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Abstract
In this paper, we study two viscosity approximation iterative methods for solving solutions of a split feasibility prob-

lem. Strong convergence theorems are established in the framework of infinite dimensional Hilbert spaces. c©2017 All rights
reserved.
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1. Introduction and Preliminaries

Let C and D be two nonempty, closed, and convex subsets of a real Hilbert space H with inner product
〈·, ·〉 and norm ‖ · ‖. Recall that a mapping f : D→ D is said to be contractive if and only if there exists a
real constant α ∈ (0, 1) such that

‖f(x) − f(y)‖ 6 α‖x− y‖, ∀x,y ∈ D.

f : D→ D is said to be a Meir-Keeler contraction if for every ε > 0, there exists δ > 0 such that

‖x− y‖ 6 ε+ δ implies ‖f(x) − f(y)‖ 6 ε

for all x,y ∈ C. It is known that every Meir-Keeler contraction is a generalization of contractions and also
has a unique fixed point; see [12] and the references therein.

f : D→ D is said to be nonexpansive if and only if

‖f(x) − f(y)‖ 6 ‖x− y‖, ∀x,y ∈ D.

For every point x ∈ H, there exists a unique nearest point in D denoted by PDx such that

‖ x− PDx ‖6‖ x− y ‖, ∀y ∈ D.

PD is called the metric projection of H onto D. It is well-known that PD is nonexpansive mapping and
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satisfies
〈x− y,PDx− PDy〉 >‖ PDx− PDy ‖2, ∀x,y ∈ H.

Moreover, PDx is characterized by the fact PDx ∈ D and

〈x− PDx,y− PDx〉 6 0,

and
‖ x− y ‖2>‖ x− PDx ‖2 + ‖ y− PDx ‖2, ∀x ∈ H,y ∈ D.

In a real Hilbert space the following holds

‖ λx+ (1 − λ)y ‖2= λ ‖ x ‖2 +(1 − λ) ‖ y ‖2 −λ(1 − λ) ‖ x− y ‖2

for all x,y ∈ H and λ ∈ (0, 1). It is well-known that every nonexpansive operator f : H → H satisfies for
all x,y ∈ H×H, the inequality

〈(x− f(x)) − (y− f(y)), f(y) − f(x)〉 6 1
2
‖ (f(x) − x) − (f(y) − y) ‖2,

and therefore, we get for all (x,y) ∈ H× Fix(f),

〈x− f(x),y− f(y)〉 6 1
2
‖ f(x) − x ‖2 .

A mapping f : H → H is said to be averaged if and only if it can be written as the average of the
identity mapping and a nonexpansive mapping, i.e., f := (1 − α)I+ αg where α ∈ (0, 1) and g : H → H

is nonexpansive and I is the identity operator on H. We note that averaged mappings are nonexpansive.
Further, firmly nonexpansive mappings (in particular, projections on nonempty closed and convex subsets
and resolvent operators of maximal monotone operators) are averaged. If f = (1 − α)g + αg ′, where
g : H → H is averaged, g ′ : H → H is nonexpansive and α ∈ (0, 1), then f is averaged. The composite of
finitely many averaged mappings is still averaged.

If D is bounded closed and convex, then the set of fixed points of nonexpansive mapping f is not
empty. The theory of nonexpansive mappings has been investigated for solving various convex optimiza-
tion problems; see [8, 6, 15, 14] and the references therein. Halpern iterative algorithm is an efficient tool
to study fixed points of nonexpansvie mappings in infinite dimensional Hilbert spaces. Halpern iterative
algorithm generated a sequence in the following manner

x1 ∈ D, xn+1 = αnu+ (1 −αn)f(xn), ∀n > 1,

where u is a fixed element in D and f is a nonexpansive mapping. It is known that {xn} converges to
a special fixed point of f with some restrictions imposed on {αn}. For more convergence results in the
framework of Hilbert spaces, one is referred to [1, 9, 10, 19, 20] and the references there. Moudafi viscosity
iterative algorithm has recently extensively investigated for solving fixed points of the class of nonexpan-
sive mappings; see [13] and the references therein. He proved that the special fixed point is also a solution
to some monotone variational inequality; see, also [7, 16, 18] and the references therein. Recently, Suzuki
[17] further improved the viscosity approximation method with the Meir-Keeler contraction.

A mapping F : D→ H is said to be:

(i) monotone, if
〈Fx− Fy, x− y〉 > 0

for all x,y ∈ D;

(ii) ν-inverse strongly monotone, if

〈Fx− Fy, x− y〉 > ν‖Fx− Fy‖2

for all x,y ∈ D;
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(iii) L-Lipschitzian, if
‖Fx− Fy‖ 6 L‖x− y‖

for all x,y ∈ D, in particular, F is called nonexpansive when L = 1. It is known that if F is ν-inverse
strongly monotone, then it is 1

ν -Lipschitzian and monotone.

Split feasibility problem was first introduced by Censor and Elfving [4] in 1994. Censor and Elfv-
ing first studied the split feasibility problem in a finite-dimensional Hilbert space for modeling inverse
problems that arise from phase retrievals and in medical image reconstruction. Many image reconstruc-
tion problems can be formulated as the split feasibility problem; see, for example, [2] and the references
therein. Recently, it is found that the SFP could also be applied to study the intensity-modulated radi-
ation therapy; see, for example, [3, 5] and the references therein. Byrne [2] recently developed the split
feasibility problem in the setting of infinite-dimensional Hilbert spaces.

Let C and Q be nonempty, closed, and convex subsets in Hilbert spaces H1 and H2, respectively. Then
the split feasibility problem is formulated as finding a point x ∈ C with the property:

x ∈ C, Ax ∈ Q, (1.1)

where A : C ⊂ H1 → H2 is a bounded linear operator. We denote by Γ the solution set of the split
feasibility problem, that is,

Γ = {x ∈ H1 : x ∈ C, Ax ∈ Q} = C∩A−1(Q).

It is clear that A−1(Q) is a closed convex subset of H1, and hence Γ is also a closed convex subset of H1.
Let PC and PQ be metric projections onto sets C and Q, respectively. It is well-known that if Γ 6= ∅, then
solving the SFP is equivalent to solving a fixed point equation

x = PC(x− γA
∗(I− PQ)Ax),

where A∗ is the adjoint operator of A and γ > 0 is a parameter. If we define a mapping Uγ by

Uγx = x− γA
∗(I− PQ)Ax,

then we have x = PCUγx. Assume that problem (1.1) is consistent, i.e., it has a solution, it is easy to
see that Fix(Uγ) = A−1(Q) and hence Γ = C ∩ Fix(Uγ) = Fix(PCUγ) for sufficiently small γ > 0. It is
well-known that if γ ∈ (0, 2/‖A‖2), then Uγ is averaged and hence PCUγ is also averaged. We observe
that the averaged nonexpansiveness of Uγ heavily depends on the choice of γ, that is, γ ∈ (0, 2/‖A‖2) is
required, and hence the choice of γ is closely related to the norm ‖A‖ of operator A.

The following lemmas are essential to prove our main results.

Lemma 1.1 ([17]). Let g be a Meir-Keeler on a convex subset C of a Banach space E. Then for each ε > 0, there
exists κ ∈ (0, 1) such that ‖x− y‖ > ε implies ‖g(x) − g(y)‖ 6 κ‖x− y‖, for all x,y ∈ C.

Lemma 1.2 ([11]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 6 αnrn + (1 −αn)an, n > 1,

where {αn} ⊂ (0, 1) and {rn} ⊂ R satisfy

(i)
∑∞
n=1 αn =∞;

(ii) lim supn→∞ rn <∞.

Then
lim sup
n→∞ an 6 lim sup

n→∞ rn.
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The following two lemmas are not hard to derive.

Lemma 1.3. Let PC : H → C be the metric projection from H on a nonempty, closed, and convex subset C. Then
the following conclusions hold true:

(a) Given x ∈ H and z ∈ C. Then z = PCx if and only if there holds the inequality

〈x− z,y− z〉 6 0, ∀y ∈ C.

(b) 〈PCx− PCy, x− y〉 > ‖PCx− PCy‖2, ∀x,y ∈ H.

(c) 〈(I− PC)x− (I− PC)y, x− y〉 > ‖(I− PC)x− (I− PC)y‖2, ∀x,y ∈ H.

(d) PC = 1
2I+

1
2S with S nonexpansive.

(e) ‖PCx− PCy‖2 6 ‖x− y‖2 − ‖(I− PC)x− (I− PC)y‖2, ∀x, y ∈ H. In particular, we have:

(f) ‖PCx− y‖2 6 ‖x− y‖2 − ‖(I− PC)x‖2, ∀x ∈ H, y ∈ C.

Lemma 1.4. Let H be a real Hilbert space. Then the following equality holds

‖x‖2 + 2〈x,y〉+ ‖y‖2 = ‖x+ y‖2, ∀x,y ∈ H.

2. Main results

Theorem 2.1. Let C andD be two nonempty, closed, and convex subsets of a real Hilbert space H such that C ⊂ D.
Let F : D → H be a ν-inverse strongly monotone operator such that C ∩ F−1(0) 6= ∅. Let {αn} and {βn} be two
sequences in (0, 1] that satisfy the following conditions:

(i) αn → 0, βn → 0 as n→∞;

(ii)
∑∞
n=1 αn =∞;

(iii) αn = o(βn).

Let f : C→ C be an α-contractive mapping. Let {xn} be a sequence generated by the following iterative process

x1 ∈ D, xn+1 = PC[αnf(xn) + (1 −αn)(xn −βnFxn)], n > 1. (2.1)

Then {xn} converges in norm to x∗ ∈ C∩ F−1(0), where x∗ uniquely solves the following variational inequality

〈f(x∗) − x∗, x∗ − x〉 > 0, ∀x ∈ C∩ F−1(0).

Proof. Since F is continuous, we see that F−1(0) is closed. Next we show that F−1(0) is convex. Indeed, for
any x1, x2 ∈ F−1(0), write xt = tx1 + (1 − t)x2 for t ∈ (0, 1). Then we have xt ∈ D and

〈Fxt, xt − x1〉 > ν‖Fxt‖2, (2.2)

and
〈Fxt, xt − x2〉 > ν‖Fxt‖2. (2.3)

Multiplying t and (1 − t) on the both sides of (2.2) and (2.3), respectively, and adding up yields

0 = 〈Fxt, xt − xt〉 > ν‖Fxt‖2,

which means that Fxt = 0 and F−1(0) is convex. Therefore C ∩ F−1(0) is close and convex. So the metric
projection onto C∩ F−1(0) is well-defined. Since ProjC∩F−1(0)f is α-contractive, we see that PC∩F−1(0)f has
a unique fixed point. Next, we use x∗ to denote the unique fixed point, that is, x∗ = PC∩F−1(0)f(x

∗).
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Next we show that {xn} is bounded. Write vn = xn −βnFxn. For all z ∈ F−1(0), by using Lemma 1.3,
we have

‖vn − z‖2 = ‖xn − z−βn(Fxn − Fz)‖2

= ‖xn − z‖2 − 2βn〈xn − z, Fxn − Fz〉+β2
n‖Fxn − Fz‖2

6 ‖xn − z‖2 − 2βnν‖Fxn‖2 +β2
n‖Fxn‖2

= ‖xn − z‖2 −βn(2ν−βn)‖Fxn‖2

(2.4)

for all n > 1. Since βn → 0, without loss of generality, we can assume that βn 6 2ν. It follows from (2.4)
that

‖vn − z‖ 6 ‖xn − z‖

for all z ∈ F−1(0) and all n > 1. It follows that

‖xn+1 − x
∗‖ 6 ‖αn(f(xn) − x∗) + (1 −αn)(vn − x∗)‖

6 αn‖f(xn) − f(x∗)‖+αn‖f(x∗) − x∗‖+ (1 −αn)‖vn − x∗‖
6 (1 −αn(1 −α))‖xn − x∗‖+αn‖f(x∗) − x∗‖

= (1 −αn(1 −α))‖xn − x∗‖+αn(1 −α)
‖f(x∗) − x∗‖

1 −α

for all n > 1. This implies that

‖xn+1 − x
∗‖ 6 max

{
‖x1 − x

∗‖, ‖f(x
∗) − x∗‖

1 −α

}
.

This shows that {xn} is bounded. Using Lemma 1.4, we find from (2.4) that

‖xn+1 − x
∗‖2 = ‖PC[αnf(xn) + (1 −αn)vn] − PCx

∗‖2

6 ‖αn(f(xn) − x∗) + (1 −αn)(vn − x∗)‖2

= (1 −αn)
2‖vn − x∗‖2 + 2αn(1 −αn)〈f(xn) − x∗, vn − x∗〉+α2

n‖f(xn) − x∗‖2

6 (1 −αn)
2‖xn − x∗‖2 −βn(2ν−βn)(1 −αn)

2‖Fxn‖2

+ 2αn(1 −αn)〈f(xn) − f(x∗), vn − x∗〉
+ 2αn(1 −αn)〈f(x∗) − x∗, vn − x∗〉+α2

n‖f(xn) − x∗‖2

6 (1 −αn)‖xn − x∗‖2 −βn(2ν−βn)(1 −αn)
2‖Fxn‖2

+ 2αn(1 −αn)α‖xn − x∗‖‖vn − x∗‖
+ 2αn(1 −αn)〈f(x∗) − x∗, vn − x∗〉+α2

n‖f(xn) − x∗‖2

for all n > 1. Setting an = ‖xn − x∗‖2 and

rn =
βn

αn
(1 −αn)

2(2ν−βn)‖Fxn‖2 − 2(1 −αn)α‖xn − x∗‖‖vn − x∗‖

− 2(1 −αn)〈f(x∗) − x∗, vn − x∗〉−αn‖f(xn) − x∗‖2,

we arrive at
an+1 6 (1 −αn)an +αn(−rn)

for all n > 1. Noting that {rn} is bounded below, we see that {−rn} is bounded above. By using Lemma
1.2, we conclude that

lim sup
n→∞ an 6 lim sup

n→∞ (−rn) = − lim inf
n→∞ rn <∞. (2.5)
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Assume that lim infn→∞ rn = limk→∞ rnk , then {rnk} is a bounded subsequence of {rn}. This implies that
there exists a positive constant ζ such that

βnk
αnk

(1 −αnk)
2(2ν−βnk)‖Fxnk‖

2 6 ζ (2.6)

for all k > 1. It follows from (2.6) that

‖Fxnk‖
2 6 ζ

αnk
βnk

1
(1 −αnk)

2(2ν−βnk)

for all k > 1, which derives that Fxnk → 0 as k → ∞, in view of conditions (i) and (iii) on {αn} and
{βn}. Without loss of generality, we may assume that xnk ⇀ x̄ as k → ∞, then x̄ ∈ C, since {xn} ⊂ C
and C is weakly closed. Setting E = I− F, we see that E is nonexpansive. From the demiclosed principal
of nonexpansive mapping, we find that x̄ = Ex̄. It follows that we have also Fx̄ = 0. Thus we have
x̄ ∈ C∩ F−1(0). It follows that

〈f(x∗) − x∗, x̄− x∗〉 6 0. (2.7)

Since vn − xn = −βnFxn, βn → 0 and {Fxn} is bounded, we see that vn − xn → 0 as n → ∞, and thus
vnk ⇀ x̄ as k→∞. Consequently, from the definition of {rn} and (2.7), we have

lim inf
n→∞ rn = lim

k→∞ rnk > −2〈f(x∗) − x∗, x̄− x∗〉 > 0. (2.8)

Combining (2.5) and (2.8), we derive that an → 0 as n→∞. This completes the proof.

Remark 2.2. Choose the sequences {αn} and {βn} such that αn = 1
na anc βn = 1

nb
, where 0 < b < a 6 1.

Then it is clear that conditions (i)-(iii) in Theorem 2.1 are satisfied.

Corollary 2.3. Let C andD be two nonempty, closed, and convex subsets of a real Hilbert spaceH such that C ⊂ D.
Let F : D → H be a ν-inverse strongly monotone operator such that C ∩ F−1(0) 6= ∅. Let {αn} and {βn} be two
sequences in (0, 1] that satisfy the following conditions:

(i) αn → 0, βn → 0 as n→∞;

(ii)
∑∞
n=1 αn =∞;

(iii) αn = o(βn).

Let f : C → C be an α-contractive mapping. Let {xn} be a sequence generated by (2.1), where u is a fixed element
in D. Then {xn} converges in norm to x∗ = PC∩F−1(0)u.

Next, we give a viscosity convergence theorem with a contraction.

Theorem 2.4. Let C and Q be two nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator. Suppose that the split feasibility problem (1.1) is
consistent, i.e., Γ 6= ∅. Let {αn} and {βn} be two sequences in (0, 1] that satisfy the following conditions:

(i) αn → 0, βn → 0 as n→∞;

(ii)
∑∞
n=1 αn =∞;

(iii) αn = o(βn).

Let f : H1 → H1 be contractive mapping. Let {xn} be a sequence generated by the following iterative process

x1 ∈ H1, xn+1 = PC[αnf(xn) + (1 −αn)(xn −βnA
∗(I− PQ)Axn)], n > 1. (2.9)

Then {xn} converges in norm to x∗ = PΓ f(x∗), that is, x∗ uniquely solves the following variational inequality

〈f(x∗) − x∗, x∗ − x〉 > 0, ∀x ∈ Γ .
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Proof. Define F : H1 → H1 by Fx = A∗(I− PQ)Ax, for all x ∈ H1. Then (2.9) becomes (2.1). It is sufficient
to prove that F is 1

‖A‖2 -inverse strongly monotone such that F−1(0) = A−1(Q). Indeed, by using Lemma
1.3, we have

〈x− y, Fx− Fy〉 = 〈x− y,A∗(I− PQ)Ax−A∗(I− PQ)Ay〉
= 〈(I− PQ)Ax− (I− PQ)Ay,Ax−Ay〉
> ‖(I− PQ)Ax− (I− PQ)Ay‖2

>
1
‖A‖2 ‖A

∗(I− PQ)Ax−A
∗(I− PQ)Ay‖2

=
1
‖A‖2 ‖Fx− Fy‖

2,

(2.10)

which verifies that F is 1
‖A‖2 -inverse strongly monotone. Assume that x ∈ F−1(0). We have Fx = 0. Since

Γ 6= ∅, we can take a point w ∈ Γ . This implies that Aw = PQAw, and hence Fw = 0. In view of (2.10), we
have

0 = 〈Fx− Fw, x−w〉 > ‖(I− PQ)Ax‖2,

which implies that x ∈ A−1(Q). It is clear that A−1(Q) ⊂ F−1(0). Then A−1(Q) = F−1(0). This completes
the proof.

Using Theorem 2.4, we have the following result.

Corollary 2.5. Let C and Q be two nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator. Suppose that the split feasibility problem (1.1) is
consistent, i.e., Γ 6= ∅. Let {αn} and {βn} be two sequences in (0, 1] that satisfy the following conditions:

(i) αn → 0, βn → 0 as n→∞;

(ii)
∑∞
n=1 αn =∞;

(iii) αn = o(βn).

Let f : H1 → H1 be contractive mapping. Let a sequence {xn} be generated by the following iterative process

x1 ∈ H1, xn+1 = PC[αnu+ (1 −αn)(xn −βnA
∗(I− PQ)Axn)], n > 1,

where u is a fixed element in H1. Then {xn} converges in norm to x∗ = PΓu.

Finally, we give another viscosity convergence theorem with a Meir-Keeler contraction.

Theorem 2.6. Let C and Q be two nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator. Suppose that the split feasibility problem (1.1) is
consistent, i.e., Γ 6= ∅. Let {αn} and {βn} be two sequences in (0, 1] that satisfy the following conditions:

(i) αn → 0, βn → 0 as n→∞;

(ii)
∑∞
n=1 αn =∞;

(iii) αn = o(βn).

Let g : H1 → H1 be a Meir-Keeler contraction. Let {xn} be a sequence generated by the following iterative process

x1 ∈ H1, xn+1 = PC[αng(xn) + (1 −αn)(xn −βnA
∗(I− PQ)Axn)], n > 1. (2.11)

Then {xn} strongly converges to x∗, where x∗ = PΓg(x
∗), that is, x∗ uniquely solves the following variational

inequality
〈f(x∗) − x∗, x∗ − x〉 > 0, ∀x ∈ Γ .
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Proof. Define a sequence {yn} by

yn+1 = PC[αng(x
∗) + (1 −αn)(yn −βnA

∗(I− PQ)Ayn)].

From Corollary 2.5, we see that {yn} strongly converges to x∗ = PΓg(x∗). Next, we prove that xn−yn → 0
as n→∞. Let lim supn→∞ ‖ xn − yn ‖= λ > 0. For all ε ∈ (0, λ), we can choose η > 0 such that

lim sup
n→∞ ‖ xn − yn ‖> ε+ η.

For above ε > 0, we see [17] that there exists κ ∈ (0, 1) such that

κ ‖ x− y ‖>‖ f(x) − f(y) ‖

for all x,y ∈ H1 with ‖ x− y ‖> ε, which implies that

max{κ ‖ x− y ‖, ε} >‖ f(x) − f(y) ‖

for all x,y ∈ H1. Since yn → x∗ as n → ∞, we see that there exists some integer n0 > 1 such that
η(1 −β) >‖ yn − z ‖, for all n > n0.

Now, we divide the following two cases:
There exists some n1 > n0 such that ‖ xn1 − yn1 ‖6 ε+ η. It follows that

‖ xn1+1 − yn1+1 ‖ 6 αn1 ‖ g(xn1) − g(x
∗) ‖ +(1 −αn1) ‖ Fxn1 − Fyn1 ‖

6 αn1 ‖ g(xn1) − g(yn1) ‖ +αn1 ‖ g(yn1) − g(x
∗) ‖

+ (1 −αn1) ‖ xn1 − yn1 ‖
6 αn1 max{κ ‖ xn1 − yn1 ‖, ε}
+αn1 ‖ g(yn1) − g(x

∗) ‖ +(1 −αn1) ‖ xn1 − yn1 ‖
6 ε+ η.

Similarly, we can prove that ‖ xn1+2 − yn1+2 ‖6 ε+ η. By induction, we have ‖ xn1+m − yn1+m ‖6 ε+ η,
for all m > 1, which implies that lim supn→∞ ‖ xn− yn ‖6 ε+ η. This is a contradiction. Hence xn → x∗.

Finally, we show that the other case ‖ xn1 − yn1 ‖> ε+ η, for all n > n1 is impossible. Note that
κ ‖ xn − yn ‖>‖ f(xn) − f(yn) ‖, for all n > n1. It follows that

‖ xn1+1 − yn1+1 ‖ 6 αn ‖ g(xn) − g(yn) ‖ +αn ‖ g(yn) − g(z) ‖
+ (1 −αn) ‖ xn − yn ‖

6 (1 − (1 − κ)αn) ‖ xn − yn ‖ +αn ‖ yn − x∗ ‖,

which yields to xn − yn → 0 as n → ∞. Hence, ε+ η 6 0, which is a contradiction. This shows that the
second case is impossible. The proof is completed.
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