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Abstract

In this paper, we consider a class of generalized variational inequalities (GVI) in infinite dimensional Banach spaces, in which
only approximation sequences for GVI are known instead of exact values of the cost mapping and feasible set. A sequence of
inexact solutions of auxiliary problems involving general penalty method is introduced. We obtain some convergence properties
of the perturbed version of the regularized penalty method under mild coercive conditions, which extend some well-known
results of variational inequalities in many respects. c©2017 All rights reserved.
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1. Introduction

Variational inequality theory, introduced in the early 1960s, has played a critical and significant role
in nonlinear analysis. This field has witnessed an explosive growth in both theory and applications.
Recently, research on non-stationary generalized variational inequalities has attracted the attention of a
considerable number of scholars.

Let X be a nonempty subset of a Banach space E and G : X→ 2E
∗

be a set-valued mapping. In this
work, we consider the following generalized variational inequality: find an element x∗ ∈ X and g∗ ∈ G(x∗)
such that

〈g∗,y− x∗〉 > 0 for all y ∈ X. (1.1)

Particularly, if G is a single-valued mapping, then GVI (1.1) reduces to the classical variational inequality
(VI, for short): find an element x∗ ∈ X such that

〈G(x∗),y− x∗〉 > 0 for all y ∈ X.
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GVIs arise in economics, mathematical physics, and other general problems in nonlinear analysis,
such as optimization, fixed point, game equilibrium, and complementarity problems, see, for example,
[3, 7, 9, 10, 17–25, 29, 30, 32] and references therein. Applications of the variational inequalities in Contact
Mechanics can be found in [11, 26, 28]. Usually, most solution methods for GVIs rely upon certain
(generalized) monotonicity, convexity conditions. Recently, the convergence of regularization methods
was proposed to displace (generalized) monotonicity assumptions by weak conditions, which are also
sufficient for existence of solutions for GVIs in a finite dimensional space, see [12–14, 16] and references
therein. Furthermore, Konnov in [13] showed that convergence of the perturbed version of the general
penalty was applied to a non-stationary VI without any concordance rules and monotonicity assumptions
in a finite dimensional space.

The main goal of this paper is to reveal convergence properties of the perturbed version of the regular-
ized penalty method for GVIs in reflexive Banach spaces without any concordance rules and monotonicity
assumptions for penalty and regularization parameters. At the same time, we extend those results in sev-
eral directions by applying mild coercivity conditions.

2. Preliminaries

In this section, we recall some definitions and properties concerning nonlinear analysis, see [1, 5, 6, 31].
Let X be a nonempty subset of a Banach space E. Subsequently, the set of real numbers and the set of
positive real numbers are denoted by R and R+, respectively. In the sequel, the symbols xk w−→ x̄ and
xk → x̄ stand for weak and strong convergence of {xk} to x̄, respectively. Recall that the following
definitions.

Definition 2.1. A function f : X→ R is said to be

(a) convex on a set U ⊆ X, if for any x,y ∈ U and α ∈ (0, 1), it holds

f(αx+ (1 −α)y) 6 αf(x) + (1 −α)f(y);

(b) quasiconvex on a set U ⊆ X, if for any x,y ∈ U and α ∈ (0, 1), it holds

f(αx+ (1 −α)y) 6 max{f(x), f(y)};

(c) explicitly quasiconvex on a set U ⊆ X, if it is quasiconvex and satisfies

f(αx+ (1 −α)y) < max{f(x), f(y)}

for any x,y ∈ U, x 6= y and α ∈ (0, 1);
(d) weakly upper (lower) semicontinuous on U ⊆ X, if for each sequence {xk} ⊂ U with xk w−→ x̄, one

has
lim sup
k→∞ f(xk) 6 f(x̄)(lim inf

k→∞ f(xk) > f(x̄));

(e) coercive, if f(x)→ +∞ as ‖x‖ →∞;
(f) weakly coercive with respect to set X, if there exists a constant ρ ∈ R such that the set

Wρ = {x ∈ X|f(x) 6 ρ}

is nonempty and bounded.

Remark 2.2. Clearly, we have (a)⇒ (c)⇒ (b) and (e)⇒ (f), but the reverse implications are not true in
general.

Let f : [0, 1]→ R be the function defined by f(x) = x
1
2 , then f is explicitly quasiconvex and nonconvex

on [0, 1] . Suppose that g : [0,+∞)→ R is the function defined by

g(x) = x
1
2 , if x ∈ [0, 1] and g(x) = 1, if x ∈ (1,+∞),

then g is quasiconvex and non-explicitly quasiconvex [0,+∞). There exists a constant 1
2 ∈ R such that the
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set
W 1

2
= {x ∈ [0,+∞)|g(x) 6

1
2
},

is nonempty and bounded, yet g(x) = 1 as ‖x‖ → ∞. Therefore g is weakly coercive with respect to the
[0,+∞) and non-coercive.

If −f is convex, then f is called concave. Analogously, we can define the quasiconcave and explicitly
quasiconcave, respectively.

Definition 2.3. We say that a family of sets {Xk} is weakly Mosco convergent to a set X (see [1]) if and
only if

(i) for each sequence xk ∈ Xk with xk w−→ x̄, we have x̄ ∈ X;
(ii) for each point x̄ ∈ X, there exists a sequence xk w−→ x̄ with xk ∈ Xk.

Next, we move our attention to the following equilibrium problem (EP, for short): find an element
x∗ ∈ X such that

Φ(x∗,y) > 0, ∀y ∈ X, (2.1)

where Φ : X×X→ R is an equilibrium bi-function, i.e. Φ(x, x) = 0 for every x ∈ X.
We now give an existence result for EP (2.1) via a proper adjustment of the classical Ky Fan inequality

in a Banach space, see [8, 27].

Proposition 2.4. Let X be a nonempty convex closed and bounded set in a reflexive Banach space E, and Φ :
X×X→ R be an equilibrium bi-function such that:

(i) for each fixed y ∈ X, Φ(.,y) is a weakly upper semicontinuous function on X;

(ii) for each fixed x ∈ X, Φ(x, .) is a quasiconvex function on X.

Then the problem EP (2.1) has a solution.

Definition 2.5. Let X and E be reflexive Banach spaces. A set-valued mapping G : X→ 2E is said to be

(g) upper semicontinuous on X, if for each x ∈ X and for each open set U of E containing G(x), there
exists an open neighborhood V of x such that G(V) ⊆ U;

(h) a K(Kakutani)-mapping on X, if it is upper semicontinuous on X and has nonempty convex and
compact values.

We consider the EP (2.1) under the following basic assumptions.

(H) Let X be a nonempty convex and closed set in a reflexive Banach space E, and Φ : X×X→ R be an
equilibrium bi-function such that

(i) for each fixed y ∈ X, Φ(.,y) is weakly upper semicontinuous;

(ii) for each fixed x ∈ X, Φ(x, .) is explicitly quasiconvex.

(C) There exists a convex and lower semicontinuous function µ : E→ R, which is weakly coercive with
respect to the set X, and a constant r > 0 such that for any point x ∈ X \Wr where Wr = {x ∈
X|µ(x) 6 r}, there exists a point z ∈ X with

min{Φ(x, z),µ(z) − µ(x)} < 0 and max{Φ(x, z),µ(z) − µ(x)} 6 0.

Then, it is easy to get an existence result for EP (2.1) constrained on unbounded set by use of Propo-
sition 2.4, see [15, Theorem 3.1].

Proposition 2.6. If (H) and (C) are fulfilled, then problem EP (2.1) has a solution.
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(C′) There exists a convex and lower semicontinuous function µ : E→ R, which is weakly coercive with
respect to the set X, and a constant r > 0 such that for any point x ∈ X \Wr, there is a point
z ∈ Lr

⋂
X such that Φ(x, z) < 0, where Lr = {x ∈ X|µ(x) < r}.

Obviously, the condition (C′) implies the condition (C). So we can get the following:

Proposition 2.7. Assume that (H) and (C′) are fulfilled, then problem EP (2.1) has a solution and all these solutions
belong to Wr

⋂
X.

Proof. The existence part follows directly from Proposition 2.6. It remains to verify the regularity of
solution set to EP (2.1).

Arguing by contradiction, if there exists a solution x′ of EP (2.1) and x′ /∈ Wr, then by (C′) we have
Φ(x′, z) < 0 for some z ∈ Lr

⋂
X, a contradiction.

3. Penalty method

In this section, a general penalty method is applied to GVI (1.1) to establish the existence and conver-
gence. We need approximation assumptions. Let X be a nonempty convex and closed set in a reflexive
Banach space E, and G : X→ 2E

∗
be a set-valued mapping.

(A1) There exists a family of nonempty convex closed subsets {Xk} in Ewhich is weakly Mosco convergent
to the set X.

(A2) There exists a family of K-mappings Gk : Xk → 2E
∗
,k = 1, 2, . . . , such that the relations xk w−→ x̄,

yk
w−→ ȳ, xk ∈ Xk, yk ∈ Xk and gk ∈ Gk(xk) imply gks w−→ ḡ with ḡ ∈ G(x̄) and lim sup

s→∞ 〈gks ,yks −

xks〉 6 〈ḡ, ȳ− x̄〉.
(A3) Let Ψk(x,y) = sup

g∈Gk(x)
〈g,y− x〉. For each fixed y ∈ Xk, Ψk(.,y) is a quasiconcave functional on Xk.

We now intend to describe a general penalty method for GVI (1.1). Denote D by

D = X
⋂
V , (3.1)

where V is a closed and convex set in E. In this partition, X stands for a “simply” constrained set,
whereas V usually includes complex or “functional” constraints. The above partition of feasible set into
two subsets may be suitable for penalty method. For this reason, we suppose that P : E→ R is a general
penalty function of V , i.e.,

P(v) = 0, if v ∈ V and P(v) > 0, if v /∈ V .

We also introduce a family of convergence operators Pk of P as follows:

(B1) There exists a family of lower semicontinuous and convex functions Pk : Xk → R+.
(B2) If vk ∈ Xk, vk w−→ v, v ∈ X and lim inf

k→∞ Pk(v
k) = 0, then P(v) = 0.

(B3) For each point v̄ ∈ D there exists a sequence vk w−→ v̄ with vk ∈ Xk and Pk(vk) = 0.

It is obvious that hypotheses (B2) and (B3) deduce the weakly Mosco convergence of functions {Pk} to
P, see [1].

For each k = 1, 2, . . . , we intend to find x̃k ∈ Xk and g̃k ∈ Gk(x̃k) such that

〈g̃k, v− x̃k〉+ τk[Pk(v) − Pk(x̃k)] > 0, ∀v ∈ Xk, (3.2)

where τk > 0 is a penalty parameter. For brevity, set

4k(g, x,y) = 〈g,y− x〉+ τk[Pk(y) − Pk(x)].

Now, we turn to introduce certain coercivity conditions. For µk : E→ R and a constant ρk we define
the level sets

Wρ
(k)
k = {x ∈ X|µk(x) 6 ρk}, Lρ

(k)
k = {x ∈ X|µk(x) < ρk}.
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(C1) For each k = 1, 2, . . . , there exists a convex and lower semicontinuous function µk : E→ R, which
is weakly coercive with respect to the set Xk, and a number ρk > 0 such that for any point x ∈
Xk \Wρ

(k)
k , there is a point z ∈ Lρ(k)k

⋂
Xk such that 4k(g, x, z) < 0.

(C2) If xk w−→ x̄ and xk ∈ Xk, then lim inf
k→∞ µk(x

k) > µ(x̄) for some µ : E→ R.

(C3) There exists a number θ > 0 and v̄ ∈ D such that for any sequences {vk}, {xk}, and {gk}, satisfying
the conditions:

vk ∈ Xk, xk ∈ Xk, gk ∈ Gk(xk), ‖xk‖ → +∞, vk w−→ v̄,

it holds
lim inf
k→∞ 〈gk, vk − xk〉 6 −θ and lim inf

k→∞ µk(x
k) > 0.

(C4) lim sup
k→∞ ρk 6 ρ′ for some ρ′ > 0.

We shall prove that the sequence {xk} approximates to a solution of GVI (1.1).

Theorem 3.1. Suppose (A1)-(A3), (B1)-(B3), and (C1)-(C4) are fulfilled, and the sequences {τk} satisfy

{τk}↗ +∞.

Then:

(i) GVI (3.2) has a solution for each τk > 0 and all these solutions belong to Wρ(k)k
⋂
Xk;

(ii) each sequence {xk} of solutions of GVI (3.2) has weak limit points and all these weak limit points are solutions
of GVI (1.1), which belong to Wρ′

⋂
D, where Wρ′ = {x ∈ X|µ(x) 6 ρ′}.

Proof. Firstly, we use hypothesis (C1) that for each τk > 0, (C′) is true for EP (2.1) with Φ(x,y) =

4k(g, x,y), X = Xk, µ = µk and ρ = ρk, thus, for any x ∈ Xk \Wρ
(k)
k , there exists z ∈ Xk \ Lρ

(k)
k

such that
4k(g, x, z) < 0.

Since that Ψk(.,y) is upper semicontinuous for each y ∈ Xk, (see [2, Section 9.2]), therefore, for any λ ∈ R,
the set

Fλ = {x ∈ Xk| sup
g∈Gk(x)

〈g,y− x〉 > λ}

is closed, (see [4, Proposition 1.3.4]). From hypothesis (A3), the convexity of Fλ, and reflexivity of X,
the set Fλ is weakly closed and the function Ψk(.,y) is weakly upper semicontinuous for each y ∈ Xk.
Consider the function Φk : Xk ×Xk → R defined by

Φk(x,y) = 4k(g, x,y) for all x,y ∈ Xk.

Obviously, Φk(.,y) is weakly upper semicontinuous for each fixed y ∈ Xk, but Φk(x, .) is convex for each
fixed x ∈ Xk. It follows from Proposition 2.7 that GVI (3.2) has a solution xk with xk ∈ Wρ(k)k

⋂
Xk, so

the assertion (i) holds.
Conclusion (i) ensures that the sequence {xk} is well-defined. We are now to show that the sequence

is bounded. Arguing by contradiction, without loss of generality, we suppose that ‖xk‖ → +∞. Note that
xk ∈ Xk, besides, by (B3) there exists a sequence vk w−→ v̄ with vk ∈ Xk and Pk(vk) = 0. Hence, for some
gk ∈ Gk(xk), we have

0 6 〈gk, vk − xk〉+ τk[Pk(vk) − Pk(xk)] = 〈gk, vk − xk〉− τkPk(xk) 6 〈gk, vk − xk〉.

Choose a subindex {ks} of {k} such that

lim
s→∞〈gks , vks − xks〉 = lim inf

k→∞ 〈gk, vk − xk〉.
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We have from (C3),
0 6 lim

s→∞〈gks , vks − xks〉 6 −θ < 0,

which gets a contradiction. Therefore, the sequence {xk} is bounded. From the reflexivity of E, we may
assume

xks
w−→ x̄.

Since xk ∈ Xk, we have x̄ ∈ X by (A1). From (C2) and (C4) it follows that x̄ ∈Wρ′ . Therefore x̄ ∈ X
⋂
Wρ′ .

Next, we claim that x̄ is a solution of GVI (1.1). In fact, from (3.2) it follows that

0 6 Pks(x
ks) 6 τ−1

ks
〈gks , v− xks〉+ Pks(v), ∀v ∈ Xk, (3.3)

where gks ∈ Gks(xks). By (B3), there exists a sequence vk w−→ v̄ with vk ∈ Xk and Pk(vk) = 0 for any
v̄ ∈ D. Taking v = vks in (3.3), we obtain

0 6 lim inf
s→∞ Pks(x

ks) 6 lim sup
s→∞ [τ−1

ks
〈gks , vks − xks〉] = 0.

Hence
lim inf
s→∞ Pks(x

ks) = 0.

So, we have x̄ ∈ V , i.e., x̄ ∈ D.
Note that for any x̄ ∈ D, there exists a sequence vk w−→ x̄ with vk ∈ Xk and Pk(v

k) = 0 by (B3).
Applying (3.2) again, for gks ∈ Gks(xks), we obtain

0 6 τksPks(x
ks) 6 〈gks , vks − xks〉+ τksPks(v

ks).

Hence,
0 6 lim inf

s→∞ τksPks(x
ks) 6 lim sup

s→∞ 〈gks , vks − xks〉 6 〈ḡ, x̄− x̄〉 = 0.

Therefore, we get from (A2) that lim
s→∞ τksPks(xks) = 0. For arbitrary w̄ ∈ D, using (B3) again, there exists

a sequence vk w−→ w̄ with vk ∈ Xk and Pk(vk) = 0. For gks ∈ Gks(xks), we have from (3.2) that

〈gks , vks − xks〉− τksPks(x
ks) = 〈gks , vks − xks〉+ τks [Pks(v

ks) − Pks(x
ks)] > 0.

Without loss of generality, we suppose that gks w−→ ḡ, then ḡ ∈ G(x̄). It follows that

0 = lim
s→∞ τksPks(xks) 6 lim sup

s→∞ 〈gks , vks − xks〉 6 〈ḡ, w̄− x̄〉.

Hence x̄ solves GVI (1.1) and assertion (ii) is true.

We note that the above proof implies that the feasible D is nonempty and GVI (1.1) and (3.1) has a
solution which belongs to Wρ′

⋂
D.

Remark 3.2. If E is a finite dimensional Banach space, our Theorem 3.1 will reduce to the classical one [13,
Theorem 3.1].

4. Regularized penalty method

Now, we consider a regularized version of the penalty method for GVI (1.1), and then use a weaker
coercivity condition to establish a convergence result. So, with the exception of the conditions (C1) and
(C2), we rely on all the assumptions of the previous section. We shall take the following.

(C′1) For each k = 1, 2, . . . , there exists a convex and lower semicontinuous function µk : E→ R, which



G. W. Su, Z. W. Zhao, J. Nonlinear Sci. Appl., 10 (2017), 5311–5320 5317

is weakly coercive with respect to the set Xk, and a constant ρk > 0 such that for any point x ∈
Xk \Wρ

(k)
k , there exists z ∈ Lρ(k)k

⋂
Xk such that

4k(g, x, z) 6 0.

(C′2) If xk w−→ x̄ and xk ∈ Xk, then lim inf
k→∞ µk(x

k) > µ(x̄) for some µ : E→ R and lim sup
k→∞ µk(x

k) 6 ψ(x̄)

for some ψ : E→ R.

For each k = 1, 2, . . . , we intend to find a point xk ∈ Xk such that

∃gk ∈ Gk(xk), 〈gk, v− xk〉+ τk[Pk(v) − Pk(xk)] + εk[µk(v) − µk(xk)] > 0, ∀v ∈ Xk, (4.1)

where τk > 0 and εk > 0 are penalty parameters. For brevity, set

Φk(x,y) = 〈g,y− x〉+ τk[Pk(y) − Pk(x)] + εk[µk(y) − µk(x)].

Theorem 4.1. Suppose that (A1)-(A3), (B1)-(B3), (C′1)-(C′2), and (C3)-(C4) are fulfilled, and the sequences {τk} and
{εk} satisfy

τk ↗ +∞, εk ↘ 0 as k→∞. (4.2)

Then:

(i) the solution set of GVI (4.1) is nonempty for each τk > 0, εk > 0, and it is a subset of Wρ(k)k
⋂
Xk;

(ii) each sequence {xk} of solutions of GVI (4.1) has weak limit points and all these weak limit points are solutions
of GVI (1.1), which belong to Wρ′

⋂
D, where Wρ′ = {x ∈ X|µ(x) 6 ρ′}.

Proof. Firstly, we note that, for each τk > 0 and εk > 0, (C′) is true for EP (2.1) with Φ(x,y) =

Φk(x,y), X = Xk, µ = µk and ρ = ρk. Taking any x ∈ Xk \Wρ
(k)
k , then there exists y ∈ Xk

⋂
Lρ

(k)
k

such that 4k(g, x,y) 6 0. It follows that

Φk(x,y) = 〈g,y− x〉+ τk[Pk(y) − Pk(x)] + εk[µk(y) − µk(x)] < 0.

Since Ψk(.,y) is a weakly upper semicontinuous for each fixed y ∈ Xk, following the proof of Theorem
3.1, Ψk(x, .) is a convex for each fixed x ∈ Xk. Then so is Φk, all the conditions of Proposition 2.7 hold,
and GVI (4.1) has a solution. Besides, xk ∈Wρ(k)k

⋂
Xk and the assertion (i) is true.

By (i), the sequence {xk} is well-defined. We have to show that it is bounded. Conversely, suppose
that ‖xk‖ → +∞. Note that xk ∈ Xk, besides, by (B3) there exists a sequence vk w−→ v̄ with vk ∈ Xk and
Pk(v

k) = 0. Hence, for some gk ∈ Gk(xk), we have

0 6 〈gk, vk − xk〉+ τk[Pk(vk) − Pk(xk)] + εk[µk(vk) − µk(xk)]
= 〈gk, vk − xk〉− τkPk(xk) + εk[µk(vk) − µk(xk)]
6 〈gk, vk − xk〉+ εk[µk(vk) − µk(xk)].

Note that
lim sup
k→∞ {εk[µk(v

k) − µk(x
k)]} 6 lim sup

k→∞ [εkµk(v
k)] − lim inf

k→∞ [εkµk(x
k)] 6 0,

on account of (C′2) and (C3). Then, we have from (C3) that

0 6 lim inf
k→∞ {〈gk, vk − xk〉+ εk[µk(vk) − µk(xk)]}

6 lim inf
k→∞ 〈gk, vk − xk〉+ lim sup

k→∞ {εk[µk(v
k) − µk(x

k)]}

6 lim inf
s→∞ 〈gk, vk − xk〉 6 −θ < 0,
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which is a contradiction. Therefore, the sequence {xk} is bounded in the reflexive Banach space E. Without
loss of generality, let x̄ be a weak limit point of {xk}, i.e.,

xks
w−→ x̄.

Since xk ∈ Xk, we have x̄ ∈ X by (A1). From (C′2) and (C4) it follows that x̄ ∈ Wρ′ , therefore x̄ ∈ X
⋂
Wρ′ .

We claim that x̄ is a solution of GVI (1.1), (3.1). In fact, from (4.1) it follows that

0 6 Pks(x
ks) 6 τ−1

ks
〈gks , v− xks〉+ Pks(v) + τ

−1
ks
εks [µks(v) − µks(x

ks)], ∀v ∈ Xk,

where gks ∈ Gks(xks). By (B3), there exists a sequence vk w−→ v̄ with vk ∈ Xk and Pk(vk) = 0 for any
v̄ ∈ D. Taking v = vks , we obtain

0 6 lim inf
s→∞ Pks(x

ks) 6 lim sup
s→∞ [τ−1

ks
〈gks , vks − xks〉] + lim sup

s→∞ {τ−1
ks
εks [µks(v

ks) − µks(x
ks)]} 6 0,

on account of (A2), (C′2), and (4.2), i.e.,
lim
s→∞Pks(xks) = 0,

hence x̄ ∈ V , i.e., x̄ ∈ D. Note that there exists a sequence vk w−→ v̄ with vk ∈ Xk and Pk(vk) = 0 for any
v̄ ∈ D due to (B3), applying (4.1) again, for gks ∈ Gks(xks), we obtain

0 6 τksPks(x
ks) 6 〈gks , vks − xks〉+ εks [µks(v

ks) − µks(x
ks)].

Hence,

0 6 lim inf
s→∞ τksPks(x

ks) 6 lim sup
s→∞ 〈gks , vks − xks〉+ lim sup

s→∞ {εks [µks(v
ks) − µks(x

ks)]} 6 〈ḡ, x̄− x̄〉 = 0,

on account of (C′2) and (A2). We have
lim
s→∞ τksPks(xks) = 0.

By (B3), for arbitrary w̄ ∈ D, there exists a sequence vk w−→ w̄ with vk ∈ Xk and Pk(vk) = 0. Applying
(4.1) again, for gks ∈ Gks(xks), we have

〈gks , vks − xks〉− τksPks(x
ks) + εks [µks(v

ks) − µks(x
ks)]

= 〈gks , vks − xks〉+ τks [Pks(v
ks) − Pks(x

ks)] + εks [µks(v
ks) − µks(x

ks)] > 0.

Without loss of generality, we suppose that gks w−→ ḡ, then ḡ ∈ G(x̄). It follows that

0 6 lim
s→∞ τksPks(xks) + lim inf

s→∞ {εks [µks(x
ks) − µks(v

ks)]} 6 lim sup
s→∞ 〈gks , vks − xks〉 6 〈ḡ, w̄− x̄〉.

Hence x̄ solves GVI (1.1), (3.1) and assertion (ii) is true.

We observe that the above proof implies that GVI (1.1) and (3.1) has a solution under the conditions
of Theorem 4.1, which are weaker than those in Theorem 3.1.
Remark 4.2. In a finite dimensional space, Theorem 4.1 somewhat generalizes the assertions of Theorem
4.1 in [13] and Theorem 2 in [14].
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