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Abstract

This paper investigates the existence of solutions for Riemann-Stieltjes integral boundary value problems of fractional
differential equation by using Mawhin’s coincidence degree theory. An example is given to show the application of our result.
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1. Introduction

In recent years, by the extensive development of the theory for fractional calculus, the fractional
differential equations have been applied in many research fields, such as physics, chemistry, biology,
control theory, economics, biophysics, signal and image processing, etc. (see [6, 8, 10, 13–15]). For
example, SIS epidemic can be modeled with fractional derivatives, which is given by{

Dα1S(t) = Λ−βSI− µS+φI,
Dα1I(t) = βSI− (φ+ µ+α)I,

where Dα1 is Caputo fractional derivatives with 0 < α1 6 1, S(t) is the number of individuals in the
susceptible class at time t and I(t) is the number of individuals who are infectious at time t (see [6]).
Furthermore, a large number of valuable results about fractional boundary value problems have been
achieved by many scholars (see [2–4, 7]). Bai and Lü [3] investigated the following fractional boundary
value problems {

Dα0+u(t) + f(t,u(t)) = 0, 0 < t < 1,
u(0) = u(1) = 0,
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where Dα0+ is the standard Riemann-Liouville fractional derivative with 1 < α 6 2, and f ∈ [0, 1] ×
[0,∞) → [0,∞) is continuous. By using fixed-point theorems on cone, the existence and multiplicity of
positive solutions are obtained.

Recently, there are some papers deal with the existence of solutions for differential equation with
Riemann-Stieltjes integral boundary value problems and got some interesting results (see [1, 5, 9, 16–19]).
For example, In [5], Cui considered the solvability of second order boundary value problems at resonance
involving Riemann-Stieltjes integral conditions by using Mawhin’s coincidence degree theory:{

x ′′(t) = f(t, x(t), x ′(t)), t ∈ (0, 1),
x(0) =

∫1
0 x(s)dα(s), x(1) =

∫1
0 x(s)dβ(s),

where α,β are functions of bounded variation,
∫1

0 x(s)dα(s) and
∫1

0 x(s)dβ(s) denote the Riemann-Stieltjes
integrals, f ∈ C([0, 1]×R2, R).

In [18], Zhang and Han investigated the existence and uniqueness of positive solutions for the follow-
ing higher order nonlocal fractional differential equations by using monotone iterative technique:{

Dα0+x(t) + f(t, x(t)) = 0, 0 < t < 1, n− 1 < α 6 n,
x(k)(0) = 0, 0 6 k 6 n− 2, x(1) =

∫1
0 x(s)dA(s),

where Dα0+ is the standard Riemann-Liouville fractional derivative with α > 2, A is a function of bounded
variation and

∫1
0 x(s)dA(s) denotes the Riemann-Stieltjes integral of x with respect to A, dA can be a

signed measure, f : (0, 1)×R+ → R+ is a continuous function.
Thus, motivated by the results mentioned, in this paper, we discuss the following Riemann-Stieltjes

integral boundary value problems by using Mawhin’s continuous theorem:{
Dα0+x(t) = f(t, x(t),D

α−1
0+ x(t)), t ∈ (0, 1),

lim
t→0+

t2−αx(t) =
∫1

0 x(t)dA(t), x(1) =
∫1

0 x(t)dB(t),
(1.1)

where Dα0+ is the standard Riemann-Liouville fractional derivative with 1 < α 6 2, f : [0, 1]×R2 → R is a
Carathéodory function, A and B are functions of bounded variation,

∫1
0 x(t)dA(t) and

∫1
0 x(t)dB(t) denote

by two Riemann-Stieltjes integrals.
Our innovations can be shown in two points: Firstly, to the best of author’s knowledge, there are no

papers consider fractional boundary value problem at resonance with Riemann-Stieltjes integral, so our
paper enriches some known existing articles. Secondly, our paper extends the result of [5] from integer
order differential equation problem to fractional differential equation problem, when we take α = 2, the
result of [5] will be a particular case of our result.

Throughout this paper, we assume that the following condition holds:

(H0) Λ1Λ2Λ3Λ4 6= 0, Λ1Λ4 −Λ2Λ3 = 0 and

Λ =
Λ3

Γ(α+ 1)

∫ 1

0
tα−1(1 − t)dA(t)+

Λ1

Γ(α+ 1)

∫ 1

0
tα−1(1 − t)dB(t) 6= 0,

where

Λ1 = 1 −

∫ 1

0
tα−2(1 − t)dA(t), Λ2 =

∫ 1

0
tα−1dA(t),

Λ3 =

∫ 1

0
tα−2(1 − t)dB(t), Λ4 = 1 −

∫ 1

0
tα−1dB(t).

A boundary value problem is said to be resonance, if the corresponding homogeneous boundary value
problem has a nontrivial solution. Mawhin’s continuous theorem [11, 12] is an effective tool to solve this
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kind of problem. We note that if condition (H0) holds, then Riemann-Stieltjes integral boundary value
problem (1.1) happens to be at resonance in the sense that the following boundary value problem{

Dα0+x(t) = 0, t ∈ (0, 1),
lim
t→0+

t2−αx(t) =
∫1

0 x(t)dA(t), x(1) =
∫1

0 x(t)dB(t),

has x(t) = c[1 + (ρ− 1)t]tα−2, c ∈ R, ρ = Λ3/Λ4 = Λ1/Λ2, as a nontrivial solution.
The structure of this paper is as follows. In Section 2, we recall some definitions and lemmas. In

Section 3, based on the Mawhin’s continuation theorem, we establish an existence theorem for the problem
(1.1). In Section 4, an example is given to illustrate the usefulness of our main results.

2. Preliminaries

In this section, we recall some definitions, lemmas which are used throughout this paper.
Let X and Y be two Banach spaces with the norms ‖·‖X and ‖·‖Y , respectively. Define L : dom(L) ⊂

X→ Y be a Fredholm operator with index zero, P : X→ X, Q : Y → Y be two projectors such that

ImP = KerL, ImL = KerQ, X = KerL⊕KerP, Y = ImL⊕ ImQ,

then, L
∣∣
domL∩KerP : domL → ImL, is invertible. We denote the inverse by Kp. Let Ω be an open

bounded subset of X and domL∩ Ω̄ 6= ∅, then the map N : X→ Y is called L-compact on Ω̄, if QN
(
Ω̄
)

is
bounded and KP,QN = Kp(I−Q)N : Ω̄→ X is compact (see [11, 12]).

Lemma 2.1 ([11, 12]). Let L : domL ⊂ X → Y be a Fredholm operator of index zero and N : X → Y is L-compact
on Ω̄. Assume that the following conditions are satisfied:

(i) Lu 6= λNu for any u ∈ (domL\KerL)∩ ∂Ω, λ ∈ (0, 1);

(ii) Nu /∈ ImL for any u ∈ KerL∩ ∂Ω;

(iii) deg(QN
∣∣KerL ,Ω∩KerL, 0) 6= 0.

Then the equation Lx = Nx has at least one solution in domL∩ Ω̄.

Definition 2.2 ([8, 13]). The Rieman-Liouville fractional integral of order α > 0 for function x : (0,+∞)→
R is given by

Iα0+x(t) =
1
Γ(α)

∫t
0
(t− s)α−1x(s)ds,

provided the right side integral is pointwise defined on (0,+∞).

Definition 2.3 ([8, 13]). The Riemann-Liouville fractional derivative of order α > 0 for function x :
(0,+∞)→ R is given by

Dα0+x(t) =
dn

dtn
In−α0+ x(t) =

1
Γ(n−α)

dn

dtn

∫t
0
(t− s)n−α−1x(s)ds,

where n = [α] + 1 provided the right side integral is pointwise defined on (0,+∞).

Lemma 2.4 ([3, 7, 8, 13]). Let α > 0. Assume that x,Dα0+x ∈ L1(0, 1), then the following equality holds

Iα0+D
α
0+x(t) = x(t) + c1t

α−1 + c2t
α−2 + · · ·+ cntα−n,

where n = [α] + 1, ci ∈ R, i = 1, 2, · · ·,n.
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Lemma 2.5 ([3, 7, 8, 13]). Assume that x ∈ L1(0, 1), α > β > 0, then

Iα0+I
β
0+x(t) = I

α+β
0+ x(t), Dβ0+I

α
0+x(t) = I

α−β
0+ x(t).

Lemma 2.6 ([3, 7]). Assume that α > 0, λ > −1, t > 0, then

Iα0+t
λ =

Γ(λ+ 1)
Γ(λ+ 1 +α)

tα+λ, Dα0+t
λ =

Γ(λ+ 1)
Γ(λ+ 1 −α)

tλ−α,

in particular Dα0+t
α−m = 0, m = 1, 2, · · ·,n, where n = [α] + 1.

3. Main result

In this part, we let xα(t) = t2−αx(t) and take

X =
{
x : xα,Dα−1

0+ x ∈ C[0, 1]
}

, Y = L1[0, 1].

It is easy to check that X and Y are two Banach spaces with norms

||x|| = max
{
||xα||∞, ||Dα−1

0+ x||∞} , ||y|| = ||y||1 =

∫ 1

0
|y(t)|dt,

respectively, where ||x||∞ = sup
t∈[0,1]

|x(t)|.

Define the linear operator L : domL ⊂ X→ Y and nonlinear operator N : X→ Y as follows:

Lx(t) = Dα0+x(t), x(t) ∈ domL, Nx(t) = f(t, x(t),Dα−1
0+ x(t)), x(t) ∈ X,

where
domL = {x ∈ X : Dα0+x(t) ∈ Y, x satisfies boundary value conditions of (1.1)}.

Then problem (1.1) is equivalent to the operator equation Lx = Nx, x ∈ domL.

Lemma 3.1. Assume that (H0) holds. Then operator L : domL ⊂ X→ Y satisfies,

KerL =
{
x ∈ domL : x(t) = c[1 + (ρ− 1)t]tα−2, c ∈ R

}
,

ImL =

{
y ∈ Y : Λ3

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t)

+ Λ1

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) = 0

}
,

(3.1)

where ρ = Λ3/Λ4 =Λ1/Λ2, and

g(t, s) =
1
Γ(α)

{
tα−1(1 − s)α−1, 0 6 t 6 s 6 1,
tα−1(1 − s)α−1 − (t− s)α−1, 0 6 s 6 t 6 1.

Proof. If Lx = Dα0+x = 0, by Lemma 2.4, we have

x(t) = atα−1 + btα−2, a,b ∈ R,

which together with boundary conditions of (1.1), we can derive

b =

∫ 1

0
x(t)dA(t) =

∫ 1

0
(atα−1 + btα−2)dA(t) = aΛ2+b(Λ2 −Λ1 + 1),
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and

a+ b =

∫ 1

0
x(t)dB(t) =

∫ 1

0
(atα−1 + btα−2)dB(t) = a(1 −Λ4)+b(Λ3 −Λ4 + 1).

Then, a = b(ρ− 1). So, KerL ⊂
{
x ∈ domL : x(t) = c[1 + (ρ− 1)t]tα−2, c ∈ R

}
. Conversely, take

x(t) = [1 + (ρ− 1)t]tα−2, then Dα0+x = 0 and∫ 1

0
x(t)dA(t) =

∫ 1

0
tα−2dA(t)+

∫ 1

0
(ρ− 1)tα−1dA(t)

=1 −Λ1+ρΛ2 = 1 = lim
t→0+

t2−αx(t),

∫ 1

0
x(t)dB(t) =

∫ 1

0
tα−2dB(t)+

∫ 1

0
(ρ− 1)tα−1dB(t)

=Λ3+ρ(1 −Λ4) = ρ = x(1).

So,
{
x ∈ domL : x(t) = c[1 + (ρ− 1)t]tα−2, c ∈ R

}
⊂ KerL. For y ∈ ImL, there exists x ∈ domL such that

Dα0+x(t) = y(t). Considering the boundary conditions of (1.1), one has

x(t) = −

∫ 1

0
g(t, s)y(s)ds+

[
lim
t→0+

t2−αx(t)

]
(1 − t)tα−2 + x(1)tα−1. (3.2)

Integrating (3.2) with respect to dA(t) and dB(t) from 0 to 1, respectively, we obtain∫ 1

0
x(t)dA(t) =−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) +

[
lim
t→0+

t2−αx(t)

]
(1 −Λ1) + x(1)Λ2,

and ∫ 1

0
x(t)dB(t) =−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) +

[
lim
t→0+

t2−αx(t)

]
Λ3 + x(1)(1 −Λ4).

By simple calculation, we get

−
Λ1

Λ3
= −

Λ2

Λ4
=

∫1
0

∫1
0 g(t, s)y(s)dsdA(t)∫1

0

∫1
0 g(t, s)y(s)dsdB(t)

, (3.3)

that is,

ImL ⊂

{
y ∈ Y : Λ3

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) +Λ1

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) = 0

}
.

Conversely, let y ∈ Y satisfy (3.3), take

x(t) = −

∫ 1

0
g(t, s)y(s)ds−

tα−1

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t),

thus,
Lx(t) = Dα0+x(t) = y(t), lim

t→0+
t2−αx(t) = 0,

and

x(1) = −
1
Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t).

Then, we have ∫ 1

0
x(t)dA(t) =−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) −

Λ2

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) = 0,
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and ∫ 1

0
x(t)dB(t) =−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) −

1 −Λ4

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

=−
1
Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) = x(1).

Therefore, {
y ∈ Y : Λ3

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) +Λ1

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) = 0

}
⊂ ImL.

So, (3.1) is satisfied.

Lemma 3.2. Assume that (H0) holds, then L is a Fredholm operator of index zero. The linear projector operator
P : X→ X and Q : Y → Y can be defined by

(Px)(t) =

[
lim
t→0+

t2−αx(t)

]
[1 + (ρ− 1)t] tα−2,

(Qy)(t) =
1
Λ

[
Λ3

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) +Λ1

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

]
.

Proof. Obviously, ImP = KerL. For x ∈ X we have

(P2x)(t) =P(Px(t)) =

[
lim
t→0+

t2−αPx(t)

]
[1 + (ρ− 1)t] tα−2

=

[
lim
t→0+

t2−αx(t)

]
[1 + (ρ− 1)t] tα−2 = (Px)(t),

and

Dα−1
0+ Px(t) =

1
Γ(2 −α)

d

dt

∫t
0
(t− s)1−α

[
lim
t→0+

t2−αx(t)sα−2 + lim
t→0+

t2−αx(t)(ρ− 1)sα−1
]
ds

=
1

Γ(2 −α)

d

dt

[
lim
t→0+

t2−αx(t)Γ(2 −α)Γ(α− 1) + lim
t→0+

t2−αx(t)(ρ− 1)Γ(2 −α)Γ(α)t

]
= (ρ− 1)Γ(α) lim

t→0+
t2−αx(t).

Hence, P : X→ X is a continuous linear operator. It follows from x = (x− Px) + Px that X = KerP+ KerL.
For x ∈ KerL∩KerP, that is, x ∈ KerL and x ∈ KerP, then x can be rewritten as

x(t) = c[1 + (ρ− 1)t]tα−2, c ∈ R,

and
0 = (Px)(t) = c lim

t→0+
t2−α[1 + (ρ− 1)t]tα−2 = c.

So, KerL∩KerP = {0}. Thus, X = KerP⊕KerL. For y ∈ Y, we have

(Q2y)(t) = Q(Qy(t)) =
1
Λ

[
Λ3Qy(t)

∫ 1

0

∫ 1

0
g(t, s)dsdA(t) +Λ1Qy(t)

∫ 1

0

∫ 1

0
g(t, s)dsdB(t)

]

=
1
Λ

[
Λ3

Γ(α+ 1)

∫ 1

0
tα−1(1 − t)dA(t) +

Λ1

Γ(α+ 1)

∫ 1

0
tα−1(1 − t)dB(t)

]
Qy(t)

= Qy(t),
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which implies that Q is a projector operator. Obviously, ImL = KerQ. Set y = (y −Qy) +Qy, then
(y−Qy) ∈ KerQ = ImL, Qy ∈ ImQ. So, y = ImL+ ImQ. Furthermore, it follows from KerQ = ImL and
Q2y = Qy that ImL∩ ImQ = {0}. Thus, Y = ImL⊕ ImQ. Therefore, we have

dim KerL = dim ImQ = codim ImL = 1.

That is, L is a Fredholm operator of index zero.

Lemma 3.3. Assume that (H0) holds, define linear operator Kp : ImL→ domL∩KerP by

(Kpy)(t) = −

∫ 1

0
g(t, s)y(s)ds−

tα−1

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t),

then Kp is the inverse of L|domL∩KerP and ||Kpy||X 6 ∆||y||1, for all y ∈ ImL, where ∆ = 2
Γ(α) +

∣∣∣∫1
0 t
α−1d|B(t)|

∣∣∣
Γ(α)|Λ4|

.

Proof. For y ∈ ImL, we have∫ 1

0
(Kpy)(t)dA(t) =−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) −

Λ2

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

=−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdA(t) −

Λ1

Λ3

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

=0 = lim
t→0+

t2−α(Kpy)(t),

and ∫ 1

0
(Kpy)(t)dB(t) =−

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) −

1 −Λ4

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

=−
1
Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t) =(Kpy)(1).

So, Kp is well-defined on ImL. In addition,

(LKp)y(t) =D
α
0+

[
−

∫ 1

0
g(t, s)y(s)ds−

tα−1

Λ4

∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

]

=Dα0+

[
−

∫ 1

0
g(t, s)y(s)ds

]
= y(t).

Furthermore, for x ∈ domL∩KerP, we have lim
t→0+

t2−αx(t) = 0 and x(1) =
∫1

0 x(t)dB(t), then

(KpL)x(t) =−

∫ 1

0
g(t, s)Dα0+x(s)ds−

tα−1

Λ4

∫ 1

0

∫ 1

0
g(t, s)Dα0+x(s)dsdB(t)

=x(t) −

[
lim
t→0+

t2−αx(t)

]
(1 − t)tα−2 − x(1)tα−1

+
tα−1

Λ4

∫ 1

0

{
x(t) −

[
lim
t→0+

t2−αx(t)

]
(1 − t)tα−2 − x(1)tα−1

}
dB(t)

=x(t).

That is, Kp = (L|domL∩KerP)
−1. Next, we divided ||Kpy||X 6 ∆||y||1. In fact,

∥∥t2−αKpy
∥∥∞ 6

2
Γ(α)

∫ 1

0
|y(s)|ds+

1
|Λ4|

∣∣∣∣∣
∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

∣∣∣∣∣
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6
2
Γ(α)

||y||1 +
1

Γ(α)|Λ4|
||y||1

∣∣∣∣∣
∫ 1

0
tα−1d|B(t)|

∣∣∣∣∣
=∆||y||1,

and

∥∥Dα−1
0+ Kpy

∥∥∞ 62
∫ 1

0
|y(s)|ds+

Γ(α)

|Λ4|

∣∣∣∣∣
∫ 1

0

∫ 1

0
g(t, s)y(s)dsdB(t)

∣∣∣∣∣
62||y||1 +

1
|Λ4|

||y||1

∣∣∣∣∣
∫ 1

0
tα−1d|B(t)|

∣∣∣∣∣
6

2
Γ(α)

||y||1 +
1

Γ(α)|Λ4|
||y||1

∣∣∣∣∣
∫ 1

0
tα−1d|B(t)|

∣∣∣∣∣
=∆||y||1.

Therefore, ||Kpy||X 6 ∆||y||1.

Lemma 3.4. Assume that (H0) holds and Ω ⊂ X is an open bounded subset with domL ∩ Ω̄ 6= ∅, then N is
L-compact on Ω̄.

Proof. From f : [0, 1]×R2 → R satisfies the Carathéodory conditions, we can get that QN(Ω̄) and
(I−Q)N(Ω̄) are bounded, that is, there exist constants L̃,L > 0 such that

|QNx| 6 L̃, |(I−Q)Nx| 6 L, x ∈ Ω̄, a.e. t ∈ [0, 1].

So, we only need to show that Kp(I−Q)N : Ω̄→ X is compact. By Lemma 3.3, Kp(I−Q)N(Ω̄) is bounded.
It follows from the Lebesgue dominated convergence theorem that Kp(I−Q)N : Ω̄ → X is continuous.
For 0 6 t1 < t2 6 1, x ∈ Ω̄, we have,∣∣t2−α

1 Kp(I−Q)Nx(t1) − t
2−α
2 Kp(I−Q)Nx(t2)

∣∣
=

∣∣∣∣∣−t2−α
1

∫ 1

0
g(t1, s)(I−Q)Nx(s)ds−

t1

Λ4

∫ 1

0

∫ 1

0
g(t, s)(I−Q)Nx(s)dsdB(t)

+ t2−α
2

∫ 1

0
g(t2, s)(I−Q)Nx(s)ds+

t2

Λ4

∫ 1

0

∫ 1

0
g(t, s)(I−Q)Nx(s)dsdB(t)

∣∣∣∣∣
6

(t2 − t1)

|Λ4|

∣∣∣∣∣
∫ 1

0

∫ 1

0
g(t, s)(I−Q)Nx(s)dsdB(t)

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

0
t2−α

2 g(t2, s)(I−Q)Nx(s)ds

−

∫ 1

0
t2−α

1 g(t1, s)(I−Q)Nx(s)ds

∣∣∣∣∣ ,
considering that,∣∣∣∣∣

∫ 1

0
t2−α

2 g(t2, s)(I−Q)Nx(s)ds−

∫ 1

0
t2−α

1 g(t1, s)(I−Q)Nx(s)ds

∣∣∣∣∣
=

1
Γ(α)

∣∣∣∣∣
∫ 1

0
t2(1 − s)α−1(I−Q)Nx(s)ds −

∫t2

0
t2−α

2 (t2 − s)
α−1(I−Q)Nx(s)ds

−

∫ 1

0
t1(1 − s)α−1(I−Q)Nx(s)ds +

∫t1

0
t2−α

1 (t1 − s)
α−1(I−Q)Nx(s)ds

∣∣∣∣
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6
L

Γ(α)
(t2 − t1) +

∣∣∣∣∫t2

0
t2−α

2 (t2 − s)
α−1(I−Q)Nx(s)ds

−

∫t1

0
t2−α

1 (t1 − s)
α−1(I−Q)Nx(s)ds

∣∣∣∣ ,
and ∣∣∣∣∫t2

0
t2−α

2 (t2 − s)
α−1(I−Q)Nx(s)ds−

∫t1

0
t2−α

1 (t1 − s)
α−1(I−Q)Nx(s)ds

∣∣∣∣
=

∣∣∣∣∫t2

t1

t2−α
2 (t2 − s)

α−1(I−Q)Nx(s)ds

+

∫t1

0
[t2−α

2 (t2 − s)
α−1 − t2−α

1 (t1 − s)
α−1](I−Q)Nx(s)ds

∣∣∣∣
6
L

α
t2−α

2 (t2 − t1)
α +

L

α
[(t2

2 − t
2
1) − t

2−α
2 (t2 − t1)

α].

Since t and t2 are uniformly continuous on [0, 1], we can get t2−αKp(I−Q)N(Ω̄) is equicontinuous. In
addition, ∣∣Dα−1

0+ Kp(I−Q)Nx(t1) −D
α−1
0+ Kp(I−Q)Nx(t2)

∣∣
=

∣∣∣∣∫t2

t1

(I−Q)Nx(s)ds

∣∣∣∣ 6 L(t2 − t1).

Since t is uniformly continuous on [0, 1], we can get Dα−1
0+ Kp(I−Q)N(Ω̄) is equicontinuous. By Arzelà-

Ascoli theorem, we obtain that Kp(I−Q)N : Ω̄→ X is compact.

In order to obtain our main results, we suppose that the following conditions are satisfied:

(H1) There exist nonnegative functions p,q, r ∈ Y such that

|f(t, x,y)| 6 t2−αp(t)|x|+ q(t)|y|+ r(t), ∀ (t, x,y) ∈ [0, 1]×R2,

and

||p||1 + ||q||1 <
Γ(α)

4δ+ Γ(α)∆
.

(H2) There exists a constant G > 0 such that if t2−α|x(t)| > G or
∣∣Dα−1

0+ x(t)
∣∣ > G for all t ∈ (0, 1), then

QN(x(t)) 6= 0.

(H3) There exists a constant M > 0 such that for all c ∈ R, if |c| > M, then either

cQN{c[1 + (ρ− 1)t]tα−2} > 0, (3.4)

or
cQN{c[1 + (ρ− 1)t]tα−2} < 0. (3.5)

Lemma 3.5. Suppose that (H1) and (H2) hold, set

Ω1 = {x ∈ domL\KerL : Lx = λNx, λ ∈ (0, 1)},

note δ = max{1, |ρ|, |ρ− 1|}. Then Ω1 is bounded.

Proof. For x ∈ Ω1, we have Nx ∈ ImL, that is, QN(x(t)) = 0. Thus, from (H2), we obtain that there exist
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constants t0, t1 ∈ (0, 1) such that t2−α
0 |x(t0)| 6 G and

∣∣Dα−1
0+ x(t1)

∣∣ 6 G. It follows from Lx = λNx that

x(t) = λIα0+f(t, x(t),D
α−1
0+ x(t)) + c1t

α−1 + c2t
α−2, c1, c2 ∈ R.

Then,

Dα−1
0+ x(t) = λ

∫t
0
f(s, x(s),Dα−1

0+ x(s))ds+ c1Γ(α),

and
t2−αx(t) = λt2−αIα0+f(t, x(t),D

α−1
0+ x(t)) + c1t+ c2.

So,

|c1| =
1
Γ(α)

∣∣∣∣Dα−1
0+ x(t1) − λ

∫t1

0
f(s, x(s),Dα−1

0+ x(s))ds

∣∣∣∣
6

1
Γ(α)

(
G+

∫ 1

0
|f(s, x(s),Dα−1

0+ x(s))|ds

)

=
1
Γ(α)

(G+ ||Nx||1),

and

|c2| =

∣∣∣∣t2−α
0 x(t0) −

λ

Γ(α)
t2−α

0

∫t0

0
(t0 − s)

α−1f(s, x(s),Dα−1
0+ x(s))ds− c1t0

∣∣∣∣
6G+

1
Γ(α)

∫ 1

0
|f(s, x(s),Dα−1

0+ x(s))|ds+ |c1|

=G+
1
Γ(α)

||Nx||1 + |c1|.

Thus,

|t2−αx(t)| 6
1
Γ(α)

t2−α
∫t

0
(t− s)α−1

|f(s, x(s),Dα−1
0+ x(s))|ds+ |c1|t+|c2|

6
1
Γ(α)

∫ 1

0
|f(s, x(s),Dα−1

0+ x(s))|ds+ |c1|+|c2|

6
4
Γ(α)

||Nx||1 +
2G
Γ(α)

+G.

Therefore,

||Px||X = max{||t2−αPx||∞, ||Dα−1
0+ Px||∞}

6 δ

∣∣∣∣ lim
t→0+

t2−αx(t)

∣∣∣∣ 6 δ( 4
Γ(α)

||Nx||1 +
2G
Γ(α)

+G

)
.

(3.6)

Also, for x ∈ Ω1, x ∈ domL\KerL, then (I− P)x ∈ domL∩KerP, LPx = 0, from Lemma 3.3, we have

||(I− P)x||X = ||KpL(I− P)x||X 6 ∆||L(I− P)x||1
= ∆||Lx||1 6 ∆||Nx||1.

(3.7)

It follows from (3.6) and (3.7) that

||x||X = ||Px+ (I− P)x||X 6 ||Px||X + ||(I− P)x||X

6

(
2G
Γ(α)

+G

)
δ+

(
4δ
Γ(α)

+∆

)
||Nx||1.

(3.8)
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By (H1), we have

||Nx||1 =

∫ 1

0
|f(s, x(s),Dα−1

0+ x(s))|ds

6
∫ 1

0
[s2−α|p(s)||x(s)|+ |q(s)||Dα−1

0+ x(s)|+ |r(s)|]ds

6 ||x||X(||p||1 + ||q||1) + ||r||1.

(3.9)

Substitute (3.9) into (3.8), one gets,

||x||X 6
(2 + Γ(α))Gδ+ ||r||1(4δ+ Γ(α)∆)
Γ(α) − (4δ+ Γ(α)∆)(||p||1 + ||q||1)

.

That is, Ω1 is bounded.

Lemma 3.6. Suppose that (H3) holds, set

Ω2 = {x ∈ KerL : Nx ∈ ImL}.

Then, Ω2 is bounded.

Proof. For x ∈ Ω2, then x can be rewritten as x = c[1 + (ρ− 1)t]tα−2, c ∈ R and QNx = 0. From (H3), we
get |c| 6M. Then, we have

||Dα−1
0+ x||∞ = |c(ρ− 1)|Γ(α) 6MδΓ(α),

and
||xα||∞ = ||t2−αx(t)||∞ = ||c+ c(ρ− 1)t||∞ 6M(1 + δ),

which implies that Ω2 is bounded.

Lemma 3.7. Suppose that (H3) holds, set

Ω3 = {x ∈ KerL : ϑλJx+ (1 − λ)QNx = 0, λ ∈ [0, 1]},

where J : KerL→ ImQ is the linear isomorphism defined by

J{c[1 + (ρ− 1)t]tα−2} = c, ∀c ∈ R.

Then Ω3 is bounded where ϑ = 1, if (3.4) holds and ϑ = −1 if (3.5) holds.

Proof. For x = c[1 + (ρ− 1)t]tα−2 ∈ Ω3, without loss of generality, we suppose that (3.4) holds, then there
exists λ ∈ [0, 1] such that

λc+ (1 − λ)QN{c[1 + (ρ− 1)t]tα−2} = 0.

If λ = 1, then |c| = 0 6M. Otherwise, if |c| > M, by (3.4) we have

λc2 = −(1 − λ)cQN{c[1 + (ρ− 1)t]tα−2} < 0,

which is a contradiction. So, Ω3 is bounded.

Theorem 3.8. Suppose that (H0)-(H3) hold. Then the problem (1.1) has at least one solution in X.

Proof. Set Ω be a bounded open set of X such that ∪3
i=1Ω̄i ⊂ Ω. By Lemma 3.4, N is L-compact on Ω̄.

From Lemmas 3.5 and 3.6, we get

(i) Lx 6= λNx for every (x, λ) ∈ [(domL\KerL)∩ ∂Ω]× (0, 1);
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(ii) Nx ∈ ImL for every x ∈ KerL∩ ∂Ω.

In the following, we only need to check (iii) of Lemma 2.1 is satisfied. Take,

H(x, λ) = ϑλJx+ (1 − λ)QNx,

where ϑ = 1, if (3.4) holds and ϑ = −1, if (3.5) holds. According to Lemma 3.7, we derive H(x, λ) 6= 0 for
all x ∈ KerL∩ ∂Ω. Thus, it follows from the homotopy of degree that

deg{QN|KerL,Ω∩KerL, 0} = deg{H(· , 0),Ω∩KerL, 0}
= deg{H(· , 1),Ω∩ KerL, 0}
= deg{ϑJ,Ω∩ KerL, 0} 6= 0.

Therefore, by Lemma 2.1 we can get that operator function Lx = Nx has at least one solution in domL∩ Ω̄,
which is equivalent to problem (1.1) has at least one solution in X.

4. Example

Example 4.1. Consider the boundary value problems D
3/2
0+ x(t) = sin t+ 1

15t
1/2 sin x(t) + 1

30(t
1/2|x(t)|+ |D

1/2
0+ x(t)|), t ∈ (0, 1),

lim
t→0+

t1/2x(t) =
√

2
2 x(1/2), x(1) = 1

2

∫1
0 x(t)dt,

(4.1)

where we take

A(t) =

{
0, t ∈ [0, 1/2),
√

2
/

2, t ∈ [1/2, 1],
B(t) =

1
2
t, α =

3
2

,

f(t, x(t),Dα−1
0+ x(t)) = sin t+

1
15
t1/2 sin x(t) +

1
30

(t1/2|x(t)|+ |D
1/2
0+ x(t)|). (4.2)

Then, we have

lim
t→0+

t2−αx(t) =

∫ 1

0
x(t)dA(t) =

√
2

2
x(1/2), x(1) =

∫ 1

0
x(t)dB(t) =

1
2

∫ 1

0
x(t)dt. (4.3)

Thus, (4.1) can be as an example of boundary value problem (1.1). By (4.2) and (4.3) we can derive

|f(t, x(t),Dα−1
0+ x(t))| 6

1
10
t1/2|x(t)|+

1
30

|D
1/2
0+ x(t)|+ 1,

Λ1 = 1 −

∫ 1

0
tα−2(1 − t)dA(t) =

1
2

, Λ2 =

∫ 1

0
tα−1dA(t) =

1
2

,

Λ3 =

∫ 1

0
tα−2(1 − t)dB(t) =

2
3

, Λ4 = 1 −

∫ 1

0
tα−1dB(t) =

2
3

,

ρ = Λ3/Λ4 =Λ1/Λ2 = 1, δ = max{1, |ρ|, |ρ− 1|} = 1, ∆ =
2
Γ(α)

+

∣∣∣∫1
0 t
α−1d |B(t)|

∣∣∣
Γ(α) |Λ4|

=
5√
π

,

Λ =
Λ3

Γ(α+ 1)

∫ 1

0
tα−1(1 − t)dA(t)+

Λ1

Γ(α+ 1)

∫ 1

0
tα−1(1 − t)dB(t) =

14
45
√
π
6= 0.

Let, p(t) ≡ 1
10 , q(t) ≡ 1

30 , r(t) ≡ 1, then

||p||1 + ||q||1 =
2

15
<

√
π

13
=

Γ(α)

4δ+ Γ(α)∆
.
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Therefore, the conditions (H0) and (H1) hold.
Now, we show that the conditions (H2) and (H3) hold. Take G = M = 40, we easily check for

t1/2|x(t)| > 40 or |D1/2
0+ x(t)| > 40, then f(t, x(t),D1/2

0+ x(t)) > 0. According to the definition of g(t, s), we can
get g(t, s) > 0, thus

QN(x(t)) =
Λ3

Λ

∫ 1

0

∫ 1

0
g(t, s)f(s, x(s),D1/2

0+ x(s))dsdA(t) +
Λ1

Λ

∫ 1

0

∫ 1

0
g(t, s)f(s, x(s),D1/2

0+ x(s))dsdB(t)

=

√
2Λ3

2Λ

∫ 1

0
g(1/2, s)f(s, x(s),D1/2

0+ x(s))ds+
Λ1

2Λ

∫ 1

0

∫ 1

0
g(t, s)f(s, x(s),D1/2

0+ x(s))dsdt

>

√
2Λ3

2Λ

∫ 1

0
g(1/2, s)f(s, x(s),D1/2

0+ x(s))ds

=

√
2Λ3√
πΛ

∫ 1/2

0
[(1/2 − s/2)1/2 − (1/2 − s)1/2]f(s, x(s),D1/2

0+ x(s))ds

+
Λ3√
πΛ

∫ 1

1/2
(1 − s)1/2f(s, x(s),D1/2

0+ x(s))ds

>
Λ3√
πΛ

∫ 1

1/2
(1 − s)1/2f(s, x(s),D1/2

0+ x(s))ds > 0.

In addition, when |c| > 40, we have N{c[1 + (ρ− 1)t]tα−2} = N(ct−1/2) = f(t, ct−1/2, 0) > 0, that is, the
conditions (H2) and (H3) hold. By Theorem 3.8, problem (4.1) has at least one solution.
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