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Abstract

In this paper, several metric characterizations of well-posedness for systems of generalized mixed quasivariational inclusion
problems and for optimization problems with systems of generalized mixed quasivariational inclusion problems as constraints
are given. The equivalence between the well-posedness of systems of generalized mixed quasivariational inclusion problems and
the existence of solutions of systems of generalized mixed quasivariational inclusion problems is given under suitable conditions.
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1. Introduction

It is well-known that the concept of well-posedness has played an important role in the study of opti-
mization theory. The classical concept of well-posedness for a minimization problem is due to Tykhonov
[25], which is known as the Tykhonov well-posedness. A minimization problem is called Tykhonov
well-posed if there hold two aspects: the existence and uniqueness of minimizers and the convergence
of every minimizing sequence toward the unique minimizer. It is clear that the concept of Tykhonov
well-posedness is inspired by the numerical methods producing optimizing sequences for optimization
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problems. The concept of generalized Tykhonov well-posedness is also introduced for a minimization
problem having more than one solution, which means the existence of minimizers and the convergence of
some subsequence of every minimizing sequence toward a minimizer. Another important concept of well-
posedness for a minimization problem is well-posedness by perturbations or extended well-posedness
due to Zolezzi [32, 33]. The concept of well-posedness by perturbations establishes a form of continu-
ous dependence of the solutions upon a parameter. There are many other concepts of well-posedness in
optimization problems. For more details, we refer the reader to [6, 19, 23] and the references therein.

The concept of well-posedness has been generalized to some other problems: variational inequal-
ity problems [5, 6, 9, 10, 13, 16, 19, 29], saddle point problems[4], Nash equilibrium problems [20, 21],
inclusion problems [9, 15], and fixed point problems [9, 15, 22].

Let P be a nonempty closed subset of a normed space, C be a nonempty closed convex subset of a real
Banach space, g : P×C×C→ R and h : P×C→ R be functions. Recently, Fang et al. [9] considered the
following problems: for p ∈ P,

(EP)p: Find x ∈ C such that g(p, x,u) > 0, for all u ∈ C,

and
(OPEP): minh(p, x) subject to x is a solution of (EP)p.

They established some metric characterizations of well-posedness for equilibrium problems and for opti-
mization problems with equilibrium constraints. Furthermore, they proved that under suitable conditions,
the well-posedness is equivalent to the existence and uniqueness of solutions, and that the well-posedness
in the generalized sense is equivalent to the existence of solutions.

In recent years, the study of well-posedness for equilibrium problems has received so much attention
and many results of well-posedness have been obtained for variational equilibrium problems (see e.g.,
[2, 8, 18] and the references therein). In 2009, Lin and Chuang [17] studied the well-posedness in the gen-
eralized sense for variational inclusion problems and variational disclusion problems, the well-posedness
for optimization problems with variational inclusion problems, variational disclusion problems and scalar
equilibrium problems as constraints.

The quasivariational inclusion problem is an important generalization of the variational inclusion
problem, which contains a lot of important problems as special cases and has many applications, like
variational disclusion problems, minimax inequalities, equilibrium problems, saddle point problems, op-
timization problems, bilevel problems, mathematical program with equilibrium constraint, variational
inequalities, fixed point problems, coincidence point problems, Ekeland’s variational principle, etc. For
more details, we refer the reader to [4, 11, 12, 24, 27, 28, 30, 31] and the references therein. In 2009, Long
and Huang [18] generalized the concept of α-well-posedness to symmetric quasiequilibrium problems
in Banach spaces, which include equilibrium problems, Nash equilibrium problems, quasivariational in-
equalities, variational inequalities, and fixed-point problems as special cases. Under some suitable condi-
tions, they established some metric characterizations of α-well-posedness for symmetric quasiequilibrium
problems. In 2012, Ceng and Lin [3] generalized the concept of α-well-posedness to systems of mixed
quasivariational-like inequalities in Banach spaces, which include symmetric quasiequilibrium problems
as special cases. Moreover, they derived some metric characterizations of α-well-posedness for the sys-
tem of mixed quasivariational-like inequalities. Very recently, Wang et al. [26] introduced and studied
well-posedness of generalized quasivariational inclusion problems and of optimization problems with
generalized quasivariational inclusion problems as constraints.

Motivated and inspired by the works mentioned above, in this paper, we shall investigate well-
posedness for systems of generalized mixed quasivariational inclusion problems and for optimization
problems with systems of generalized mixed quasivariational inclusion problems as constraints. We es-
tablish some metric characterizations of well-posedness for systems of generalized mixed quasivariational
inclusion problems and for optimization problems with systems of generalized mixed quasivariational in-
clusion problems as constraints. We also prove that under mild conditions, the well-posedness of systems
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of generalized mixed quasivariational inclusion problems is equivalent to the existence and uniqueness
of solutions, and that the well-posedness in the generalized sense of systems of generalized mixed quasi-
variational inclusion problems is equivalent to the existence of solutions.

2. Preliminaries

In this section, we recall some definitions and lemmas used in the sequel.

Definition 2.1 ([1]). Let X and Y be two topological spaces. A multivalued mapping T : X→ 2Y is said to
be

(i) upper semicontinuous (for short, u.s.c.) at x ∈ X, if for each open set V in Y with T(x) ⊆ V , there
exists an open neighborhood U(x) of x such that T(u) ⊆ V for all u ∈ U(x);

(ii) lower semicontinuous (for short, l.s.c.) at x ∈ X, if for each open set V in Y with T(x)∩ V 6= ∅, there
exists an open neighborhood U(x) of x such that T(u)∩ V 6= ∅ for all u ∈ U(x);

(iii) u.s.c. (resp., l.s.c.) on X if it is u.s.c. (resp., l.s.c.) at every point x ∈ X;
(iv) continuous on X if it is both u.s.c. and l.s.c. on X;
(v) closed if the graph of T is closed, i.e., the set Gr(T) = {(x,y) ∈ X× Y : y ∈ T(x)} is closed in X× Y.

Lemma 2.2 ([1]). Let X and Y be two topological spaces and F : X→ 2Y be a multivalued mapping.

(i) If F is u.s.c. and closed-valued, then F is closed.
(ii) If F is compact-valued, then F is u.s.c. at x ∈ X if and only if for any net {xα} ⊆ X with xα → x and for any

net {yα} ⊆ Y with yα ∈ F(xα) for all α, there exist y ∈ F(x) and a subnet {yβ} of {yα} such that yβ → y.
(iii) F is l.s.c. at x ∈ X if and only if for any y ∈ F(x) and for any net {xα} with xα → x, there exists a net {yα}

with yα ∈ F(xα) for all α such that yα → y.

Definition 2.3 ([14]). Let S be a nonempty subset of a complete metric space (X,d). The Kuratowski
measure of noncompactness of S is defined by

µ(S) = inf{ε > 0: S ⊆
⋃n
i=1 Si, diamSi < ε, i = 1, 2, · · · ,n},

where diamSi denotes the diameter of set Si and is defined by diamSi = sup{d(x1, x2) : x1, x2 ∈ Si}.

Definition 2.4. Let (X,d) be a metric space and let U,V be nonempty subsets of X. The Hausdorff metric
H(·, ·) between U and V is defined by

H(U,V) := max{e(U,V), e(V ,U)},

where e(U,V) := supu∈U d(u,V) with d(u,V) = infv∈V d(u, v). Let {Un} be a sequence of nonempty
subsets of X. One says that Un converges to U in the sense of Hausdorff metric if H(Un,U) → 0. It is
easy to see that e(Un,U) → 0 if and only if d(un,U) → 0 for all sections un ∈ Un. For more details on
this topic, we refer the readers to [14].

Definition 2.5. Let (E, ρ) be a metric space which is also a vector space. (E, ρ) is said to be a linear metric
space if E is a vector topological space in the topology induced by ρ.

3. Well-posedness for systems of generalized mixed quasivariational inclusion problems

Let (P,d0) be a metric space and P be a nonempty closed subset of P. Let (X, d̂) and (Y, d̄) be two
linear metric spaces, Z be a Hausdorff topological vector space, C ⊆ X andD ⊆ Y be two nonempty closed
subsets. Let f,g : P×C×D → Z be two single-valued mappings. Let S : C×D → 2C, T : C×D → 2D,
G : P×X× Y×X→ 2Z and F : P× Y×X× Y → 2Z be multivalued mappings. Let ê : C→ Z and ē : D→ Z

be two continuous mappings. Throughout this paper, unless otherwise specified, we use these notations
and assumptions.
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We consider the following parametric system of generalized mixed quasivariational inclusion prob-
lems. For p ∈ P, (SGMQVIP)p: find a point (x,y) ∈ S(x,y)× T(x,y) such that{

0 ∈ G(p, x,y,u) + f(p, x,y) − f(p,u,y), ∀u ∈ S(x,y),
0 ∈ F(p,y, x, v) + g(p, x,y) − g(p, x, v), ∀v ∈ T(x,y).

Denote by (SGMQVIP) the family {(SGMQVIP)p : p ∈ P}. For each p ∈ P, let Sp be the solution set of
(SGMQVIP)p.

In particular, if we set f = 0 and g = 0, the parametric system of generalized mixed quasivariational
inclusion problems reduces to the following parametric system of generalized quasivariational inclusion
problems. For p ∈ P, (SGQVIP)p: find a point (x,y) ∈ S(x,y)× T(x,y) such that{

0 ∈ G(p, x,y,u), ∀u ∈ S(x,y),
0 ∈ F(p,y, x, v), ∀v ∈ T(x,y).

Denote by (SGQVIP) the family {(SGQVIP)p : p ∈ P}. For each p ∈ P, let Sp be the solution set of
(SGQVIP)p.

Let D be a metric space. For each a ∈ D and each r > 0, we denote by B(a, r) the closed ball centered
at a with radius r. When D = R, we denote by B+(0, r) the closed interval [0, r].

Definition 3.1. Let p ∈ P and let {pn} ⊆ P be any sequence such that pn → p. A sequence {(x∗n,y∗n)} ⊂
C×D is called an approximating solution sequence for (SGMQVIP)p corresponding to {pn} if for each
n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n), and there exist (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and a sequence
εn > 0 with εn → 0 such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

Definition 3.2. (SGMQVIP) is said to be well-posed if for every p ∈ P, (SGMQVIP)p has a unique solution
(xp,yp), and for every sequence {pn} ⊆ P with pn → p, every approximating solution sequence for
(SGMQVIP)p corresponding to {pn} converges to (xp,yp), and (SGMQVIP) is said to be well-posed in
the generalized sense if for every p ∈ P, (SGMQVIP)p has a nonempty solution set Sp, and for every
sequence {pn} ⊆ P with pn → p, every approximating solution sequence for (SGMQVIP)p corresponding
to {pn} has a subsequence which converges to some point of Sp.

Remark 3.3.

(a) When (SGMQVIP)p reduces to (SGQVIP)p, we have a definition of approximating solution sequence
for (SGQVIP)p and definitions of well-posedness and well-posedness in the generalized sense for
(SGQVIP).

(b) The definition of approximating solution sequence for (SGQVIP)p generalizes that of Wang et al.
[26].

(c) The definition of approximating solution sequence for (GQVIP)p in [26] generalizes that of Lin and
Chuang [17].

For each p ∈ P, the approximating solution set for (SGMQVIP)p is defined by

Ωp(δ, ε) =
⋃

p ′∈B(p,δ)

{
(x∗,y∗) ∈ C×D : (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗), and

∃(x,y) ∈ S(x∗,y∗)× T(x∗,y∗) s.t. d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),
0 ∈ G(p ′, x∗,y,u) + f(p ′, x∗,y) − f(p ′,u,y) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(p ′,y∗, x, v) + g(p ′, x,y∗) − g(p ′, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗)
}

,
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for all δ, ε > 0. Clearly, we have, for every p ∈ P,

(i) Sp ⊆ Ωp(δ, ε) for all δ, ε > 0;
(ii) if 0 < δ1 6 δ2 and 0 < ε1 6 ε2, then Ωp(δ1, ε1) ⊆ Ωp(δ2, ε2).

Next, we further establish some properties of Ωp(δ, ε).

Proposition 3.4. Assume that

(i) S and T are compact-valued;
(ii) for each (x,y) ∈ C×D, single-valued mappings (p, v) 7→ f(p, x, v) and (p,u) 7→ g(p,u,y) are continuous;

(iii) for each (x,u,y, v) ∈ C×C×D×D, multivalued mappings (p, t) 7→ G(p, x, t,u) and (p, s) 7→ F(p,y, s, v)
are closed;

(iv) for each (x∗,y∗) ∈
⋂
δ>0,ε>0 Ωp(δ, ε), the convergence of (xn,yn) (∈ S(x∗,y∗)× T(x∗,y∗),n ∈ N) implies

d̂(xn,S(xn,yn))→ 0 and d̄(yn, T(xn,yn))→ 0.

Then Sp =
⋂
δ>0,ε>0 Ωp(δ, ε) for each p ∈ P.

Proof. Take a fixed p ∈ P arbitrarily. Clearly, Sp ⊆
⋂
δ>0,ε>0 Ωp(δ, ε). Hence, we only need to show that⋂

δ>0,ε>0 Ωp(δ, ε) ⊆ Sp. If not, then there exists (x∗,y∗) ∈
⋂
δ>0,ε>0 Ωp(δ, ε) such that (x∗,y∗) 6∈ Sp. Then,

for each δ > 0 and each ε > 0, (x∗,y∗) ∈ Ωp(δ, ε) \ Sp. Thus, for each n ∈ N, (x∗,y∗) ∈ Ωp(
1
n , 1
n) \ Sp,

and so there exist pn ∈ B(p, 1
n) and (xn,yn) ∈ S(x∗,y∗)× T(x∗,y∗) such that

d̂(xn, x∗) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗) 6 d̄(yn, T(xn,yn)),
0 ∈ G(pn, x∗,yn,u) + f(pn, x∗,yn) − f(pn,u,yn) +B+(0,

1
n
)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(pn,y∗, xn, v) + g(pn, xn,y∗) − g(pn, xn, v) +B+(0,
1
n
)ē(y∗), ∀v ∈ T(x∗,y∗).

Clearly, pn → p. Since {yn} ⊆ T(x∗,y∗) and T(x∗,y∗) is a compact set, there exists a subsequence {ynk} of
{yn} such that ynk → ȳ as k→∞, and so, for each k ∈ N,

0 ∈ G(pnk , x∗,ynk ,u) + f(pnk , x∗,ynk) − f(pnk ,u,ynk) +B
+(0,

1
nk

)ê(x∗), ∀u ∈ S(x∗,y∗). (3.1)

For each u ∈ S(x∗,y∗), by (3.1), for every k ∈ N, there exists γ̂k ∈ B+(0, 1
nk

) such that

0 ∈ G(pnk , x∗,ynk ,u) + f(pnk , x∗,ynk) − f(pnk ,u,ynk) + γ̂kê(x
∗). (3.2)

Meantime, for each v ∈ T(x∗,y∗) and each k ∈ N, we know that there exists γ̄k ∈ B+(0, 1
nk

) such that

0 ∈ F(pnk ,y∗, xnk , v) + g(pnk , xnk ,y∗) − g(pnk , xnk , v) + γ̄kē(y∗). (3.3)

Clearly, pnk → p as k → ∞. Since {xnk} ⊆ T(x∗,y∗) and T(x∗,y∗) is a compact set, there exists a
subsequence of {xnk}, denoted still by {xnk}, such that xnk → x̂ as k→∞.

Clearly, γ̂k → 0 and γ̄k → 0 as k → ∞. Since (p,y) 7→ G(p, x∗,y,u) is closed, (p,y) 7→ f(p, x∗,y) and
(p,y) 7→ f(p,u,y) are continuous and (3.2) holds, we get

0 ∈ G(p, x∗, ȳ,u) + f(p, x∗, ȳ) − f(p,u, ȳ). (3.4)

Meantime, since (p, x) 7→ G(p,y∗, x, v) is closed, (p, x) 7→ g(p, x,y∗) and (p, x) 7→ g(p, x, v) are continuous
and (3.3) holds, we get

0 ∈ F(p,y∗, x̂, v) + g(p, x̂,y∗) − g(p, x̂, v). (3.5)
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Furthermore, by the definition of metric d(·, ·) in the product space (X× Y,d), we deduce that

d((xnk ,ynk), (x̂, ȳ)) =
√

(d̂(xnk , x̂))2 + (d̄(ynk , ȳ))2 6 d̂(xnk , x̂) + d̄(ynk , ȳ)→ 0.

From condition (iv) and the convergence of {(xnk ,ynk)} ⊆ S(x∗,y∗)× T(x∗,y∗) to (x̂, ȳ), it follows that
d̂(xnk ,S(xnk ,ynk))→ 0 and d̄(ynk , T(xnk ,ynk))→ 0 as k→∞. Thus,

d̂(x̂, x∗) = lim
k→∞d̂(xnk , x∗) 6 lim

k→∞d̂(xnk ,S(xnk ,ynk)) = 0,

and
d̄(ȳ,y∗) = lim

k→∞d̄(ynk ,y∗) 6 lim
k→∞d(ynk , T(xnk ,ynk)) = 0.

So, we get x̂ = x∗ and ȳ = y∗. Consequently, from (3.4) and (3.5) we have{
0 ∈ G(p, x∗,y∗,u) + f(p, x∗,y∗) − f(p,u,y∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x∗, v) + g(p, x∗,y∗) − g(p, x∗, v), ∀v ∈ T(x∗,y∗).

That is, (x∗,y∗) ∈ Sp, which is a contradiction. Hence,
⋂
δ>0,ε>0 Ωp(δ, ε) ⊆ Sp and so

Sp =
⋂

δ>0,ε>0

Ωp(δ, ε).

This completes the proof.

Proposition 3.5. Assume that

(i) S and T are continuous and compact-valued;
(ii) for each p ∈ P, single-valued mappings (x,y) 7→ f(p, x,y) and (x,y) 7→ g(p, x,y) are continuous;

(iii) for each p ∈ P, multivalued mappings (x,y,u) 7→ G(p, x,y,u) and (y, x, v) 7→ F(p,y, x, v) are closed;
(iv) for each convergent sequence {(x∗n,y∗n)} ⊆ Sp, the convergence of (xn,yn) (∈ S(x∗n,y∗n)× T(x∗n,y∗n),

n ∈ N) implies d̂(xn,S(xn,yn))→ 0 and d̄(yn, T(xn,yn))→ 0.

Then Sp and{
(x∗,y∗) ∈ C×D : (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗), and ∃(x,y) ∈ S(x∗,y∗)× T(x∗,y∗) s.t.

d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),
0 ∈ G(p, x∗,y,u) + f(p, x∗,y) − f(p,u,y) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(p,y∗, x, v) + g(p, x,y∗) − g(p, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗)
}

,

are closed subsets of C×D.

Proof. (i) Take a fixed p ∈ P arbitrarily. If (x∗,y∗) ∈ clSp, then there exists a sequence {(x∗n,y∗n)} in
Sp such that (x∗n,y∗n) → (x∗,y∗) (i.e., x∗n → x∗ and y∗n → y∗) as n → ∞. It follows that, for each
n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and there exists some (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) such that
d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{

0 ∈ G(p, x∗n,yn,u) + f(p, x∗n,yn) − f(p,u,yn), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(p,y∗n, xn, v) + g(p, xn,y∗n) − g(p, xn, v), ∀v ∈ T(x∗n,y∗n).

Since S is u.s.c. and closed-valued, S is closed and so x∗ ∈ S(x∗,y∗). Since T is u.s.c. and compact-
valued, there exist a subsequence {ynk} of {yn} and ȳ ∈ T(x∗,y∗) such that ynk → ȳ as k→∞. It follows
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that, for each k ∈ N,

0 ∈ G(p, x∗nk ,ynk ,u) + f(p, x∗nk ,ynk) − f(p,u,ynk), ∀u ∈ S(x
∗
nk

,y∗nk). (3.6)

For each u ∈ S(x∗,y∗), since S is l.s.c., there exists a sequence {unk} with unk ∈ S(x∗nk ,y∗nk) such that
uk → u as k→∞, and so

0 ∈ G(p, x∗nk ,ynk ,uk) + f(p, x∗nk ,ynk) − f(p,uk,ynk). (3.7)

Next, for each k ∈ N, we get the following relation associated with (3.6)

0 ∈ F(p,y∗nk , xnk , v) + g(p, xnk ,y∗nk) − g(p, xnk , v), ∀v ∈ T(x∗nk ,y∗nk).

Since T is u.s.c. and closed-valued, T is closed and so y∗ ∈ T(x∗,y∗). Since S is u.s.c. and compact-
valued, there exist a subsequence of {xnk}, denoted still by {xnk}, and x̂ ∈ S(x∗,y∗) such that xnk → x̂ as
k→∞. Moreover, for each v ∈ T(x∗,y∗), since T is l.s.c., there exists a sequence {vk} with vk ∈ T(x∗nk ,y∗nk)
such that vk → v as k→∞, and so

0 ∈ F(p,y∗nk , xnk , vk) + g(p, xnk ,y∗nk) − g(p, xnk , vk). (3.8)

Since multivalued mappings (x,y,u) 7→ G(p, x,y,u) and (y, x, v) 7→ F(p,y, x, v) are closed and single-
valued mappings (u,y) 7→ f(p,u,y) and (x, v) 7→ g(p, x, v) are continuous, we obtain from (3.7) and (3.8)
that {

0 ∈ G(p, x∗, ȳ,u) + f(p, x∗, ȳ) − f(p,u, ȳ), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x̂, v) + g(p, x̂,y∗) − g(p, x̂, v), ∀v ∈ T(x∗,y∗).

(3.9)

From condition (iv) and the convergence of (xnk ,ynk) (∈ S(x∗nk ,y∗nk)× T(x
∗
nk

,y∗nk),k ∈ N) to (x̂, ȳ), it
follows that d̂(xnk ,S(xnk ,ynk))→ 0 and d̄(ynk , T(xnk ,ynk))→ 0 as k→∞. Thus,

d̂(x̂, x∗) = lim
k→∞d̂(xnk , x∗nk) 6 lim

k→∞d̂(xnk ,S(xnk ,ynk)) = 0,

and
d̄(ȳ,y∗) = lim

k→∞d̄(ynk ,y∗nk) 6 lim
k→∞d(ynk , T(xnk ,ynk)) = 0.

So, we get x̂ = x∗ and ȳ = y∗. Consequently, from (3.9) we have{
0 ∈ G(p, x∗,y∗,u) + f(p, x∗,y∗) − f(p,u,y∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x∗, v) + g(p, x∗,y∗) − g(p, x∗, v), ∀v ∈ T(x∗,y∗).

That is, (x∗,y∗) ∈ Sp, which hence implies clSp ⊆ Sp. Therefore, Sp = clSp.
(ii) Take any p ∈ P and any ε > 0 and let (p, ε) be fixed. Let

A =

{
(x∗,y∗) ∈ C×D : (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗), and ∃(x,y) ∈ S(x∗,y∗)× T(x∗,y∗) s.t.

d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),
0 ∈ G(p, x∗,y,u) + f(p, x∗,y) − f(p,u,y) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(p,y∗, x, v) + g(p, x,y∗) − g(p, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗)
}

.

If (x∗,y∗) ∈ clA, then there exists a sequence {(x∗n,y∗n)} in A such that (x∗n,y∗n) → (x∗,y∗) as n → ∞. It
follows that, for each n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)×T(x∗n,y∗n) and there exists some (xn,yn) ∈ S(x∗n,y∗n)×
T(x∗n,y∗n) such that d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{

0 ∈ G(p, x∗n,yn,u) + f(p, x∗n,yn) − f(p,u,yn) +B+(0, ε)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(p,y∗n, xn, v) + g(p, xn,y∗n) − g(p, xn, v) +B+(0, ε)ē(y∗n), ∀v ∈ T(x∗n,y∗n).
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Since S is u.s.c. and closed-valued, S is closed and so x∗ ∈ S(x∗,y∗). Since T is u.s.c. and compact-
valued, there exist a subsequence {ynk} of {yn} and ȳ ∈ T(x∗,y∗) such that ynk → ȳ as k→∞. It follows
that, for each k ∈ N,

0 ∈ G(p, x∗nk ,ynk ,u) + f(p, x∗nk ,ynk) − f(p,u,ynk) +B
+(0, ε)ê(x∗nk), ∀u ∈ S(x

∗
nk

,y∗nk). (3.10)

For each u ∈ S(x∗,y∗), since S is l.s.c., there exists a sequence {unk} with unk ∈ S(x∗nk ,y∗nk) such that
uk → u as k→∞, and so

0 ∈ G(p, x∗nk ,ynk ,uk) + f(p, x∗nk ,ynk) − f(p,uk,ynk) +B
+(0, ε)ê(x∗nk). (3.11)

Next, for each k ∈ N, we get the following relation associated with (3.10)

0 ∈ F(p,y∗nk , xnk , v) + g(p, xnk ,y∗nk) − g(p, xnk , v) +B+(0, ε)ē(y∗nk), ∀v ∈ T(x
∗
nk

,y∗nk).

Since T is u.s.c. and closed-valued, T is closed and so y∗ ∈ T(x∗,y∗). Since S is u.s.c. and compact-valued,
there exist a subsequence of {xnk}, denoted still by {xnk}, and x̂ ∈ S(x∗,y∗) such that xnk → x̂ as k → ∞.
Moreover, for each v ∈ T(x∗,y∗), since T is l.s.c., there exists a sequence {vk} with vk ∈ T(x∗nk ,y∗nk) such
that vk → v as k→∞, and so

0 ∈ F(p,y∗nk , xnk , vk) + g(p, xnk ,y∗nk) − g(p, xnk , vk) +B+(0, ε)ē(y∗nk). (3.12)

So, it follows from (3.11) and (3.12) that there exist two sequences {γ̂k} and {γ̄k} in B+(0, ε) such that for
all k ∈ N {

0 ∈ G(p, x∗nk ,ynk ,uk) + f(p, x∗nk ,ynk) − f(p,uk,ynk) + γ̂kê(x
∗
nk

),

0 ∈ F(p,y∗nk , xnk , vk) + g(p, xnk ,y∗nk) − g(p, xnk , vk) + γ̄kē(y∗nk).
(3.13)

Observe that B+(0, ε) = [0, ε] ⊆ R is compact. We may assume that γ̂k → γ̂ ∈ B+(0, ε) and γ̄k → γ̄ ∈
B+(0, ε) as k → ∞. Since multivalued mappings (x,y,u) 7→ G(p, x,y,u) and (y, x, v) 7→ F(p,y, x, v) are
closed and single-valued mappings (u,y) 7→ f(p,u,y) and (x, v) 7→ g(p, x, v) are continuous, we obtain
from (3.13) that {

0 ∈ G(p, x∗, ȳ,u) + f(p, x∗, ȳ) − f(p,u, ȳ) + γ̂ê(x∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x̂, v) + g(p, x̂,y∗) − g(p, x̂, v) + γ̄ē(y∗), ∀v ∈ T(x∗,y∗),

which immediately yields{
0 ∈ G(p, x∗, ȳ,u) + f(p, x∗, ȳ) − f(p,u, ȳ) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x̂, v) + g(p, x̂,y∗) − g(p, x̂, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗).

(3.14)

From condition (iv) and the convergence of (xnk ,ynk)(∈ S(x∗nk ,y∗nk) × T(x
∗
nk

,y∗nk),k ∈ N) to (x̂, ȳ), it
follows that d̂(xnk ,S(xnk ,ynk))→ 0 and d̄(ynk , T(xnk ,ynk))→ 0 as k→∞. Thus,

d̂(x̂, x∗) = lim
k→∞d̂(xnk , x∗nk) 6 lim

k→∞d̂(xnk ,S(xnk ,ynk)) = 0,

and
d̄(ȳ,y∗) = lim

k→∞d̄(ynk ,y∗nk) 6 lim
k→∞d(ynk , T(xnk ,ynk)) = 0.

So, we get x̂ = x∗ and ȳ = y∗. Consequently, from (3.14) we have{
0 ∈ G(p, x∗,y∗,u) + f(p, x∗,y∗) − f(p,u,y∗) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x∗, v) + g(p, x∗,y∗) − g(p, x∗, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗).

That is, (x∗,y∗) ∈ A, which hence implies clA ⊆ A. Therefore, A = clA.
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Proposition 3.6. Assume that

(i) P is finite-dimensional;
(ii) S and T are continuous and compact-valued;

(iii) single-valued mappings f and g are continuous;
(iv) multivalued mappings G and F are closed;
(v) for every p ∈ P, there exists Ωp(δ, ε) such that for each convergent sequence {(x∗n,y∗n)} ⊆ Ωp(δ, ε), the

convergence of (xn,yn)(∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) implies d̂(xn,S(xn,yn))→ 0 and

d̄(yn, T(xn,yn))→ 0.

Then, for each p ∈ P, Ωp(δ, ε) is a closed subset of C×D.

Proof. Take any p ∈ P and any δ, ε > 0 and let (p, δ, ε) be fixed. If (x∗,y∗) ∈ cl(Ωp(δ, ε)), then there
exists a sequence {(x∗n,y∗n)} in Ωp(δ, ε) such that (x∗n,y∗n) → (x∗,y∗) (i.e., x∗n → x∗ and y∗n → y∗) as
n→∞. It follows that, for each n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and there exist pn ∈ B(p, δ) and
(xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) such that d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{

0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, ε)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, ε)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

Note that P is finite-dimensional. We may assume that pn → p̃ ∈ B(p, δ). Then, by the similar arguments
to those in the second part of the proof of Proposition 3.5, we can show that (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗)
and {

0 ∈ G(p̃, x∗,y∗,u) + f(p̃, x∗,y∗) − f(p̃,u,y∗) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p̃,y∗, x∗, v) + g(p̃, x∗,y∗) − g(p̃, x∗, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗).

That is, (x∗,y∗)∈Ωp(δ, ε), which hence implies cl(Ωp(δ, ε))⊆Ωp(δ, ε). Therefore, Ωp(δ, ε) = cl(Ωp(δ, ε)).
This completes the proof.

Theorem 3.7. Let X and Y be complete. Assume that

(i) S and T are continuous and compact-valued;
(ii) single-valued mappings f and g are continuous;

(iii) multivalued mappings G and F are closed;
(iv) for every p ∈ P, there exists Ωp(δ, ε) such that for each convergent sequence {(x∗n,y∗n)} ⊆ Ωp(δ, ε), the

convergence of (xn,yn)(∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) implies d̂(xn,S(xn,yn))→ 0 and

d̄(yn, T(xn,yn))→ 0.

Then (SGMQVIP) is well-posed if and only if for every p ∈ P,

Ωp(δ, ε) 6= ∅, ∀δ, ε > 0, and diam(Ωp(δ, ε))→ 0 as (δ, ε)→ (0, 0). (3.15)

Proof. Suppose that (SGMQVIP) is well-posed. Then, for every p ∈ P, (SGMQVIP)p has a unique solution
(xp,yp), and so Ωp(δ, ε) 6= ∅ since (xp,yp) ∈ Sp ⊆ Ωp(δ, ε) for all δ, ε > 0.

Now we shall show that
diam(Ωp(δ, ε))→ 0 as (δ, ε)→ (0, 0). (3.16)

If not, then there exist r > 0, sequences {δn} and {εn} of positive real numbers with (δn, εn) → (0, 0) as
n → ∞ and sequences {(x1∗

n ,y1∗
n )} and {(x2∗

n ,y2∗
n )} with (x1∗

n ,y1∗
n ), (x2∗

n ,y2∗
n ) ∈ Ωp(δn, εn) for each n ∈ N

such that
r < d((x1∗

n ,y1∗
n ), (x2∗

n ,y2∗
n )) =

√
(d̂(x1∗

n , x2∗
n ))2 + (d̄(y1∗

n ,y2∗
n ))2, n ∈ N. (3.17)
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For each n ∈ N and i = 1, 2, since (xi∗n ,yi∗n ) ∈ Ωp(δn, εn), we know that

(xi∗n ,yi∗n ) ∈ S(xi∗n ,yi∗n )× T(xi∗n ,yi∗n ),

and there exist pin ∈ B(p, δn) and (xin,yin) ∈ S(xi∗n ,yi∗n )× T(xi∗n ,yi∗n ) such that

d̂(xin, xi∗n ) 6 d̂(xin,S(xin,yin)), d̄(y
i
n,yi∗n ) 6 d̄(yin, T(xin,yin)),{

0 ∈ G(pin, xi∗n ,yin,u) + f(pin, xi∗n ,yin) − f(p
i
n,u,yin) +B

+(0, εn)ê(xi∗n ), ∀u ∈ S(xi∗n ,yi∗n ),

0 ∈ F(pin,yi∗n , xin, v) + g(pin, xin,yi∗n ) − g(pin, xin, v) +B+(0, εn)ē(yi∗n ), ∀v ∈ T(xi∗n ,yi∗n ).

Clearly p1
n → p and p2

n → p as n→∞. Hence {(x1∗
n ,y1∗

n )} and {(x2∗
n ,y2∗

n )} are approximating solution
sequences for (SGMQVIP)p corresponding to {p1

n} and {p2
n}, respectively. Then, by the well-posedness

of (SGMQVIP), they have to converge to the unique solution (xp,yp) of (SGMQVIP)p, a contradiction to
(3.17). Thus (3.16) holds.

Conversely, suppose that condition (3.15) holds. Take any p ∈ P and let p be fixed. Let {pn} be
any sequence in P with pn → p as n → ∞. If {(x∗n,y∗n)} is an approximating solution sequence for
(SGMQVIP)p corresponding to {pn}, then for each n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n), and there
exist (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and a sequence εn > 0 with εn → 0 such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

For each n ∈ N, let δn = d0(pn,p). Then, pn ∈ B(p, δn) and (x∗n,y∗n) ∈ Ωp(δn, εn) for each n ∈ N,
and δn → 0 as n → ∞. It follows from (3.15) that {(x∗n,y∗n)} is a Cauchy sequence and so it converges
to a point (x∗,y∗) ∈ C×D. Then, by the similar arguments to those in the second part of the proof of
Proposition 3.5, we can show that (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗) and{

0 ∈ G(p, x∗,y∗,u) + f(p, x∗,y∗) − f(p,u,y∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x∗, v) + g(p, x∗,y∗) − g(p, x∗, v), ∀v ∈ T(x∗,y∗).

Thus (x∗,y∗) is a solution of (SGMQVIP)p.
To complete the proof, it is sufficient to prove that (SGMQVIP)p has a unique solution. If (SGMQVIP)p

has two distinct solutions (x1,y1) and (x2,y2), it is easy to see that (x1,y1), (x2,y2) ∈ Ωp(δ, ε) for all
δ, ε > 0. It follows that

0 < d((x1,y1), (x2,y2)) 6 diam(Ωp(δ, ε)), ∀δ, ε > 0,

a contradiction to (3.15). Therefore, (SGMQVIP)p has a unique solution. This completes the proof.

Theorem 3.8. Let X and Y be complete. Assume that

(i) P is finite-dimensional;
(ii) S and T are continuous and compact-valued;

(iii) single-valued mappings f and g are continuous;
(iv) multivalued mappings G and F are closed;
(v) for every p ∈ P, there exists Ωp(δ, ε) such that for each convergent sequence {(x∗n,y∗n)} ⊆ Ωp(δ, ε), the

convergence of (xn,yn)(∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) implies{
d̂(xn,S(xn,yn))→ 0,
d̄(yn, T(xn,yn))→ 0.
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Then (SGMQVIP) is well-posed in the generalized sense if and only if for every p ∈ P,

Ωp(δ, ε) 6= ∅, ∀δ, ε > 0, and µ(Ωp(δ, ε))→ 0 as (δ, ε)→ (0, 0). (3.18)

Proof. Suppose that (SGMQVIP) is well-posed in the generalized sense. Take any p ∈ P and let p be
fixed. Then Sp is nonempty. Now we show that Sp is compact. Indeed, let {(x∗n,y∗n)} be any sequence in
Sp. Then {(x∗n,y∗n)} is an approximating solution sequence for (SGMQVIP)p. By the well-posedness in
the generalized sense of (SGMQVIP), {(x∗n,y∗n)} has a subsequence which converges to some point of Sp.
Thus Sp is compact. Clearly, for each δ, ε > 0, Sp ⊆ Ωp(δ, ε), and so Ωp(δ, ε) 6= ∅.

Now we shall show that
µ(Ωp(δ, ε))→ 0 as (δ, ε)→ (0, 0). (3.19)

Observe that for every δ, ε > 0,

H(Ωp(δ, ε),Sp) = max{e(Ωp(δ, ε),Sp), e(Sp, Ωp(δ, ε))} = e(Ωp(δ, ε),Sp).

Taking into account the compactness of Sp, we get

µ(Ωp(δ, ε)) 6 2H(Ωp(δ, ε),Sp) + µ(Sp) = 2e(Ωp(δ, ε),Sp).

To prove (3.19), it is sufficient to show that

e(Ωp(δ, ε),Sp)→ 0 as (δ, ε)→ (0, 0). (3.20)

As a matter of fact, if (3.20) does not hold, then there exist r > 0, sequences {δn} and {εn} of positive
real numbers with (δn, εn) → (0, 0) as n → ∞ and sequence {(x∗n,y∗n)} with (x∗n,y∗n) ∈ Ωp(δn, εn) for
every n ∈ N such that

(x∗n,y∗n) 6∈ Sp +B(0, r), ∀n ∈ N. (3.21)

For each n ∈ N, since (x∗n,y∗n) ∈ Ωp(δn, εn), we know that (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n), and there
exist pn ∈ B(p, δn) and (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

Clearly pn → p as n→∞. Hence {(x∗n,y∗n)} is an approximating solution sequence for (SGMQVIP)p
corresponding to {pn}. Then, by the well-posedness in the generalized sense of (SGMQVIP), {(x∗n,y∗n)}
has a subsequence {(x∗nk ,y∗nk)} which converges to some point of Sp. This contradicts (3.21), and so (3.20)
holds.

Conversely, suppose that condition (3.18) holds. Take a fixed p ∈ P arbitrarily. Then, by Propositions
3.4 and 3.6, Ωp(δ, ε) is closed for δ, ε > 0 small enough and Sp =

⋂
δ>0,ε>0 Ωp(δ, ε). Since µ(Ωp(δ, ε))→ 0

as (δ, ε)→ (0, 0), by the Kuratowski theorem [14], Sp is nonempty and compact and

e(Ωp(δ, ε),Sp)→ 0 as (δ, ε)→ (0, 0). (3.22)

Let {pn} be any sequence in P with pn → p as n → ∞. If {(x∗n,y∗n)} is an approximating solution
sequence for (SGMQVIP)p corresponding to {pn}, then for each n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n),
and there exist (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and a sequence εn > 0 with εn → 0 such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).
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For each n ∈ N, let δn = d0(pn,p). Then, pn ∈ B(p, δn) and (x∗n,y∗n) ∈ Ωp(δn, εn) for each n ∈ N, and
δn → 0 as n→∞. It follows from (3.22) that d((x∗n,y∗n),Sp) 6 e(Ωp(δn, εn),Sp)→ 0 as n→∞. Since Sp
is compact, for each n ∈ N, there exists (x ′n,y ′n) ∈ Sp such that d((x∗n,y∗n), (x ′n,y ′n)) = d((x∗n,y∗n),Sp)→ 0
as n→∞. Again from the compactness of Sp, {(x ′n,y ′n)} has a subsequence {(x ′nk ,y ′nk)} which converges
to a point (x∗,y∗) ∈ Sp. Hence, the corresponding subsequence {(x∗nk ,y∗nk)} of {(x∗n,y∗n)} converges to
(x∗,y∗). Therefore, (SGMQVIP) is well-posed in the generalized sense. This completes the proof.

Utilizing the similar reasoning to that in the proof of Theorem 3.8, we have the following character-
ization by considering the Hauasdorff distance between the solution set and the approximating solution
set.

Theorem 3.9. Assume that all the conditions of Theorem 3.8 are satisfied. Then (SGMQVIP) is well-posed in
the generalized sense if and only if for every p ∈ P, Sp is nonempty and compact and e(Ωp(δ, ε),Sp) → 0 as
(δ, ε)→ (0, 0).

Proof. By Propositions 3.4 and 3.6, Ωp(δ, ε) is closed for every δ, ε > 0 small enough, and

Sp =
⋂

δ>0,ε>0

Ωp(δ, ε).

For the remainder of the proof, using the similar reasoning to that in the proof of Theorem 3.8, we obtain
the desired result.

Theorem 3.10. Let X and Y be finite-dimensional. Assume that

(i) S and T are continuous and compact-valued;
(ii) single-valued mappings f and g are continuous;

(iii) multivalued mappings G and F are closed;
(iv) for every p ∈ P, there exists a nonempty and bounded set Ωp(ε, ε) such that for each convergent se-

quence {(x∗n,y∗n)} ⊆ Ωp(ε, ε), the convergence of (xn,yn)(∈ S(x∗n,y∗n) × T(x∗n,y∗n),n ∈ N) implies
d̂(xn,S(xn,yn))→ 0 and d̄(yn, T(xn,yn))→ 0.

Then (SGMQVIP)p is well-posed if and only if for every p ∈ P, (SGMQVIP)p has a unique solution.

Proof. The necessity is obvious. For the sufficiency, suppose that (SGMQVIP)p has a unique solution
(xp,yp) for every p ∈ P. Take a fixed p ∈ P arbitrarily. Let {pn} be any sequence in P with pn → p as
n→∞. If {(x∗n,y∗n)} is an approximating solution sequence for (SGMQVIP)p corresponding to {pn}, then
for each n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n), and there exist (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and a
sequence εn > 0 with εn → 0 such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

For each n ∈ N, let δn = d0(pn,p). Then, pn ∈ B(p, δn) and (x∗n,y∗n) ∈ Ωp(δn, εn) for each n ∈ N, and
δn → 0 as n → ∞. Let ε > 0 be such that Ωp(ε, ε) is a nonempty and bounded set satisfying condition
(iv). Then there exists some n0 ∈ N such that (x∗n,y∗n) ∈ Ωp(δn, εn) ⊆ Ωp(ε, ε) for all n > n0. Thus
{(x∗n,y∗n)} is bounded. Let {(x∗nk ,y∗nk)} be any subsequence of {(x∗n,y∗n)} such that (x∗nk ,y∗nk)→ (x∗,y∗) as
k→∞. Then, by the similar arguments to those in the second part of the proof of Proposition 3.5, we can
show that (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗) and{

0 ∈ G(p, x∗,y∗,u) + f(p, x∗,y∗) − f(p,u,y∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x∗, v) + g(p, x∗,y∗) − g(p, x∗, v), ∀v ∈ T(x∗,y∗).



L.-C. Ceng, Y.-C. Liou, J.-C. Yao, Y.-H. Yao, C.-H. Lo, J. Nonlinear Sci. Appl., 10 (2017), 5373–5392 5385

Thus (x∗,y∗) is a solution of (SGMQVIP)p. By the solution uniqueness to (SGMQVIP)p, we have
(x∗,y∗) = (xp,yp). Thus, the whole sequence {(x∗n,y∗n)} converges to (xp,yp) and so (SGMQVIP) is
well-posed.

Theorem 3.11. Let X and Y be finite-dimensional. Assume that

(i) S and T are continuous and compact-valued;
(ii) single-valued mappings f and g are continuous;

(iii) multivalued mappings G and F are closed;
(iv) for every p ∈ P, there exists a nonempty and bounded set Ωp(ε, ε) such that for each convergent se-

quence {(x∗n,y∗n)} ⊆ Ωp(ε, ε), the convergence of (xn,yn)(∈ S(x∗n,y∗n) × T(x∗n,y∗n),n ∈ N) implies
d̂(xn,S(xn,yn))→ 0 and d̄(yn, T(xn,yn))→ 0.

Then (SGMQVIP)p is well-posed in the generalized sense if and only if for every p ∈ P, (SGMQVIP)p has a
nonempty solution set Sp.

Proof. The necessity is obvious. For the sufficiency, suppose that (SGMQVIP)p has a nonempty solution
set Sp for every p ∈ P. Take a fixed p ∈ P arbitrarily. Let {pn} be any sequence in P with pn → p as
n→∞. If {(x∗n,y∗n)} is an approximating solution sequence for (SGMQVIP)p corresponding to {pn}, then
for each n ∈ N, (x∗n,y∗n) ∈ S(x∗n,y∗n)× T(x∗n,y∗n), and there exist (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) and a
sequence εn > 0 with εn → 0 such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

For each n ∈ N, let δn = d0(pn,p). Then, pn ∈ B(p, δn) and (x∗n,y∗n) ∈ Ωp(δn, εn) for each n ∈ N, and
δn → 0 as n→∞. Let ε > 0 be such that Ωp(ε, ε) is a nonempty and bounded set satisfying condition (iv).
Then there exists some n0 ∈ N such that (x∗n,y∗n) ∈ Ωp(δn, εn) ⊆ Ωp(ε, ε), for all n > n0. Thus {(x∗n,y∗n)}
is bounded, and so there exists a subsequence {(x∗nk ,y∗nk)} of {(x∗n,y∗n)} such that (x∗nk ,y∗nk)→ (x∗,y∗) as
k→∞. Then, by the similar arguments to those in the second part of the proof of Proposition 3.5, we can
show that (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗) and{

0 ∈ G(p, x∗,y∗,u) + f(p, x∗,y∗) − f(p,u,y∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x∗, v) + g(p, x∗,y∗) − g(p, x∗, v), ∀v ∈ T(x∗,y∗).

Therefore (x∗,y∗) is a solution of (SGMQVIP)p and so (SGMQVIP)p is well-posed in the generalized
sense. This completes the proof.

If we set f = 0 and g = 0, then (SGMQVIP) reduces to (SGQVIP). For each p ∈ P, the approximating
solution set for (SGQVIP)p is defined by

Ωp(δ, ε) =
⋃

p ′∈B(p,δ)

{
(x∗,y∗) ∈ C×D : (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗), and

∃(x,y) ∈ S(x∗,y∗)× T(x∗,y∗) s.t. d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),
0 ∈ G(p ′, x∗,y,u) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(p ′,y∗, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗)
}

,

for all δ, ε > 0. Thus, by Theorems 3.7–3.11, we can obtain the following results of well-posedness for
(SGQVIP).
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Theorem 3.12. Let X and Y be complete. Assume that

(i) S and T are continuous and compact-valued;
(ii) multivalued mappings G and F are closed;

(iii) for every p ∈ P, there exists Ωp(δ, ε) such that for each convergent sequence {(x∗n,y∗n)} ⊆ Ωp(δ, ε),

the convergence of (xn,yn) (∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) ⇒

{
d̂(xn,S(xn,yn))→ 0,
d̄(yn, T(xn,yn))→ 0.

Then (SGQVIP) is well-posed if and only if for every p ∈ P, Ωp(δ, ε) 6= ∅ for all δ, ε > 0, and diam(Ωp(δ, ε))→ 0
as (δ, ε)→ (0, 0).

Theorem 3.13. Let X and Y be complete. Assume that

(i) P is finite-dimensional;
(ii) S and T are continuous and compact-valued;

(iii) multivalued mappings G and F are closed;
(iv) for every p ∈ P, there exists Ωp(δ, ε) such that for each convergent sequence {(x∗n,y∗n)} ⊆ Ωp(δ, ε),

the convergence of (xn,yn) (∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) ⇒

{
d̂(xn,S(xn,yn))→ 0,
d̄(yn, T(xn,yn))→ 0.

Then (SGQVIP) is well-posed in the generalized sense if and only if for every p ∈ P, Ωp(δ, ε) 6= ∅, for all δ, ε > 0,
and µ(Ωp(δ, ε))→ 0 as (δ, ε)→ (0, 0).

Theorem 3.14. Assume that all the conditions of Theorem 3.13 are satisfied. Then (SGQVIP) is well-posed in
the generalized sense if and only if for every p ∈ P, Sp is nonempty and compact and e(Ωp(δ, ε),Sp) → 0 as
(δ, ε)→ (0, 0).

Theorem 3.15. Let X and Y be finite-dimensional. Assume that

(i) S and T are continuous and compact-valued;
(ii) multivalued mappings G and F are closed;

(iii) for every p ∈ P, there exists a nonempty and bounded set Ωp(ε, ε) such that for each convergent se-
quence {(x∗n,y∗n)} ⊆ Ωp(ε, ε), the convergence of (xn,yn) (∈ S(x∗n,y∗n) × T(x∗n,y∗n),n ∈ N) implies
d̂(xn,S(xn,yn))→ 0 and d̄(yn, T(xn,yn))→ 0.

Then (SGQVIP)p is well-posed if and only if for every p ∈ P, (SGQVIP)p has a unique solution.

Theorem 3.16. Let X and Y be finite-dimensional. Assume that

(i) S and T are continuous and compact-valued;
(ii) multivalued mappings G and F are closed;

(iii) for every p ∈ P, there exists a nonempty and bounded set Ωp(ε, ε) such that for each convergent se-
quence {(x∗n,y∗n)} ⊆ Ωp(ε, ε), the convergence of (xn,yn) (∈ S(x∗n,y∗n) × T(x∗n,y∗n),n ∈ N) implies
d̂(xn,S(xn,yn))→ 0 and d̄(yn, T(xn,yn))→ 0.

Then (SGQVIP)p is well-posed in the generalized sense if and only if for every p ∈ P, (SGQVIP)p has a nonempty
solution set Sp.

Remark 3.17.

(a) Theorems 3.11–3.16 generalize and extend [26, Theorems 3.1–3.5] from (GQVIP) to (SGQVIP), re-
spectively.

(b) Compared with [26, Theorem 3.3], our Theorem 3.14 is its corresponding one, which shows that if
(SGQVIP) is well-posed in the generalized sense, then Sp is compact for every p ∈ P, but such a
corresponding conclusion cannot be concluded in [17].
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4. Well-posedness for optimization problems with constraints

In this section, we study the well-posedness of optimization problems with systems of generalized
mixed quasivariational inclusion problems as constraints.

Let P,X, Y and W be normed spaces, and K ⊆W be a pointed, closed and convex cone with intK 6= ∅.
Let H : P × C×D → 2W be a multivalued mapping with nonempty values. We consider the follow-
ing optimization problem with the system of generalized mixed quasivariational inclusion problems as
constraint:

(OPSGMQVIP) : minH(p, x,y) subject to (x,y) ∈ Sp.

Let M = {(p, x,y) ∈ P×C×D : (x,y) ∈ Sp}. Suppose that M is nonempty closed subset of P×C×D. A
point w ∈ H(M) is called a minimal point of H(M) if H(M) ∩ (w− K \ {0}) = ∅. A point (p, x,y) ∈ M is
called an efficient solution of (OPSGMQVIP) if there exists w ∈ H(p, x,y) such that w is a minimal point
of H(M).

For each w,q ∈W and each δ, ε > 0, let

Q(w) := {(p, x,y) ∈ P×C×D : (x,y) ∈ Sp, w ∈ H(p, x,y) and H(M)∩ (w−K \ {0}) = ∅},

and L(w,q, δ, ε) := A(w,q, δ)∩D(ε), where

A(w,q, δ) := {(p, x,y) ∈ P×C×D : H(p, x,y)∩ (w+ δq−K) 6= ∅},

and

D(ε) :=

{
(p, x∗,y∗) ∈ P×C×D : (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗), and ∃(x,y) ∈ S(x∗,y∗)× T(x∗,y∗) s.t.

d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),
0 ∈ G(p, x∗,y,u) + f(p, x∗,y) − f(p,u,y) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(p,y∗, x, v) + g(p, x,y∗) − g(p, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗)
}

.

Clearly, for any (w,q) ∈W × intK, δ1, δ2 > 0 with δ1 6 δ2 and ε1, ε2 > 0 with ε1 6 ε2, we have

(i) A(w,q, δ1) ⊆ A(w,q, δ2);
(ii) M ⊆ D(ε1) ⊆ D(ε2);

(iii) L(w,q, δ1, ε1) ⊆ L(w,q, δ2, ε2).

Definition 4.1. Let {kn} ⊆ W be a sequence with kn → 0 and (p, x,y) be an efficient solution of
(OPSGMQVIP). A sequence {(pn, xn,yn)} ⊆ P×C×D is said to be an approximating solution sequence
for (OPSGMQVIP) corresponding to {kn} at (p, x,y) if

(i) there exists w ∈ H(p, x,y) with w being a minimal point of H(M) such that

H(pn, xn,yn)∩ (w+ kn −K) 6= ∅, ∀n ∈ N;

(ii) there exists a sequence {εn} of positive real numbers with εn → 0 such that (pn, xn,yn) ∈ D(εn) for
all n ∈ N.

Definition 4.2. Let q ∈ intK, {kn} ⊆ W be any sequence with kn → 0, and (p, x,y) be an efficient solu-
tion of (OPSGMQVIP). Then (OPSGMQVIP) is said to be well-posed at (p, x,y) if every approximating
solution sequence for (OPSGMQVIP) corresponding to {kn} at (p, x,y) converges to (p, x,y).

Remark 4.3.

(a) When (SGMQVIP)p reduces to (SGQVIP)p, (OPSGMQVIP) reduces to (OPSGQVIP) and there-
fore, by Definitions 4.1 and 4.2, we have definitions of approximating solution sequence and well-
posedness for (OPSGQVIP).



L.-C. Ceng, Y.-C. Liou, J.-C. Yao, Y.-H. Yao, C.-H. Lo, J. Nonlinear Sci. Appl., 10 (2017), 5373–5392 5388

(b) The definition of approximating solution sequence for (OPSGQVIP) generalizes and extends that of
Wang et al. [26].

(c) The definition of approximating solution sequence for (OPGQVIP) (including (OPVIP) as a special
case) generalizes and extends that of Lin and Chuang [17].

Lemma 4.4 ([7]). Let {kn} ⊆ W be any sequence with kn → 0. Then, for every q ∈ intK, there exists a sequence
{δn} of positive real numbers with δn → 0 such that δnq− kn ∈ intK for all n ∈ N.

Proposition 4.5. Let q ∈ intK. If (p, x∗,y∗) ∈M is an efficient solution of (OPSGMQVIP) andw ∈ H(p, x∗,y∗)
is a minimal point of H(M), then (p, x∗,y∗) ∈ L(w,q, δ, ε) for all δ, ε > 0.

Proof. Let (p, x∗,y∗) ∈ M be an efficient solution of (OPSGMQVIP) and w ∈ H(p, x∗,y∗) be a minimal
point of H(M). Then (x∗,y∗) ∈ Sp and H(M)∩ (w−K \ {0}) = ∅. It follows that

(x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗),

and there exists (x,y) = (x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗) such that

d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),{
0 ∈ G(p, x∗,y,u) + f(p, x∗,y) − f(p,u,y) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),
0 ∈ F(p,y∗, x, v) + g(p, x,y∗) − g(p, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗),

for any ε > 0. Moreover, it is also clear that

H(p, x∗,y∗)∩ (w−K) = {w}. (4.1)

Hence (p, x∗,y∗) ∈ D(ε). Taking into account q ∈ intK, we have −K ⊆ δq− K for any δ > 0. It follows
from (4.1) that w ∈ H(p, x∗,y∗)∩ (w−K) ⊆ H(p, x∗,y∗)∩ (w+ δq−K). This implies that

H(p, x∗,y∗)∩ (w+ δq−K) 6= ∅.

Thus, (p, x∗,y∗) ∈ A(w,q, δ) and so (p, x∗,y∗) ∈ L(w,q, δ, ε). This completes the proof.

Theorem 4.6. Let q ∈ intK and (p, x∗,y∗) ∈M be an efficient solution of (OPSGMQVIP). Then (OPSGMQVIP)
is well-posed at (p, x∗,y∗) if and only if for every w ∈ H(p, x∗,y∗) with w being a minimal point of H(M),

diam(L(w,q, δ, ε))→ 0 as (δ, ε)→ (0, 0). (4.2)

Proof. Suppose that (OPSGMQVIP) is well-posed at (p, x∗,y∗). Take any w ∈ H(p, x∗,y∗) with w being
a minimal point of H(M) and let w be fixed. If diam(L(w,q, δ, ε)) 6→ 0 as (δ, ε) → (0, 0), then there
exist a positive number r and two sequences {δn} and {εn} of positive real numbers and two sequences
{(p1
n, x1∗

n ,y1∗
n )} and {(p2

n, x2∗
n ,y2∗

n )} in P×C×D such that

(a) (δn, εn)→ (0, 0) as n→∞;
(b) for each n ∈ N, (p1

n, x1∗
n ,y1∗

n ), (p2
n, x2∗

n ,y2∗
n ) ∈ L(w,q, δn, εn) and ‖(p1

n, x1∗
n ,y1∗

n ) − (p2
n, x2∗

n ,y2∗
n )‖ > r;

(c) H(p1
n, x1∗

n ,y1∗
n )∩ (w+ δnq−K) 6= ∅ and H(p2

n, x2∗
n ,y2∗

n )∩ (w+ δnq−K) 6= ∅;
(d) (p1

n, x1∗
n ,y1∗

n ), (p2
n, x2∗

n ,y2∗
n ) ∈ D(εn).

By (a), δnq → 0 as n → ∞. Then, by (c) and (d), {(p1
n, x1∗

n ,y1∗
n )} and {(p2

n, x2∗
n ,y2∗

n )} are both approxi-
mating solution sequences for (OPSGMQVIP) corresponding to {δnq} at (p, x∗,y∗). Since (OPSGMQVIP)
is well-posed at (p, x∗,y∗), (p1

n, x1∗
n ,y1∗

n ) → (p, x∗,y∗) and (p2
n, x2∗

n ,y2∗
n ) → (p, x∗,y∗) as n → ∞. This

leads to a contradiction. Thus diam(L(w,q, δ, ε))→ 0 as (δ, ε)→ (0, 0).
Conversely, suppose that condition (4.2) holds. Let {kn} ⊆ W be any sequence with kn → 0.

If {(pn, x∗n,y∗n)} is an approximating solution sequence for (OPSGMQVIP) corresponding to {kn} at
(p, x∗,y∗), then
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(a) there exists w ∈ H(p, x∗,y∗) with w being a minimal point of H(M) such that

H(pn, x∗n,y∗n)∩ (w+ kn −K) 6= ∅, ∀n ∈ N;

(b) there exists a sequence {εn} of positive real numbers with εn → 0 such that (pn, x∗n,y∗n) ∈ D(εn) for
all n ∈ N.

By (a), for each n ∈ N, there exists wn ∈ H(pn, x∗n,y∗n) such that wn ∈ w+kn−K. Note that {kn} ⊆W
and kn → 0. By Lemma 4.4, there exists a sequence {δn} of positive real numbers with δn → 0 such that
kn ∈ δnq− intK. It follows that

wn ∈ w+ kn −K ⊆ w+ δnq− intK−K ⊆ w+ δnq− intK.

Hence wn ∈ H(pn, x∗n,y∗n)∩ (w+ δnq− intK). This together with (b) implies that

(pn, x∗n,y∗n) ∈ L(w,q, δn, εn).

Moreover, for each n ∈ N, (p, x∗,y∗) ∈ M ⊆ D(εn) and w ∈ H(p, x∗,y∗) ∩ (w + δnq − K). Hence,
(p, x∗,y∗) ∈ L(w,q, δn, εn) for every n ∈ N. Then, we have

‖(pn, x∗n,y∗n) − (p, x∗,y∗)‖ 6 diam(L(w,q, δn, εn)), ∀n ∈ N.

By the assumption, we get (pn, x∗n,y∗n) → (p, x∗,y∗) and so (OPSGMQVIP) is well-posed at (p, x∗,y∗).
This completes the proof.

Theorem 4.7. Let P,C and D be finite-dimensional. Let q ∈ intK and let (p, x∗,y∗) ∈M be an efficient solution
of (OPSGMQVIP). Assume that

(i) H is u.s.c. and compact-valued and S, T are continuous and compact-valued;
(ii) single-valued mappings f and g are continuous;

(iii) multivalued mappings G and F are closed;
(iv) for every w ∈ H(p, x∗,y∗) with w being a minimal point of H(M), there exists a nonempty and bounded set

L(w,q, ε, ε) such that for each convergent sequence {(pn, x∗n,y∗n)} ⊆ L(w,q, ε, ε),

the convergence of (xn,yn) (∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) ⇒

{
d̂(xn,S(xn,yn))→ 0,
d̄(yn, T(xn,yn))→ 0.

Then (OPSGMQVIP) is well-posed at (p, x∗,y∗) if and only if for every w ∈ H(p, x∗,y∗) with w being a minimal
point of H(M), Q(w) = {(p, x∗,y∗)}.

Proof. Suppose that (OPSGMQVIP) is well-posed at (p, x∗,y∗). Take any w ∈ H(p, x∗,y∗) with w being a
minimal point of H(M) and let w be fixed. Clearly, (p, x∗,y∗) ∈ Q(w). Moreover, if (p ′, x ′,y ′) ∈ Q(w),
then (x ′,y ′) ∈ Sp ′ , w ∈ H(p ′, x ′,y ′) and H(M)∩ (w−K \ {0}) = ∅. It follows that

(p ′, x ′,y ′) ∈M and H(p ′, x ′,y ′)∩ (w−K) = {w}.

For each n ∈ N, let kn = 0, pn = p ′, x∗n = x ′ and y∗n = y ′. Then kn → 0 and {(pn, x∗n,y∗n)}
is an approximating solution sequence for (OPSGMQVIP) corresponding to {kn} at (p, x∗,y∗). Since
(OPSGMQVIP) is well-posed at (p, x∗,y∗), (pn, x∗n,y∗n) → (p, x∗,y∗) as n → ∞. This implies that
(p ′, x ′,y ′) = (p, x∗,y∗) and so Q(w) = {(p, x∗,y∗)}.

Conversely, suppose that, for every w ∈ H(p, x∗,y∗) with w being a minimal point of H(M), Q(w) =
{(p, x∗,y∗)}. Let {kn} ⊆W be any sequence with kn → 0. If {(pn, x∗n,y∗n)} ⊆ P×C×D is an approximating
solution sequence for (OPSGMQVIP) corresponding to {kn} at (p, x∗,y∗), then
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(a) there exists w ∈ H(p, x∗,y∗) with w being a minimal point of H(M) such that

H(pn, x∗n,y∗n)∩ (w+ kn −K) 6= ∅, ∀n ∈ N;

(b) there exists a sequence {εn} of positive real numbers with εn → 0 such that (pn, x∗n,y∗n) ∈ D(εn) for
all n ∈ N.

By (a), for each n ∈ N, there exists zn ∈ H(pn, x∗n,y∗n) such that zn ∈ w+ kn −K. Note that {kn} ⊆W
and kn → 0. By Lemma 4.4, there exists a sequence {δn} of positive real numbers with δn → 0 such that
kn ∈ δnq− intK. Hence

zn ∈ w+ kn −K ⊆ w+ δnq− intK−K ⊆ w+ δnq− intK.

It follows that
zn ∈ H(pn, x∗n,y∗n)∩ (w+ δnq− intK). (4.3)

This together with (b) implies that (pn, x∗n,y∗n) ∈ L(w,q, δn, εn). Let L(w,q, ε, ε) be a nonempty and
bounded set satisfying condition (iv). Then there exists some n0 ∈ N such that

(pn, x∗n,y∗n) ∈ L(w,q, δn, εn) ⊆ L(w,q, ε, ε), ∀n > n0,

and so {(pn, x∗n,y∗n)} is bounded. Also, since for each n ∈ N, (pn, x∗n,y∗n) ∈ L(w,q, δn, εn) ⊆ D(εn), it
follows that (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n), and there exists (xn,yn) ∈ S(x∗n,y∗n)× T(x∗n,y∗n) such that

d̂(xn, x∗n) 6 d̂(xn,S(xn,yn)), d̄(yn,y∗n) 6 d̄(yn, T(xn,yn)),{
0 ∈ G(pn, x∗n,yn,u) + f(pn, x∗n,yn) − f(pn,u,yn) +B+(0, εn)ê(x∗n), ∀u ∈ S(x∗n,y∗n),
0 ∈ F(pn,y∗n, xn, v) + g(pn, xn,y∗n) − g(pn, xn, v) +B+(0, εn)ē(y∗n), ∀v ∈ T(x∗n,y∗n).

Let {(pnk , x∗nk ,y∗nk)} be any subsequence of {(pn, x∗n,y∗n)} such that (pnk , x∗nk ,y∗nk) → (p̃, x̃, ỹ) as k → ∞
for some (p̃, x̃, ỹ) ∈ P×C×D. Then, by the similar arguments to those in the second part of the proof of
Proposition 3.5, we can show that (x̃, ỹ) ∈ S(x̃, ỹ)× T(x̃, ỹ) such that{

0 ∈ G(p̃, x̃, ỹ,u) + f(p̃, x̃, ỹ) − f(p̃,u, ỹ), ∀u ∈ S(x̃, ỹ),
0 ∈ F(p̃, ỹ, x̃, v) + g(p̃, x̃, ỹ) − g(p̃, x̃, v), ∀v ∈ T(x̃, ỹ).

It follows that (x̃, ỹ) ∈ Sp̃, i.e., (p̃, x̃, ỹ) ∈ M. Moreover, by (4.3), we have znk ∈ H(pnk , x∗nk ,y∗nk) and
znk −w− δnkq ∈ −K. Since H is u.s.c. and compact-valued, we may assume that znk → z̃ ∈ H(p̃, x̃, ỹ).
Clearly δnkq → 0 as k → ∞. Then, we have z̃ − w ∈ −K, i.e., z̃ ∈ w − K. This implies that z̃ ∈
H(p̃, x̃, ỹ)∩ (w−K). Noting that w ∈ H(p, x∗,y∗) is a minimal point of H(M), we get

z̃ ∈ H(p̃, x̃, ỹ)∩ (w−K) ⊆ H(M)∩ (w−K) = {w}.

It follows that z̃ = w, and so H(p̃, x̃, ỹ)∩ (w−K) = H(M)∩ (w−K) = {w}. Hence,

w ∈ H(p̃, x̃, ỹ) and H(M)∩ (w−K \ {0}) = ∅.

This implies that (p̃, x̃, ỹ) ∈ Q(w) = {(p, x∗,y∗)}. Thus, (p̃, x̃, ỹ) = (p, x∗,y∗), and so the whole sequence
{(pn, x∗n,y∗n)} converges to (p, x∗,y∗). Therefore (OPSGMQVIP) is well-posed at (p, x∗,y∗). This com-
pletes the proof.

If we set f = 0 and g = 0, then (SGMQVIP) reduces to (SGQVIP). For each p ∈ P, by Sp we denote
the solution set of (SGQVIP). In this case, for all ε > 0 we have
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D(ε) :=

{
(p, x∗,y∗) ∈ P×C×D :(x∗,y∗) ∈ S(x∗,y∗)× T(x∗,y∗), and ∃(x,y) ∈ S(x∗,y∗)× T(x∗,y∗) s.t.

d̂(x, x∗) 6 d̂(x,S(x,y)), d̄(y,y∗) 6 d̄(y, T(x,y)),
0 ∈ G(p, x∗,y,u) +B+(0, ε)ê(x∗), ∀u ∈ S(x∗,y∗),

0 ∈ F(p,y∗, x, v) +B+(0, ε)ē(y∗), ∀v ∈ T(x∗,y∗)
}

.

Thus, by Theorems 4.6 and 4.7, we can obtain the following results of well-posedness for (OPSGQVIP).

Theorem 4.8. Let q ∈ intK and let (p, x∗,y∗) ∈M be an efficient solution of (OPSGQVIP). Then (OPSGQVIP)
is well-posed at (p, x∗,y∗) if and only if for every w ∈ H(p, x∗,y∗) with w being a minimal point of H(M),

diam(L(w,q, δ, ε))→ 0 as (δ, ε)→ (0, 0).

Theorem 4.9. Let q ∈ intK and let (p, x∗,y∗) ∈M be an efficient solution of (OPSGQVIP). Assume that

(i) P,C and D are finite-dimensional;
(ii) H is u.s.c. and compact-valued and S, T are continuous and compact-valued;

(iii) multivalued mappings G and F are closed;
(iv) for every w ∈ H(p, x∗,y∗) with w being a minimal point of H(M), there exists a nonempty and bounded set

L(w,q, ε, ε) such that for each convergent sequence {(pn, x∗n,y∗n)} ⊆ L(w,q, ε, ε),

the convergence of (xn,yn) (∈ S(x∗n,y∗n)× T(x∗n,y∗n),n ∈ N) ⇒

{
d̂(xn,S(xn,yn))→ 0,
d̄(yn, T(xn,yn))→ 0.

Then (OPSGQVIP) is well-posed at (p, x∗,y∗) if and only if for every w ∈ H(p, x∗,y∗) with w being a minimal
point of H(M), Q(w) = {(p, x∗,y∗)}.

Remark 4.10.

(a) Theorems 4.8–4.9 generalize and extend [26, Theorems 4.1–4.2] from (OPGQVIP) to (OPSGQVIP),
respectively.

(b) Compared with [26, Theorems 4.1–4.2], our Theorems 4.6–4.7 are their corresponding ones, which
show that for the well-posedness of (OPSGQVIP), the necessary condition coincides with the suffi-
cient one. But, for the well-posedness of (OPVIP), Lin and Chuang [17] gave necessary condition and
sufficient condition, respectively. It is worth mentioning that their necessary condition is different
from the sufficient one.
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