Nonlinear contractions and fixed point theorems with modified ω-distance mappings in complete quasi metric spaces

Inam Nuseira,*, Wasfi Shatanawib,c, Issam Abu-Irwaq ${ }^{\text {a }}$, Anwar Bataihah ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan.
${ }^{b}$ Department of Mathematics and General Courses, Prince Sultan University, Riyadh, Saudi Arabia.
${ }^{\text {c D Department of Mathematics, Hashemite University, P. O. Box 150459, Zarqa, Jordan. }}$
${ }^{d}$ Department of Mathematics, The University of Jordan, Amman, Jordan.

Communicated by M. S. Noorani

Abstract

Alegre and Marin [C. Alegre, J. Marin, Topol. Appl., 203 (2016), 32-41] introduced the concept of modified ω-distance mappings on a complete quasi metric space in which they studied some fixed point results. In this manuscript, we prove some fixed point results of nonlinear contraction conditions through modified ω-distance mapping on a complete quasi metric space in sense of Alegre and Marin. (c)2017 All rights reserved.

Keywords: Quasi metric, fixed point theorem, nonlinear contraction, altering distance, modified ω-distance. 2010 MSC: 54H25, 47H09.

1. Introduction

The Banach contraction principle is one of the main results in fixed point theory, which asserts that every contraction in a complete metric space has a unique fixed point. Subsequently, a large number of generalizations of Banach's contraction theorem is obtained by many authors. For more details we refer the readers to [1-4, 7-11, 16-19, 21].

A self-mapping T on a metric space (X, d) is called Kannan contraction if there is a $k \in\left[0, \frac{1}{2}\right.$) such that

$$
d(T x, T y) \leqslant k[d(x, T x)+d(y, T y)], \quad \forall x, y \in X
$$

Kannan [14] proved that every Kannan contraction in a complete metric space has a unique fixed point. It is worth mentioning that Kannans theorem is an important result since it characterizes the metric completeness (see [20]).

The concept of quasi metric spaces was introduced by Wilson [22].

[^0]Definition 1.1 ([22]). Let X be a nonempty set and $d: X \times X \rightarrow[0, \infty)$ be a given function which satisfies
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y) \leqslant d(x, z)+d(z, y)$ for any points $x, y, z \in X$.

Then d is called a quasi metric on X and the pair (X, d) is called a quasi metric space.
It is clear that every metric space is a quasi metric space, but the reverse is not necessarily true.
A quasi metric d induces a metric d_{m} as follows:

$$
\mathrm{d}_{\mathrm{m}}(\mathrm{x}, \mathrm{y})=\max \{\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{y}, \mathrm{x})\}
$$

The convergence and completeness in a quasi-metric space are defined as follows.
Definition 1.2 ([13]). Let (X, d) be a quasi-metric space, $\left(x_{n}\right)$ be a sequence in X, and $x \in X$. Then the sequence $\left(x_{n}\right)$ converges to x if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0$.
Definition 1.3 ([13]). Let (X, d) be a quasi-metric space and $\left(x_{n}\right)$ be a sequence in X. Then
(1) We say that the sequence $\left(x_{n}\right)$ is left-Cauchy if for every $\epsilon>0$, there is a positive integer $N=N(\epsilon)$ such that $d\left(x_{n}, x_{m}\right) \leqslant \epsilon$ for all $n \geqslant m>N$.
(2) We say that the sequence (x_{n}) is right-Cauchy if for every $\epsilon>0$ there is a positive integer $N=N(\epsilon)$ such that $d\left(x_{n}, x_{m}\right) \leqslant \epsilon$ for all $m \geqslant n>N$.

Definition 1.4 ([13]). Let (X, d) be a quasi-metric space and $\left(x_{n}\right)$ be a sequence in X. We say that the sequence $\left(x_{n}\right)$ is Cauchy if for every $\epsilon>0$ there is positive integer $N=N(\epsilon)$ such that $d\left(x_{n}, x_{m}\right) \leqslant \epsilon$ for all $m, n>N$; that is $\left(x_{n}\right)$ is a Cauchy sequence if and only if it is left and right Cauchy.
Definition 1.5 ([13]). Let (X, d) be a quasi-metric space. We say that
(1) (X, d) is left-complete if every left-Cauchy sequence in X is convergent;
(2) (X, d) is right-complete if every right-Cauchy sequence in X is convergent;
(3) (X, d) is complete if every Cauchy sequence in X is convergent.

A modified ω-distance (shortly m ω-distance) mapping on quasi metric space is given by Alegre and Marin [5] as follows.

Definition 1.6 ([5]). A mw-distance on a quasi metric space ($X, \mathrm{~d}$) is a function $\mathrm{q}: X \times X \rightarrow[0, \infty$) satisfying the following conditions:
(W1) $\mathrm{q}(\mathrm{x}, \mathrm{y}) \leqslant \mathrm{q}(\mathrm{x}, \mathrm{z})+\mathrm{q}(z, y)$ for all $x, y, z \in X$;
(W2) $q(x,):. X \rightarrow[0, \infty)$ is lower semi-continuous for all $x \in X$;
(mW3) for each $\epsilon>0$ there is $\delta>0$ such that if $q(y, x) \leqslant \delta$ and $q(x, z) \leqslant \delta$ then $d(y, z) \leqslant \epsilon$.
Definition 1.7 ([5]). A strong m ω-distance on a quasi metric space (X, d) is a m ω-distance $q: X \times X \rightarrow$ $[0, \infty)$ satisfying the following condition:
(mW2) $q(., x): X \rightarrow[0, \infty)$ is lower semi-continuous for all $x \in X$.
Remark 1.8 ([5]).

1. Every quasi metric d on X is an m ω-distance on the quasi metric space (X, d).
2. In general, a quasi metric d on X need not to be a strong m ω-distance on the quasi metric space (X, d).
For more details on m ω-distance, we refer the readers to [5] and references therein.

Definition 1.9 ([15]). The function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(1) φ is continuous and nondecreasing function;
(2) $\varphi(\mathrm{t})=0$ if and only if $\mathrm{t}=0$.

Henceforth, we denote the class of all altering distance functions by Ψ.
Definition 1.10 ([12]). Let S be the class of all functions $\alpha: \mathbb{R}^{+} \rightarrow[0,1)$ that satisfies the following implication

$$
\alpha\left(\mathrm{t}_{\mathrm{n}}\right) \rightarrow 1 \Longrightarrow \mathrm{t}_{\mathrm{n}} \rightarrow 0
$$

Geraghty in [12] proved the following fixed point result.
Theorem 1.11. Let (X, d) be a complete metric space and $T: X \rightarrow X$. Let $\alpha \in S$ such that

$$
d(T x, T y) \leqslant \alpha(d(x, y)) d(x, y), \quad \forall x, y \in X
$$

Then T has a unique fixed point.
Recently Amini-Harandi and Emami characterized Geraghty's theorem in the setting of partially ordered metric spaces as follows.

Theorem 1.12 ([6]). Let $(\mathrm{X}, \mathrm{d}, \preceq)$ be a partially ordered complete metric space. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an increasing mapping such that there is $\mathrm{x}_{0} \in \mathrm{X}$ with $\mathrm{x}_{0} \preceq \mathrm{~T} \mathrm{x}_{0}$. Suppose that there is $\alpha \in S$ such that

$$
d(T x, T y) \leqslant \alpha(d(x, y)) d(x, y)
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \succeq \mathrm{y}$. Assume that either T is continuous or X is such that if an increasing sequence (x_{n}) converges to x, then $x_{n} \preceq x$ for each $n \geqslant 1$. Besides if for all $x, y \in X$, there exists $z \in X$ which is comparable to x and y , then T has a unique fixed point.

2. Main result

In this section, we present and prove some lemmas that will be used in the sequel.
Lemma 2.1. Let (X, d) be a quasi metric space equipped with an $\mathrm{m} \omega$-distance p . Let $\left(\mathrm{X}_{\mathrm{n}}\right)$ be a sequence in X and $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ be sequences in $[0, \infty)$ converging to zero and let $\left(x_{n}\right)$ be a sequence in X. Then we have the following:
(1) If $\mathfrak{p}\left(x_{n}, x_{m}\right) \leqslant \alpha_{n}$ for any $m, n \in \mathbb{N}$ with $m \geqslant n$, then $\left(x_{n}\right)$ is a right Cauchy sequence in ($\left.X, d\right)$.
(2) If $p\left(x_{n}, x_{m}\right) \leqslant \beta_{m}$ for any $m, n \in \mathbb{N}$ with $n \geqslant m$, then (x_{n}) is a left Cauchy sequence in (X, d).

Proof.
(1) Assume that $p\left(x_{n}, x_{m}\right) \leqslant \alpha_{n}, m \geqslant n$. Then for each $\epsilon>0$ we can find $N \in \mathbb{N}$ such that $p\left(x_{n}, x_{n+1}\right) \leqslant$ $\alpha_{n} \leqslant \frac{\epsilon}{2}$ and $p\left(x_{n+1}, x_{m}\right) \leqslant \alpha_{n+1} \leqslant \frac{\epsilon}{2}$, for all $m>n \geqslant N$. Thus by the definition of $m \omega$-distance we have $d\left(x_{n}, x_{m}\right) \leqslant \epsilon$ for all $m \geqslant n \geqslant N$. Hence $\left(x_{n}\right)$ is right Cauchy sequence.
(2) Assume that $p\left(x_{n}, x_{m}\right) \leqslant \beta_{m}, n \geqslant m$. Then for each $\epsilon>0$, we can find $N \in \mathbb{N}$ such that $p\left(x_{n}, x_{n-1}\right) \leqslant$ $\beta_{n-1} \leqslant \frac{\epsilon}{2}$ and $p\left(x_{n-1}, x_{m}\right) \leqslant \beta_{m} \leqslant \frac{\epsilon}{2}$, for all $n>m \geqslant N$. Thus by the definition of m ω-distance, we have $d\left(x_{n}, x_{m}\right) \leqslant \epsilon$, for all $n \geqslant m \geqslant N$. Hence (x_{n}) is left Cauchy sequence.
Remark 2.2. The above lemma implies that if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$, then $\left(x_{n}\right)$ is a Cauchy sequence in (X, d).

Lemma 2.3. Let (X, d) be a quasi metric space equipped with an $m \omega$-distance p . Let $\left(\mathrm{x}_{\mathrm{n}}\right)$ be a sequence in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=0 \tag{2.1}
\end{equation*}
$$

If $\left(x_{n}\right)$ is not a Cauchy sequence, then there exist $\epsilon>0$ and two sequences $\left(n_{k}\right)$ and $\left(m_{k}\right)$ of natural numbers such that

$$
\lim _{k \rightarrow \infty} p\left(x_{n_{k}}, x_{m_{k}}\right)=\lim _{k \rightarrow \infty} p\left(x_{n_{k}+1}, x_{m_{k}+1}\right)=\epsilon .
$$

Proof. Suppose that $\left(x_{n}\right)$ is not a Cauchy sequence. Without loss of generality, we assume that $\left(x_{n}\right)$ is not a right Cauchy sequence. Then there exist $\epsilon>0$ and two subsequences $\left(n_{k}\right)$ and (m_{k}) of the natural numbers such that

$$
\begin{equation*}
p\left(x_{n_{k}}, x_{m_{k}}\right) \geqslant \epsilon, \quad m_{k} \geqslant n_{k} \tag{2.2}
\end{equation*}
$$

where m_{k} is chosen as the smallest index satisfying (2.2). This means that

$$
\mathfrak{p}\left(x_{\mathfrak{n}_{k}}, x_{\mathfrak{m}_{k}-1}\right)<\epsilon .
$$

From (2.2), we have

$$
\epsilon \leqslant p\left(x_{\mathfrak{n}_{k}}, x_{\mathfrak{m}_{k}}\right) \leqslant p\left(x_{\mathfrak{n}_{k}}, x_{\mathfrak{m}_{k}-1}\right)+\mathfrak{p}\left(x_{\mathfrak{m}_{k}-1}, x_{\mathfrak{m}_{k}}\right)<\epsilon+\mathfrak{p}\left(x_{\mathfrak{m}_{k}-1}, x_{\mathfrak{m}_{k}}\right) .
$$

Taking the limit as $\mathrm{k} \rightarrow \infty$ and using (2.1), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(x_{n_{k}}, x_{m_{k}}\right)=\epsilon \tag{2.3}
\end{equation*}
$$

Also,

$$
\begin{aligned}
p\left(x_{\mathfrak{n}_{k}}, x_{\mathfrak{m}_{k}}\right)-p\left(x_{\mathfrak{n}_{k}}, x_{\mathfrak{n}_{k}+1}\right)-p\left(x_{m_{k}+1}, x_{\mathfrak{m}_{k}}\right) & \leqslant p\left(x_{\mathfrak{n}_{k}+1}, x_{\mathfrak{m}_{k}+1}\right) \\
& \leqslant p\left(x_{\mathfrak{n}_{k}+1}, x_{\mathfrak{n}_{k}}\right)+p\left(x_{n_{k}}, x_{\mathfrak{m}_{k}}\right)+p\left(x_{\mathfrak{m}_{k}}, x_{m_{k}+1}\right) .
\end{aligned}
$$

Let k go to infinity and using (2.1) and (2.3), we reach

$$
\lim _{k \rightarrow \infty} p\left(x_{n_{k}+1}, x_{m_{k}+1}\right)=\epsilon
$$

In order to facilitate our work, we introduce the following definition.
Definition 2.4. Let (X, d) be a quasi metric space equipped with m ω-distance p. A self-mapping $T: X \rightarrow X$ is called (φ, α)-Geraghty contraction if there exist $\varphi \in \Psi$ and $\alpha \in S$ such that

$$
\varphi p(T x, T y) \leqslant \alpha(p(x, y)) \varphi p(x, y), \quad \forall x, y \in X
$$

In the next theorem, we prove a fixed point result of Geraghty's type contraction condition in a complete quasi metric space through modified ω-distance mappings.
Theorem 2.5. Let (X, d) be a complete quasi metric space and p be an $\mathrm{m} \omega$-distance on X and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a (φ, α)-Geraghty mapping. Assume that one of the following conditions holds true:
(1) If $u \neq T u$, then $\inf \{p(x, u)+p(T x, u): x \in X\}>0$.
(2) T is continuous.

Then T has a unique fixed point.
Proof. Let $x_{0} \in X$. Define a sequence $x_{n}=T x_{n-1}, n \in \mathbb{N}$. Consider $n \in \mathbb{N}$. From the contractive condition, we have

$$
\begin{align*}
\varphi p\left(x_{n}, x_{n+1}\right) & =\varphi p\left(T x_{n-1}, T x_{n}\right) \tag{2.4}\\
& \leqslant \alpha\left(p\left(x_{n-1}, x_{n}\right)\right) \varphi p\left(x_{n-1}, x_{n}\right) .
\end{align*}
$$

Since $\alpha(t)<1$ for all $t \geqslant 0$, then $\varphi p\left(x_{n}, x_{n+1}\right)<\varphi p\left(x_{n-1}, x_{n}\right)$. As φ is nondecreasing, we have
$\mathfrak{p}\left(x_{n}, x_{n+1}\right)<p\left(x_{n-1}, x_{n}\right)$. Thus the sequence $\left(p\left(x_{n}, x_{n+1}\right): n \in \mathbb{N}\right)$ is a nonnegative decreasing sequence. Hence there is $r \geqslant 0$ such that $\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=r$. Suppose that $r>0$. By (2.4), we have

$$
\frac{\varphi p\left(x_{n}, x_{n+1}\right)}{\varphi p\left(x_{n-1}, x_{n}\right)} \leqslant \alpha\left(p\left(x_{n-1}, x_{n}\right)\right)
$$

By taking the limit as $n \rightarrow \infty$ we get $\lim _{n \rightarrow \infty} \alpha\left(p\left(x_{n-1}, x_{n}\right)\right)=1$. Since $\alpha \in S$, then $r=0$ a contradiction. So,

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0
$$

Similarly, we can show that

$$
\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=0
$$

Now, our claim is to show that $\left(x_{n}\right)$ is a Cauchy sequence in (X, d). Assume to the contrary that $\left(x_{n}\right)$ is not a Cauchy sequence. Due to Lemma 2.3, there exist $\epsilon>0$ and two sequences (n_{k}) and (m_{k}) of natural numbers such that

$$
\lim _{k \rightarrow \infty} p\left(x_{\mathfrak{n}_{k}}, x_{\mathfrak{m}_{k}}\right)=\lim _{k \rightarrow \infty} p\left(x_{n_{k}+1}, x_{\mathfrak{m}_{k}+1}\right)=\epsilon
$$

Substitute $x=x_{n_{k}}$ and $y=x_{m_{k}}$ in the contractive condition, we obtain that

$$
\begin{aligned}
\varphi p\left(x_{n_{k}+1}, x_{m_{k}+1}\right) & =\varphi p\left(T x_{n_{k}}, T x_{m_{k}}\right) \\
& \leqslant \alpha\left(p\left(x_{n_{k}}, x_{m_{k}}\right)\right) \varphi p\left(x_{n_{k}}, x_{\mathfrak{m}_{k}}\right) .
\end{aligned}
$$

Therefore,

$$
\frac{\varphi p\left(x_{n_{k}+1}, x_{m_{k}+1}\right)}{\varphi p\left(x_{n_{k}}, x_{m_{k}}\right)} \leqslant \alpha\left(p\left(x_{n_{k}}, x_{m_{k}}\right)\right) .
$$

Taking the limit as $k \rightarrow \infty$, we deduce $\lim _{k \rightarrow \infty} \alpha\left(p\left(x_{n_{k}}, x_{\mathfrak{m}_{k}}\right)\right)=1$ and so $\lim _{k \rightarrow \infty} p\left(x_{n_{k}}, x_{\mathfrak{m}_{k}}\right)=0$ a contradiction since $\epsilon>0$. Hence $\left(x_{n}\right)$ is a Cauchy sequence. Thus there is $u \in X$ such that $\left(x_{n}\right)$ converges to u. Since $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$, then for a given $\epsilon>0$ there is $k \in \mathbb{N}$ such that $p\left(x_{n}, x_{m}\right) \leqslant \frac{\epsilon}{2}$, for all $n, m \geqslant k$. By the lower semi continuity of p we have

$$
\mathfrak{p}\left(x_{n}, u\right) \leqslant \lim _{l \rightarrow \infty} \inf p\left(x_{n}, x_{l}\right) \leqslant \frac{\epsilon}{2}, \quad \forall n \geqslant k .
$$

Now, assume that (1) holds true if $u \neq T u$, then

$$
\begin{aligned}
\inf \{p(x, u)+p(T x, u): x \in X\} & \leqslant \inf \left\{p\left(x_{n}, u\right)+p\left(T x_{n}, u\right): n \in \mathbb{N}\right\} \\
& =\inf \left\{p\left(x_{n}, u\right)+p\left(x_{n+1}, u\right): n \in \mathbb{N}\right\} \\
& \leqslant \epsilon
\end{aligned}
$$

for all $\epsilon>0$ a contradiction. Hence $\mathrm{Tu}=u$.
If (2) holds, then the continuity of T implies that $\mathrm{Tu}=\mathfrak{u}$.
To prove the uniqueness, assume that there is $v \in X$ such that $T v=v$. By the contractive condition, we have

$$
\begin{aligned}
\varphi p(u, v) & =\varphi p(T u, T v) \\
& \leqslant \alpha(p(u, v)) \varphi p(u, v) .
\end{aligned}
$$

As $\alpha \in S$, we have $\varphi p(u, v)=0$ and so $p(u, v)=0$.

Also,

$$
\begin{aligned}
\varphi p(u, u) & =\varphi p(\mathrm{Tu}, \mathrm{Tu}) \\
& \leqslant \alpha(\mathfrak{p}(\mathfrak{u}, \mathbf{u})) \varphi p(\mathbf{u}, \mathfrak{u}) .
\end{aligned}
$$

Following the same argument, we obtain $\mathfrak{p}(u, u)=0$. Therefore by (mW3) of the definition of m ω distance, we get $u=v$.

Theorem 2.6. Let (X, d) be a complete quasi metric space and p be a strong $\mathrm{m} \omega$-distance on X and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a (φ, α)-Geraghty mapping. Then T has a unique fixed point.

Proof. Following the proof of Theorem 2.5 step by step, we can show that $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$. So $\left(x_{n}\right)$ is a Cauchy sequence in the complete quasi metric space (X, d). Thus there is $u \in X$ such that (x_{n}) converges to u.

Given $\epsilon>0$. Since $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$, then there is $N \in \mathbb{N}$ such that $p\left(x_{n}, x_{m}\right) \leqslant \epsilon$, for all $n, m \geqslant N$. So, by the lower semi continuity of p (W2) and (mW2), we have

$$
\begin{array}{ll}
p\left(x_{n}, u\right) \leqslant \lim _{j \rightarrow \infty} \inf p\left(x_{n}, x_{j}\right) \leqslant \epsilon, \quad \forall n \geqslant N, \\
p\left(u, x_{n}\right) \leqslant \lim _{l \rightarrow \infty} \inf p\left(x_{l}, x_{n}\right) \leqslant \epsilon, \quad \forall n \geqslant N .
\end{array}
$$

Now, the contraction condition yields:

$$
\begin{aligned}
\varphi p\left(T u, x_{n+1}\right) & =\varphi p\left(T u, T x_{n}\right) \\
& \leqslant \alpha\left(p\left(u, x_{n}\right)\right) \varphi p\left(u, x_{n}\right) .
\end{aligned}
$$

Since $\alpha(t)<1$ for all $t \geqslant 0$ and φ is nondecreasing, then $p\left(T u, x_{n+1}\right)<p\left(u, x_{n}\right)$. Hence, $p\left(T u, x_{n+1}\right)<\epsilon$, for all $n \geqslant N$. Thus, by (mW3) of the definition of $m \omega$-distance, we have $d(T u, u)=0$ and so $T u=u$. The proof of the uniqueness is the same as of the proof of Theorem 2.5.

Definition 2.7. Let Φ be the set of all continuous functions $\phi:[0, \infty) \rightarrow[0, \infty)$ such that the following properties are satisfied:
(1) $\phi(t)<t, \forall t \in(0, \infty)$;
(2) $\phi(t)=0$ if and only if $t=0$.

Definition 2.8. Let (X, d) be a quasi metric space equipped with m ω-distance p. A self-mapping $T: X \rightarrow X$ is called (λ, ϕ)-Kannan contraction if there are $\lambda \in\left[0, \frac{1}{2}\right)$ and $\phi \in \Phi$ such that

$$
p(T x, T y) \leqslant \lambda[\phi p(x, T x)+\phi p(y, T y)], \quad \forall x, y \in X
$$

Next, we move on to study some fixed point results of (λ, ϕ)-Kannan type contractions.
Theorem 2.9. Let (X, d) be a complete quasi metric space and p be an $\mathrm{m} \omega$-distance on X and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be (λ, ϕ)-Kannan contraction. Assume that one of the following conditions holds true:
(1) If $u \neq T u$, then $\inf \{p(x, u)+p(T x, u): x \in X\}>0$.
(2) T is continuous.

Then T has a unique fixed point.
Proof. Let $x_{0} \in X$ and define a sequence $x_{n}=T x_{n-1}, n \in \mathbb{N}$.
Let $n \in \mathbb{N}$. From the contractive condition, we have

$$
\begin{align*}
p\left(x_{n}, x_{n+1}\right) & =p\left(T x_{n-1}, T x_{n}\right) \\
& \leqslant \lambda\left[\phi p\left(x_{n-1}, x_{n}\right)+\phi p\left(x_{n}, x_{n+1}\right)\right] \tag{2.5}\\
& <\lambda\left[p\left(x_{n-1}, x_{n}\right)+p\left(x_{n}, x_{n+1}\right)\right] .
\end{align*}
$$

Thus,

$$
p\left(x_{n}, x_{n+1}\right)<\frac{\lambda}{1-\lambda} p\left(x_{n-1}, x_{n}\right) .
$$

Since $\frac{\lambda}{1-\lambda}<1$, the sequence $\left(p\left(x_{n}, x_{n+1}\right): n \in \mathbb{N}\right)$ is a nonnegative decreasing sequence. Hence there is $r \geqslant 0$ such that $\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=r$. From (2.5), we have

$$
p\left(x_{n}, x_{n+1}\right) \leqslant \lambda\left[\phi p\left(x_{n-1}, x_{n}\right)+\phi p\left(x_{n}, x_{n+1}\right)\right] .
$$

By taking the limit as $n \rightarrow \infty$ we get $r \leqslant \lambda[\phi(r)+\phi(r)]=2 \lambda \phi(r)<\phi(r)$. Thus $\phi(r)=0$. Therefore,

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0
$$

Also, we obtain

$$
\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=0
$$

Due to Lemma 2.3, if $\left(x_{n}\right)$ is not a Cauchy sequence, then there exist $\epsilon>0$ and two sequences (n_{k}) and (m_{k}) of natural numbers such that

$$
\lim _{k \rightarrow \infty} p\left(x_{n_{k}}, x_{m_{k}}\right)=\lim _{k \rightarrow \infty} p\left(x_{n_{k}+1}, x_{\mathfrak{m}_{k}+1}\right)=\epsilon
$$

By substituting $x=x_{n_{k}}$ and $y=x_{\mathfrak{m}_{k}}$ in the contractive condition, we obtain that

$$
\begin{aligned}
p\left(x_{n_{k}+1}, x_{m_{k}+1}\right) & =p\left(T x_{n_{k}}, T x_{m_{k}}\right) \\
& \leqslant \lambda\left[\phi p\left(x_{n_{k}}, x_{n_{k}+1}\right)+\phi p\left(x_{m_{k}}, x_{m_{k}+1}\right)\right] .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$, we get $\epsilon \leqslant \lambda[0+0]=0$ a contradiction, because $\epsilon>0$. Hence $\left(x_{n}\right)$ is a Cauchy sequence. Therefore, there is $z \in X$ such that (x_{n}) converges to z.

Since $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$, then for each $\epsilon>0$ there is $N \in \mathbb{N}$ such that

$$
p\left(x_{n}, x_{m}\right) \leqslant \epsilon, \quad \forall n, m \geqslant N .
$$

By the lower semi continuity of p, we have

$$
p\left(x_{n}, z\right) \leqslant \lim _{l \rightarrow \infty} \inf p\left(x_{n}, x_{l}\right) \leqslant \epsilon, \quad \forall n \geqslant N .
$$

Now, assume that (1) holds true if $z \neq \mathrm{T} z$, then

$$
\begin{aligned}
\inf \{p(x, z)+p(T x, z): x \in X\} & \leqslant \inf \left\{p\left(x_{n}, z\right)+p\left(T x_{n}, z\right): n \in \mathbb{N}\right\} \\
& =\inf \left\{p\left(x_{n}, z\right)+p\left(x_{n+1}, z\right): n \in \mathbb{N}\right\} \\
& \leqslant 2 \epsilon
\end{aligned}
$$

for each $\epsilon>0$ a contradiction. Hence $T z=z$.
Also, if (2) holds, then the continuity of T implies that $\mathrm{T} z=z$.
To prove the uniqueness, first we show that for $x \in X$ if $T x=x$, then $p(x, x)=0$.
Assume $p(x, x)>0$. The contractive condition yields

$$
\begin{aligned}
p(x, x)=p(T x, T x) & \leqslant \lambda[\phi p(x, x)+\phi p(x, x)] \\
& <\lambda[p(x, x)+p(x, x)] \\
& <p(x, x),
\end{aligned}
$$

a contradiction. Thus $p(x, x)=0$.
Now, assume that there is $v \in \mathrm{X}$ such that $\mathrm{T} v=v$. By the contractive condition, we have

$$
\begin{aligned}
p(v, z)=p(T v, T z) & \leqslant \lambda[\phi p(v, T v)+\phi p(z, T z)] \\
& =\lambda[\phi p(v, v)+\phi p(z, z)] \\
& =0 .
\end{aligned}
$$

Therefore, by (mW3) of the definition of $m \omega$-distance, we have $u=v$.

If we consider a strong $m \omega$-distance instead of $m \omega$-distance in Theorem 2.9, then conditions (1), (2) can be dropped.
Theorem 2.10. Let (X, d) be a complete quasi metric space and p be a strong $m \omega$-distance on X . Assume that $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is a (λ, ϕ)-Kannan contraction. Then T has a unique fixed point.
Proof. Following the proof of Theorem 2.9 step by step, we can show that $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$. So $\left(x_{n}\right)$ is a Cauchy sequence in the complete quasi metric space (X, d). Thus there is $z \in X$ such that (x_{n}) converges to z.

Given $\epsilon>0$. Since $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$, then there is $N_{1} \in \mathbb{N}$ such that $p\left(x_{n}, x_{m}\right) \leqslant \frac{\epsilon}{2}$, for all $n, m \geqslant N_{1}$. Thus,

$$
\begin{equation*}
p\left(x_{n}, x_{n+1}\right) \leqslant \frac{\epsilon}{2}, \quad \forall n \geqslant N_{1} . \tag{2.6}
\end{equation*}
$$

Also, by the lower semi continuity of $p,(m W 2)$, we have

$$
\begin{equation*}
p\left(z, x_{n}\right) \leqslant \lim _{l \rightarrow \infty} \inf p\left(x_{l}, x_{n}\right) \leqslant \frac{\epsilon}{2}, \quad \forall n \geqslant N_{1} . \tag{2.7}
\end{equation*}
$$

By the triangle inequality, we get

$$
\begin{aligned}
p(z, T z) & \leqslant p\left(z, x_{n+1}\right)+p\left(x_{n+1}, T z\right) \\
& \leqslant p\left(z, x_{n+1}\right)+\lambda\left[\phi p\left(x_{n}, x_{n+1}\right)+\phi p(z, T z)\right] \\
& <p\left(z, x_{n+1}\right)+\lambda p\left(x_{n}, x_{n+1}\right)+\lambda p(z, T z) .
\end{aligned}
$$

Hence

$$
p(z, T z)<\frac{1}{1-\lambda} p\left(z, x_{n+1}\right)+\frac{\lambda}{1-\lambda} p\left(x_{n}, x_{n+1}\right) .
$$

Now, the contraction condition yields:

$$
\begin{aligned}
p\left(x_{n+1}, T z\right)=p\left(T x_{n}, T z\right) & \leqslant \lambda\left[\phi p\left(x_{n}, x_{n+1}\right)+\phi p(z, T z)\right] \\
& <\lambda p\left(x_{n}, x_{n+1}\right)+\lambda p(z, T z) \\
& <\lambda p\left(x_{n}, x_{n+1}\right)+\frac{\lambda}{1-\lambda} p\left(z, x_{n+1}\right)+\frac{\lambda^{2}}{1-\lambda} p\left(x_{n}, x_{n+1}\right) \\
& =\frac{\lambda}{1-\lambda}\left[p\left(x_{n}, x_{n+1}\right)+p\left(z, x_{n+1}\right)\right] \\
& <p\left(x_{n}, x_{n+1}\right)+p\left(z, x_{n+1}\right) .
\end{aligned}
$$

Hence, by (2.6) and (2.7), we have

$$
\mathfrak{p}\left(x_{n+1}, T z\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon, \quad \forall \mathfrak{n} \geqslant N_{1}
$$

Therefore, by (mW3) of the definition of $m \omega$-distance, we have $\mathrm{d}(z, \mathrm{~T} z)=0$ and so $z=\mathrm{T} z$. The proof of the uniqueness is the same as in the proof of Theorem 2.9.

Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be defined by $\phi(t)=k t, k \in(0,1)$ and use Theorems 2.9-2.10. Then we get the following results.
Corollary 2.11. Let (X, d) be a complete quasi metric space and p be an $m \omega$-distance on X . Let $\mathrm{k} \in\left(0, \frac{1}{2}\right)$ and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a self-mapping such that

$$
p(T x, T y) \leqslant k[p(x, T x)+p(y, T y)], \quad \forall x, y \in X
$$

Also, assume that one of the following conditions holds true:
(1) If $u \neq T u$, then $\inf \{p(x, u)+p(T x, u): x \in X\}>0$.
(2) T is continuous.

Then T has a unique fixed point.
Corollary 2.12. Let (X, d) be a complete quasi metric space and p be a strong $\mathrm{m} \omega$-distance on X . Let $\mathrm{k} \in\left(0, \frac{1}{2}\right)$ and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a self-mapping satisfying the following condition

$$
p(T x, T y) \leqslant k[p(x, T x)+p(y, T y)], \quad \forall x, y \in X .
$$

Then T has a unique fixed point.

Acknowledgment

The authors thank the reviewer for his/her valuable report that helped us to rewrite our paper in a nice way.

References

[1] K. Abodayeh, A. Bataihah, W. Shatanawi, Generalized Ω-distance mappings and some fixed point theorems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 79 (2017), 223-232. 1
[2] K. Abodayeh, W. Shatanawi, A. Bataihah, Fixed point theorem through Ω-distance of Suzuki type conraction condition, G. U. J. Sci., 29 (2016), 129-133.
[3] K. Abodayeh, W. Shatanawi, A. Bataihah, A. H. Ansari, Some fixed point and common fixed point results through Ω-distance under nonlinear contractions, G. U. J. Sci., 30 (2017), 293-302.
[4] I. Abu-Irwaq, I. Nuseir, A. Bataihah, Common Fixed Point Theorems in G-metric Spaces with Ω-distance, J. Math. Anal., 8 (2017), 120-129. 1
[5] C. Alegre, J. Marin, Modified ω-distance on quasi metric spaces and fixed point theorem on complete quasi metric spaces, Topol. Appl., 203 (2016), 32-41. 1, 1.6, 1.7, 1.8, 1
[6] A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 72 (2010), 2238-2242. 1.12
[7] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 7347-7355. 1
[8] V. Berinde, Coupled fixed point theorems for Φ-contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 75 (2012), 3218-3228.
[9] A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536.
[10] B. S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524-2531.
[11] L. B. Ćirić, A generalization of Banch's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. 1
[12] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608. 1.10, 1
[13] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 7 pages. 1.2, 1.3, 1.4, 1.5
[14] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76. 1
[15] M. S. Khan, M. Swaleh, S. Sessa, fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9. 1.9
[16] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., 69 (2008), 2942-2949. 1
[17] W. Shatanawi, G. Maniu, A. Bataihah, F. Bani Ahmad, Common fixed points for mappings of cyclic form satisfying linear contractive conditions with Omega-distance, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 79 (2017), 11-20.
[18] W. Shatanawi, M. S. Noorani, H. Alsamir, A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, J. Math. Computer Sci., 16 (2016), 516-528.
[19] W. Shatanawi, A. Pitea, Some coupled fixed point theorems in quasi partial-metric spaces, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1
[20] P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80 (1975), 325-330. 1
[21] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869. 1
[22] W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675-684. 1, 1.1

[^0]: *Corresponding author
 Email addresses: imnuseir@just.edu.jo (Inam Nuseir), wshatanawi@psu.edu.sa (Wasfi Shatanawi), swasfi@hu.edu.jo (Wasfi Shatanawi), imabuirwaq@just.edu.jo (Issam Abu-Irwaq), anwerbataihah@gmail.com (Anwar Bataihah)

