in the literature. Thus the current study hopes to serve
such a need. In this paper, we define the notions of caustics, the pedal surface and the cylindrical pedal
of translation surface and we introduce some properties on Gauss mapping of translation surface in
Proposition 2.2. Additionally, we give a particular study on ridge point, sub-parabolic ridge point, and
constant curvature line on translation surface in Proposition 3.1, Proposition 4.1, and Proposition 4.2,
respectively. Moreover, we find that there is only possibly right angled hyperbolic umblic on translation
surface (c.f. Proposition 3.2) and we give a classification on the singularity types of caustics of translation
surfaces (c.f. Theorem 5.1).

The rest of this paper is organized as follows. Firstly, we introduce some properties of Gauss mapping
of translation surface. Then, we give a particular study on ridge point, sub-parabolic ridge point, and
constant curvature line on translation surface. Afterwards, we classify the singularity types of caustics of
translation surfaces.

2. Properties of Gauss mapping of translation surface

In this section, we get some properties on Gauss mapping of translation surfaces as a particular
application of the theory in [3, 6, 10, 13, 14, 19]. The main results are contained in Proposition 2.2.

A translation surface in Euclidean 3-space is a surface that is parameterized by

X(s, t) = (s, t, f(s) + g(t)). (2.1)

We use a special Monge form in which, at s = t = 0, f(0) = g(0) = f′(0) = g′(0) = 0. Then at s = t = 0,
the tangent plane to the surface at the origin is the s, t-plane. In that case the equation of the surface can
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be written in the following form

f(s) + g(t) =
1
2
(k1(0)s2 + k2(0)t2) +

∑
i>3

f(i)(0)
i!

si +
∑
j>3

g(j)(0)
j!

tj.

Note that there is no st-term in above equation. This indicates that the principal directions at the origin
become the directions (1, 0, 0), (0, 1, 0) and k1(0),k2(0) are the principal curvatures. For a translation
surface, we can compute that the unit normal vector field

n(s, t) =
1√

1 + (f
′
(s))2 + (g

′
(t))2

(−f
′
(s),−g

′
(t), 1).

The map N : U → S2(1) defined by N(s, t) = n(s, t) is called the Gauss map of M = X(U). By the
Weingarten formula, the Gauss-Kronecker curvature is given by

K(s, t) =
f
′′
(s)g

′′
(t)

(1 + (f
′
(s))2 + (g

′
(t))2)2 .

If the principal curvature κi(s, t) 6= 0, then we can define the caustic of X(s, t) =M by

CMi
(s, t) = {X(s, t) +

1
κi(s, t)

n(s, t) | (s, t) ∈ U}.

We also define the parallel surface of the translation surface at time u by

Xu(s, t) = X(s, t) + un(s, t).

It is well-known that the caustic is one of parallel surfaces when u = 1
κi(s,t) . We define the pedal surface

of M = X(U) by
PeM : U→ Rn; PeM(s, t) = 〈X(s, t), n(s, t)〉n(s, t).

The parametrization of component of PeM is

PeM =
sf
′
+ tg

′
− f− g

1 + (f
′
(s))2 + (g

′
(t))2 (f

′
,g
′
,−1).

Concerning on the pedal surface in R3, we define the cylindrical pedal of M = X(U) by

CPeM : U→ S2 ×R; CPeM(s, t) = (n(s, t), 〈X(s, t), n(s, t)〉).

The parametrization of component of CPeM is

CPeM =
1

1 + (f
′
(s))2 + (g

′
(t))2 (−f

′
,−g

′
, 1,−sf

′
− tg

′
+ f+ g).

We now define two kinds of functions families in order to describe the Gauss map, the caustics and the
pedal surface of a translation surface in R3 as

H : U× S2 → R by H(u, v) = 〈X(u), v〉

and
D : U×R3 → R by D(u, x) =‖ X(u) − x ‖2 .

We call H a height function and D distance squared function onM = X(U). We denote that hv(u) = H(u, v)
and dx(u) = D(u, x). The following proposition follows from direct calculations.
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Proposition 2.1. Let X : U → R3 be a translation surface in Euclidean 3-space parameterized by X(s, t) =
(s, t, f(s) + g(t)), then we have

(1) (∂hv/∂ui)(u) = 0(i = 1, . . . ,n) if and only if v = ± 1
L(s,t)(f

′
(s),g

′
(t),−1);

(2) (∂dv/∂ui)(u) = 0(i = 1, . . . ,n) if and only if there exist a real number λ such that

v =
1

L(s, t)
(L(s, t)s+ λf

′
(s),L(s, t)t+ λg

′
(t),L(s, t)(f(s) + g(t)) − λ),

where L(s, t) =
√

1 + (f
′
(s))2 + (g

′
(t))2.

By Proposition 2.1, we can detect both the catastrophe sets of H and D as follows:

C(H) = {(u, v) ∈ U× S2|v = ± 1
L(s, t)

(f
′
(s),g

′
(t),−1)},

C(D) = {(u, v) ∈ U×R3|v =
1

L(s, t)
(Ls+ λf

′
(s),Lt+ λg

′
(t),L(f(s) + g(t)) − λ)}.

We can get that the bifurcation set of D is

BD = {CMi
(s, t)|(s, t) ∈ U}.

In the following, we give another geometric interpretation of caustics from the Lagrangian view point.
We denote by

Σ(D) = {ξ = ((u, v), v) ∈ U×R3|Du(ξ) = Dv(ξ) = 0}.

We write v = (v1, v2, v3) and denote by T∗R3 the cotangent bundle of R3 endowed with the canonical
symplectic structure. Then the map L(D) :

∑
(D)→ T∗R3, given by

L(D)((u, v), v) = (v, (
∂D

∂v1
((u, v), v),

∂D

∂v2
((u, v), v),

∂D

∂v3
((u, v), v))),

is a Lagrangian immersion. So the map π ◦ L(D) : Σ(D) → R3 given by ((u, v), v) → v is a Lagrangian
map. The caustic CMi

of M, which is the set of critical values of π ◦ L(D), is precisely the local stratum of
the bifurcation set of the family D, i.e., BD.

In the terminology of Whitney, the Gauss mapping N is good if the gradient of Gauss curvature is
never zero on the parabolic set. If Gauss map is good, then the parabolic set is a smooth curve ((x(t),y(t))
and the image N(t) of this curve under the Gauss map is singular precisely when N ′(t) = 0. If N(t) is
good, then N is excellent if N ′(t) = 0 implies N

′′
(t) 6= 0. Finally, if N is excellent, then N is in general

position if the image of N(t) has no triple points or self tangencies, and no cusp point of N(t) coincides
with another image point of N(t) [6]. We can get the following proposition.

Proposition 2.2. Let X : U → R3 be a translation surface in Euclidean 3-space parameterized by X(s, t) =
(s, t, f(s) + g(t)). For any p = X(s, t), we have the following assertions.

(1) The parabolic set of translation surface is Σ = {(s, t) | f
′′
(s)g

′′
(t) = 0} and the Gauss map of translation surface

is good if f(3)(s)g
′′
(t) 6= 0 or f

′′
(s)g(3)(t) 6= 0. Under this condition, the parabolic set is a smooth curve and

the Gauss map of translation surface is excellent. Thus the Gauss map is stable with a simple folded along the
parabolic curve.

(2) p is a flat point if and only if f
′′
(s) = 0 and g

′′
(t) = 0. Under this condition, the Gauss map of translation

surface is not a good map and it is unstable.

Proof.

(1) It is easy to get that the Gauss map of translation surface is given by

N(s, t) =
1√

1 + (f
′
(s))2 + (g

′
(t))2

(−f
′
(s),−g

′
(t), 1).

We can study the singularities of the Gauss mapping more easily in this case by projecting centrally
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from the origin to the plane z = 1 to get (−f
′
(s),−g

′
(t), 1). We then project to the (s, t) plane to get the

composed mapping Ñ(s, t) = (−f
′
(s),−g

′
(t)). Since the image of N is contained in the hemisphere, and

central projection is a diffeomorphism from the upper hemisphere to the plane z = 1, the modified Gauss
mapping Ñ(s, t) will have the same singularities as N(s, t). In particular Ñ(s, t) is singular precisely
when its Jacobi matrix has rank less than two, i.e., when the discriminant ∆ = −f

′′
(s)g

′′
(t) is zero.

This indicates that the parabolic set of translation surface is Σ = {(s, t) | f
′′
(s)g

′′
(t) = 0}. Furthermore,

grad(∆) = (f(3)(s)g
′′
(t), f

′′
(s)g(3)(t)). So Ñ(s, t) is good if f(3)(s)g

′′
(t) 6= 0 or f

′′
(s)g(3)(t) 6= 0. Under this

condition, we suppose that the parabolic curve is parametrized by P(t) = (s(t), t). The modified Gauss
mapping restricted to the parabolic curve is Ñ(t) = (−f

′
(s(t)),−g

′
(t)), with Ñ

′
(t) = (−f

′′
(s)dsdt ,−g

′′
(t)).

For the case that f
′′
(s) = 0 and f(3)(s)g

′′
(t) 6= 0, we have that Ñ

′
(t) 6= 0, so Ñ is excellent. Thus the

Gauss map is stable, with a simple fold along the parabolic curve. Other case follows from the same
computation, so we omit it.

(2) It is easy to get that the Hessian of height function is

H(hv(s, t)) =

 f ′′(s)√
1+(f ′(s))2+(g ′(t))2

0

0 g ′′(t)√
1+(f ′(s))2+(g ′(t))2

 .

By the claim (b) of [19, Proposition 3.2], which states that p is a flat point if and only if rank(H(hv(s, t)))=
0, we get that this is equivalent to f

′′
(s) = 0 and g

′′
(t) = 0.

As applications of Proposition 2.2, we give two examples in the following.

Example 2.3. Consider the shoe surface

X(s, t) = (s, t,
1
3
s3 −

1
2
t2).

The parabolic set of this translation surface is Σ = {(s, t) | s = 0}. Since f(3)(s)g
′′
(t) = −2 6= 0, we get that

its Gauss map is excellent. Thus, the Gauss map is stable with a simple folded along the parabolic curve
s = 0.

Example 2.4. Consider the surface

X(s, t) = (s, t,
1
4
s4 −

1
2
t2).

The parabolic set of this translation surface is Σ = {(s, t) | s = 0}. Since f(3)(0)g
′′
(t) = 0 and f

′′
(0)g(3)(t) =

0, we get that its Gauss map is not good.

We also define a family of functions

H̃ : U× S2 ×R→ R by H̃(u, v, r) = 〈X(u), v〉− r.

We call it the extended height function of M = X(U). It is easy to get that the catastrophe set of H̃ is

D
H̃

= {± 1
1 + (f

′
(s))2 + (g

′
(t))2 (−f

′
,−g

′
, 1,−sf

′
− tg

′
+ f+ g)|u ∈ U}.

Since the singularities of the pedal and the cylindrical pedal of a hypersurface are diffeomorphic.
Although the notion of pedals are classically given, we consider the cylindrical pedal instead of the pedal
of M = X(U).

Proposition 2.5. Both of the distance squared functionD : U×Rn → R and the height function H : U×Sn → R

of M = X(U) are Morse families of functions. Especially, the extended height function H̃ : U× (Sn ×R) → R on
M = X(U) is also a Morse family.
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3. Umbilic points, ridge points and sub-parabolic points on translation surfaces

In this section we get some properties on umbilic, ridge, and sub-parabolic points of translation sur-
faces. The main results are contained in Propositions 3.1 and 3.2.

At a point on the surface where two principal curvatures are distinct, there are two principal vectors
and these vectors are mutually orthogonal. These principal vectors are often colored (blue or red) to
distinguish between the two vectors. We assume that v1 is the blue principal vector and v2 is the red
principal vector corresponding to principal curvatures k1, k2. Suppose that X(p) is not an umbilic of a
regular translation surface X(s, t). We say that the point X(p) is a ridge point relative to vi (“blue” ridge
point for i = 1, “red” for i = 2) if ∇viki(p) = 0, where ∇viki is the directional derivative of ki in vi.
Moreover, X(p) is a k-th order ridge point relative to vi if ∇mvi ki(p) = 0, (1 6 m 6 k) and ∇k+1

vi ki(p) 6= 0.
The set of ridge points is called a ridge line or ridges.

Proposition 3.1. Suppose that a translation surface X(s, t) is given in Monge form as in (2.1), and that the origin
is not an umbilic.

(1) The origin is a first order blue ridge point if and only if

f(3)(0) = 0 and (f(4)(0) − 3k3
1(0)) 6= 0.

(2) The origin is a second order blue ridge point if and only if

f(3)(0) = (f(4)(0) − 3k3
1(0)) = 0 and f(5)(0) 6= 0.

(3) Suppose that the origin is a blue ridge point. Then the blue ridge line has a singular point at the origin if and
only if

f(4)(0) − 3k3
1(0) = 0.

(4) If the origin is a first order blue ridge point, then it is a red sub-parabolic point.

Proof. We remark that the principal curvatures at the origin are k1, k2 (k1 6= k2) with corresponding
principal vectors v1 = (1, 0), v2 = (0, 1). The principal curvature k1(s, t) is expressed as

k1(s, t) = k1 + f
(3)(0)s+

1
2
[(f(4)(0) − 3k3

1(0))s
2 − k1(0)k2

2(0)t
2] +O(s, t)3 (3.1)

and we have
∂3k1

∂s3 =
f(5)(0) − 18f(3)(0)k2

1(0)
6

.

Let (ξ1, ζ1) be the eigenvector of weingarten map with the eigenvalue k1. Selection of the vector (ξ1, ζ1)
in order for the tangent vector ξ1Xs + ζ1Xt to be of the unit length shows that the principal vector v1 is
expressed as

v1(s, t) = (1 +O(s, t)2)
∂

∂s
+ (O(s, t)2)

∂

∂t
, (3.2)

and that
∂2ζ1

∂s2 (0, 0) = 0.

Therefore, we have

∇v1k1(0, 0) =
∂k1

∂s
(0, 0) = f(3)(0), ∇2

v1
k1(0, 0) =

∂2k1

∂s2 (0, 0) +
∂k1

∂t

∂ζ1

∂s
(0, 0) = f(4)(0) − 3k3

1(0, 0).

Moreover, when ∇v1k1(0, 0) = ∇2
v1
k1(0, 0) = 0, we obtain

∇3
v1
k1(0, 0) = f(5)(0).
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These equations imply the assertions (1) and (2). It follows from (3.1) and (3.2) that the equation of the
blue ridge line through the origin is expressed as

(f(4)(0) − 3k3
1(0, 0))(k1(0, 0) − k2(0, 0)))s+ · · · . (3.3)

This equation implies the assertion (3).
Since the principal vectors v1 and v2 are orthogonal, it follows from (3.2) that the principal vector v2

is expressed in the following form:

v2(s, t) = (O(s, t)2)
∂

∂s
+ (1 +O(s, t)2)

∂

∂t
,

the directional derivative ∇v2k1(s, t) is given by

∇v2k1(s, t) = −k1(0, 0)k2
2(0, 0)t+O(s, t)2. (3.4)

This equation implies ∇v2k1(0, 0) = 0, so it follows the assertion (4).

We can deduce from (3.4) that the equation of the red sub-parabolic line through the origin has the
form

k1(0, 0)k2
2(0, 0)(k1(0, 0) − k2(0, 0))t+ · · · = 0. (3.5)

Umbilics of a regular surface are points where the two principal curvatures coincide.
Suppose that the origin is an umbilic of a translation surface X(s, t), and that X(s, t) is given in Monge

form

X(s, t) = (s, t, f(s) + g(t)), f(s) + g(t) =
k(0)

2
(s2 + t2) +

∑
i>3

f(i)(0)
i!

si +
∑
j>3

g(j)(0)
j!

tj.

Here k is the common value for the principal curvatures at the origin. At an umbilic, the cubic part
P3(s, t) of f(s) + g(t) in (3.5) determines its type. An umbilic of the surface X(s, t) is said to be elliptic or
hyperbolic if P3(s, t) = f(3)(0)s3 + g(3)(0)t3 has three real roots or one real root, respectively. Moreover, an
umbilic is said to be right-angled if the root directions of the quadratic form which are the determinant
of the Hessian matrix of P3(s, t) are mutually orthogonal with respect to the standard scalar product on
R2. Such an umbilic necessarily is a hyperbolic umbilic.

Proposition 3.2. There is no elliptic umbilic for translation surface and the origin is possibly only a right-angled
hyperbolic umbilic.

Proof. The discriminant of P3(s, t) = f(3)(0)s3 + g(3)(0)t3 is given by ∆ = −[f(3)(0)g(3)(0)]2 < 0. Hence,
for translation surface, the origin is possibly only a hyperbolic umbilic. Moreover, the determinant of
the Hessian matrix of P3(s, t) is given by det(HessP3(s, t)) = 36f(3)(0)g(3)(0)st. If det(HessP3(s, t)) =
36f(3)(0)g(3)(0)st = 0, then s = 0 or t = 0 which are mutually orthogonal with respect to the standard
scalar product on R2. It follows that the origin is a right-angled hyperbolic umbilic of translation surface.

It is shown in [19] that there is one ridge line passing through a hyperbolic umbilic and that ridge line
changes its color as it passes through a generic umbilic. It is known that when there is one direction for
lines of curvature, there is one sub-parabolic line through the umbilic in the same direction.

4. Constant curvature lines on translation surfaces

In this section, we get some properties on constant curvature lines on translation surfaces. The main
results are contained in Propositions 4.1 and 4.2. We set Σc := {(s, t) | ki(s, t) = c for some i}. We call Σc
the constant principal curvature (CPC) line with the value of c. There are two CPC lines Σk1(p) (colored
by blue) and Σk2(p) (colored by red) locally through a non-umbilical point X(p). We recall that a point
p ∈ U is a singular point of the parallel surface Xu(p) at distance u if and only if u = 1

ki(p)
for some i.

This means that the set of singular points of Xu(p) is the CPC line Σki(p).
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Proposition 4.1. Suppose that a translation surface X(s, t) is given in Monge form as in (2.1), and that the origin
is a blue ridge point and red sub-parabolic point. Then the CPC line

∑
k1

is locally either an isolated point or two
intersecting smooth curves at the origin, if the blue ridge line crosses the red sub-parabolic line at the origin.

Proof. First we remark that k1(s, t) = k1(0, 0) is expressed by the equation

f(3)(0)s+
1
2
[(f(4)(0) − 3k3

1(0))s
2 − k1(0)k2

2(0)t
2] +O(s, t)3 = 0.

It is easy to get ∂k1
∂s (0, 0) = f(3)(0) = 0 and ∂k1

∂t (0, 0) = 0. The equations of the blue ridge line (3.3) and the
red sub-parabolic line (3.5) reduce to

(f(4)(0) − 3k3
1(0, 0))(k1(0, 0) − k2(0, 0)))s+ · · ·

and
k1(0, 0)k2

2(0, 0)(k1(0, 0) − k2(0, 0))t+ · · · = 0,

respectively. From these equations, the blue ridge line crosses the red sub-parabolic line at the origin if
and only if

(f(4)(0) − 3k3
1(0, 0))k1(0, 0)k2

2(0, 0) 6= 0.

We can get that ∂
2k1
∂s2 (0, 0) = f(4)(0) − 3k3

1(0, 0), ∂
2k1
∂s∂t(0, 0) = 0, and ∂2k1

∂t2 (0, 0) = −k1(0, 0)k2
2(0, 0). In addi-

tion, the determinant of the Hessian matrix of k1(s, t) at (0, 0) is given by

Hess(k1(0, 0)) = −(f(4)(0) − 3k3
1(0, 0))k1(0, 0)k2

2(0, 0).

By the Morse lemma, we complete the proof.

Proposition 4.2. The CPC line
∑
kis locally two intersecting smooth curves at a hyperbolic umbilic. The locally

two curves change their color as they pass through the hyperbolic umbilic.

Proof. We suppose that the origin is an umbilic of a translation surface. The common principal curvatures
are the roots of the principal curvatures equation. In this case, we can express the equation in the form

f(3)(0)g(3)(0)st+ · · · = 0.

The locus of this equation is the CPC line Σk. It is easy to know that there are two intersecting smooth
curves at a hyperbolic umbilic from the fact that there is only hyperbolic umbilic point on translation
surface.

5. Classification of singularity points on caustics of translation surfaces

Now we are ready to classify the singularity types of caustics of translation surface. We obtain the
following theorem.

Theorem 5.1. Let X(s, t) be a regular translation surface and CMi
(s, t) be its caustic.

(1) If X(s0, t0) is neither a ridge point relative to the principal direction vi nor an umbilic (ki(s0, t0) 6= 0), then the
caustic CMi

(s, t) is locally diffeomorphic to the cuspidal edge at CMi
(s0, t0).

(2) Suppose that X(s0, t0) is a ridge point relative to the principal direction vi and a sub-parabolic point rela-
tive to the other principal direction vj, and that ki(s0, t0) 6= 0. Then the caustic CMi

(s, t) is locally dif-
feomorphic to the cuspidal lips (resp. cuspidal beaks) at CMi

(s0, t0) if det(Hess(v1,v2)ki(s0, t0)) > 0 (resp.
det(Hess(v1,v2)ki(s0, t0)) < 0) and the order of ridge is one, where Hess(v1,v2)ki is the Hessian matrix of ki
with respect to v1 and v2.
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(3) Suppose that X(s0, t0) is an umbilic which is not a flat umbilic. Then the caustic CMi
(s, t) is locally diffeomor-

phic to a 3-dimensional D+
4 singularity at CMi

(s0, t0), where the cuspidal edge is a set locally diffeomorphic
to the image of a map germ CE : (R2, 0) → (R3, 0), (u, v) 7→ (u, v2, v3), the cuspidal lips is a set locally
diffeomorphic to the image of a map germ CLP : (R2, 0) → (R3, 0), (u, v) 7→ (3u4 + 2u2v2,u3 + uv2, v), the
cuspidal beaks is a set locally diffeomorphic to the image of a map germ CBP : (R2, 0) → (R3, 0), (u, v) 7→
(3u4 − 2u2v2,u3 − uv2, v) and the 3-dimensional D+

4 singularity is a set locally diffeomorphic to the image of
a map germ TD+ : (R2, 0)→ (R3, 0), (u, v) 7→ (uv,u2 + 3v2,u2v+ v3). Their pictures are shown in Figures
1-4.

Figure 1: Cuspidal edge. Figure 2: Cuspidal lips.

Figure 3: Cuspidal beaks. Figure 4: 3-dimensional D+
4 singularity.

Proof. The assertion (1) is followed by claim (1) of Proposition 3.1 in this paper, and claim (1) is followed
by Theorem 3.4 in [10]. The assertion (2) follows by claims (1) and (4) of Proposition 3.1 in this paper, and
claim (2) follows by Theorem 3.5 in [10]. The assertion (3) follows by Proposition 3.2 in this paper, and
claim (3) follows by Theorem 3.5 in [10].

6. Examples

As applications and illustration of the main results, we give two examples in this section.

Example 6.1. Let X(s, t) be a translation surface of E3 defined by

X(s, t) = (s, t,
1
2
s2 −

1
2
t2),
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where s ∈ [−0.2, 0.2], t ∈ [−0.4, 0.4]. Let f(s) = 1
2s

2, g(t) = −1
2t

2. It is easy to know that f ′(0) = 0,g ′(0) = 0,
f(3)(0) = 0, f(4)(0) = 0, k1(0, 0) = 1 > 0, k2(0, 0) = −1 < 0 and k1(0)k2

2(0)(f
(4)(0) − 3k3

1(0)) = −3 < 0. By
the claim (2) in Theorem 5.1, we know that the caustics of CM1(s, t) are locally diffeomorphic to a cuspidal
lips at CM1(0, 0). The pictures of this translation surface and one of its caustics are shown in Figure 5. The
pictures of the enlarged images of caustic, whose are locally diffeomorphic to a cuspidal lips are shown
in Figure 6.

Figure 5: Translation surface and its caustic. Figure 6: The enlarged image of caustic.

Example 6.2. Let X(s, t) be a translation surface of E3 defined by

X(s, t) = (s, t, cos(s) + cos(t) − 2),

where s ∈ [−0.2, 0.2], t ∈ [−0.2, 0.2]. Let f(s) = cos(s) − 1, g(t) = cos(t) − 1. It is easy to know that
k1(0) = k2(0) = −1 and f

′′
(0)g

′′
(0) = 1 6= 0. By the claim (3) in Theorem 5.1, we know that the caustics

of CMi
(s, t) are locally diffeomorphic to a 3-dimensional D+

4 singularity at CMi
(0, 0). The pictures of this

translation surface and one of its caustics are shown in Figure 7. The pictures of the enlarged images of
caustic, whose are locally diffeomorphic to a 3-dimensional D+

4 singularity are shown in Figure 8.

Figure 7: Translation surface and its caustic. Figure 8: The enlarged image of caustic.
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[5] M. Avendaño-Alejo, D. González-Utrera, L. Castañeda, Caustics in a meridional plane produced by plano-convex conic

lenses, J. Opt. Soc. Am. A, 28 (2011), 2619–2628. 1
[6] T. Banchoff, T. Gaffney, C. McCrory, Cusps of Gauss mappings, Pitman, Boston, (1982). 2, 2
[7] M. Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying ∆IIIri = µiri, J. Geom., 103 (2012),

367–374. 1
[8] M. V. Berry, Disruption of images; the caustic touching theorem, J. Opt. Soc. Am. A, 4 (1987), 561–569. 1
[9] J. Ehlers, E. T. Newman, The theory of caustics and wave front singularities with physical applications, J. Math. Phys.,

41 (2000), 3344–3378. 1
[10] T. Fukui, M. Hasegawa, Singularities of parallel surfaces, Tohoku Math. J., 64 (2012), 387–408. 2, 5
[11] W. Goemans, I. V. Woestyne, Translation Surfaces with Vanishing Second Gaussian Curvature in Euclidean and

Minkowski 3-Space, Shaker Verlag, Aachen, (2007). 1
[12] W. Hasse, M. Kriele, V. Perlick, Caustics of wavefronts in general relativity, Classical Quantum Gravity, 13 (1996),

1161–1182. 1
[13] S. Izumiya, Differential Geometry from the viewpoint of Lagrangian or Legendrian singularity theory, World Scientific

publishing Co., Singapore, (2007). 2
[14] L. Kong, D. Pei, On spacelike curves in hyperbolic space times sphere, Int. J. Geom. Methods Mod. Phys., 2014 (2014),

12 pages. 2
[15] H. Liu, Translation surfaces with dependent Gauss and mean curvature in 3-dimensional space, J. Neut., 14 (1993), 88–93.

1
[16] H. Liu, Translation surfaces with constant mean curvature in Euclidean 3-space, J. Geom., 64 (1999), 141–149.
[17] H. Liu, Y. Yu, Affine translation surfaces in 3-dimensional spaces, Proc. Japan Acad. Ser. A Math. Sci., 89 (2013),

111–113. 1
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