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Abstract
We deal with an inverse nodal problem for p-Laplacian Sturm-Liouville equation which includes Coulomb type potential

function under boundary condition depends on polynomial spectral parameter. Here, we get some asymptotic formulas of
eigenvalues and nodal parameters by using a suitable Prüfer substitution. Eventually, we construct Coulomb potential by using
nodal lengths. c©2017 All rights reserved.
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1. Introduction

Inverse spectral problem consists of recovering potential function and parameters in boundary condi-
tion from the given spectral and nodal characteristics. Such problems play an important role in mathemat-
ics and have many applications in natural sciences. Inverse spectral problems are divided into two parts:
inverse eigenvalue problem and inverse nodal problem. Inverse eigenvalue problem was first considered
and formulated by Ambarzumian in 1929 [1]. Ambarzumian’s findings can be viewed as first and vital
reference in the history of inverse eigenvalue problems associated with Sturm-Liouville operators. He in-
vestigated the Schrödinger operator with Neumann boundary conditions, and found that if its spectrum
consists of zero and infinitely many other square numbers, then the potential is zero. Later it became
clear that the case investigated by Ambarzumian was exceptional. In general two spectra is needed to
determine the potential. On the other hand, inverse nodal problem has been firstly studied by McLaugh-
lin in 1988 [25]. The author showed that the knowledge of a dense subset of nodal points is sufficient
to determine the potential function of Sturm-Liouville problem up to a constant. Also, some numerical
results about this problem were given in [17]. Nowadays, many authors have obtained some interesting
results about inverse nodal problems for different type operators [6, 8, 17, 19, 21–24, 26, 28, 35, 36].

Because of its importance, we have decided to give some more general results and solve an inverse
nodal problem for the Sturm-Liouville equation with Coulomb potential that we have defined in p-
Laplacian form. Therefore, we have generalized classical problem to p-Laplacian case. p-Laplacian type
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equations have been considered by many authors for different equations and conditions [5, 11, 12, 15, 18,
20, 30, 31]. But our study will be the first according to our researches. Because results in literature about
this problem in classical case will be special case of our study when p = 2.

Consider the following p-Laplacian Sturm-Liouville eigenvalue problem with Coulomb potential

−
(
y

′(p−1)
)′

= (p− 1)
(
λ−

δ

x
− qm(x)

)
y(p−1), 1 6 x 6 a, (1.1)

with boundary conditions

y(1) = 0, y′(1) = 1,

y′(a) + f(λ)y(a) = 0, (1.2)

where p > 1,

f(λ) = b1
√
λ+ b2

(√
λ
)2

+ · · ·+ bm
(√
λ
)m

, bi ∈ R, bm 6= 0, m ∈ Z+,

λ is a spectral parameter, δ,a ∈ R (a > 1) and y(p−1) = |y|(p−2) y. Throughout this study, we assume
that qm(x) are real-valued C [1,a]-functions for each m ∈ Z+ and y(x, λ) denotes the eigenfunction of
the problem (1.1) and (1.2). Equation (1.1) becomes well-known Sturm-Liouville equation with Coulomb
potential for p = 2 which has been studied by various authors (see [2–4, 9, 10, 16]).

The idea of inverse eigenvalue problems with an eigenparameter in the boundary conditions is of
great interest to many problems of mathematical physics and mechanics. These type problems have many
physical applications. For instance, Sturm-Liouville equation including spectral parameter in boundary
conditions arises in heat and one-dimensional wave equation by seperation of variables. There are many
studies on these type problems in the literature (see [7, 13, 14, 27, 29, 32, 33]).

The set Xn =
{
xnj,m

}n−1

j=1
of the eigenfunction yn,m(x) corresponding to λn,m is called the set of nodal

points, and lnj,m = xnj+1,m − xnj,m is referred to the nodal length of yn,m. yn,m(x, λm) has exactly n− 1
nodal points in (1,a) as

0 = x
(n)
0,m < x

(n)
1,m < · · · < x(n)n−1,m < x

(n)
n,m = 1.

To explain our results, we need to introduce generalized sine function Sp which is the solution of the
following initial value problem

−
(
S

′(p−1)
p

)′
= (p− 1)S(p−1)

p ,

Sp(0) = 0, S′p(0) = 1,

where Sp and S′p are periodic functions which satisfy the identity

|Sp(x)|
p +

∣∣S′p(x)∣∣p = 1

for any x ∈ R. These functions are p-analogues of classical sine and cosine functions. It is well-known
that

π̂ =
2π

p sin
(
π
p

) ,

is the first zero of Sp in positive axis (see [11]). Note that the following lemma is crucial in our results
and was given in [11].

Lemma 1.1 ([11]).

(a) For S′p 6= 0, (
S′p
)′

= −

∣∣∣∣SpS′p
∣∣∣∣p−2

Sp.



T. Gulsen, J. Nonlinear Sci. Appl., 10 (2017), 5393–5401 5395

(b) (
SpS

′(p−1)
p

)′
=
∣∣S′p∣∣p − (p− 1)Spp = 1 − p |Sp|

p = (1 − p) + p
∣∣S′p∣∣p .

Using Sp(x) and S′p(x), the generalized tangent function Tp(x) can be defined as [11]

Tp(x) =
Sp(x)

S′p(x)
, for x 6=

(
k+

1
2

)
π̂.

The remaining part of this study is organized as follows: in Section 2, we give some asymptotic formu-
las for eigenvalues and nodal parameters for p-Laplacian Sturm-Liouville eigenvalue problem (1.1) and
(1.2) by using modified Prüfer substitution. In Section 3, we give a reconstruction formula for Coulomb
potential. Finally, we give some conclusions in Section 4.

2. Asymptotics of some eigenparameters

In this section, we present some important results for problem (1.1) and (1.2). One of them is Prüfer’s
transformation which is one of the most powerful methods for solution of inverse problem. Prüfer’s
transformation for a nonzero solution of y for (1.1) takes the form

y(x) = R(x)Sp

(
λ1/p θ(x, λ)

)
,

y′(x) = δλ1/pR(x)S′p

(
λ1/p θ(x, λ)

)
, (2.1)

or
y′(x)

y(x)
= δλ1/pS

′
p

(
λ1/p θ(x, λ)

)
Sp
(
λ1/p θ(x, λ)

) ,

where R(x) is amplitude and θ(x) is Prüfer variable [34]. Standard manipulations yield

θ′(x, λ) = δ+
(
−δ+ δ1−p −

δ1−p

λ
qCm(x)

)
Spp

(
λ1/p θ(x, λ)

)
, (2.2)

where qCm(x) =
δ

x
+ qm(x).

Lemma 2.1 ([31]). Define θ(x, λ) as in (2.1) and φ(x) = Spp
(
λ1/p θ(x, λ)

)
−

1
p

. Then, for any g ∈ L1(1,a)

a∫
1

φ(x)g(x)dx = 0.

Theorem 2.2. The eigenvalues λn,m of the problem (1.1) and (1.2) have the form

λ
1/p
n,1 =

nπ̂

δ̃(a− 1)
−

δ(a− 1)
p−4

2

b1δ̃
4−p

2 (nπ̂)
p−2

2

+
δ1−p(a− 1)p−2

pδ̃2−p (nπ̂)p−1

a∫
1

qC1 (x)dx+O

(
1

np−1

)
(2.3)

for m = 1, and

λ
1/p
n,m =

nπ̂

δ̃(a− 1)
−

δ(a− 1)
mp−4

2

δ̃
4−mp

2

(
b1δ̃

mp−p
2 (nπ̂)

p−2
2 (a− 1)

mp−p
2 + · · ·+ bm (nπ̂)

mp−2
2

)
+
δ1−p(a− 1)p−2

pδ̃2−p (nπ̂)p−1

a∫
1

qCm(x)dx+O

(
1

n2p−1

) (2.4)

for m > 2 as n→∞, respectively, where δ̃ = δ
(

1 −
1
p
+

1
pδp

)
.
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Proof. Let θ(1, λ) = 0 for problem (1.1) and (1.2). Integrating both sides of (2.2) with respect to x from 1 to
a, we get

θ(a, λ) = δ(a− 1) +

a∫
1

(
−δ+ δ1−p −

δ1−p

λ
qCm(x)

)
Spp

(
λ1/p θ(x, λ)

)
dx.

By Lemma 2.1,
a∫
1

qCm(x)

{
Spp

(
λ1/p θ(x, λ)

)
−

1
p

}
dx = o(1), as n→∞.

Hence, we obtain

θ(a, λ) = δ̃(a− 1) −
δ1−p

pλ

a∫
1

qCm(x)dx+O

(
1
λ

)
. (2.5)

Let λn,m be the eigenvalues of the problem (1.1)-(1.2). For m = 1, by (1.2), we have

δλ
1/p
n,1 R(a)S

′
p

(
λ

1/p
n,1 θ(a, λn,1)

)
+ b1

√
λn,1R(a)Sp

(
λ

1/p
n,1 θ(a, λn,1)

)
= 0,

or

−
δλ

1
p−

1
2

n,1

b1
=
Sp

(
λ

1/p
n,1 θ(a, λn,1)

)
S′p

(
λ

1/p
n,1 θ(a, λn,1)

) = Tp

(
λ

1/p
n,1 θ(a, λn,1)

)
. (2.6)

For sufficiently large n, it follows from (2.6) that

λ
1/p
n,1 θ(a, λn,1) = T

−1
p

−
δλ

1
p−

1
2

n,1

b1

 = nπ̂−
δλ

1
p−

1
2

n,1

b1
+ o

(
λ

2
p−1
n,1

)
.

By considering (2.5) and (2.6) together, we get

λ
1/p
n,1 =

nπ̂

δ̃(a− 1)
−

δ(a− 1)
p−4

2

b1δ̃
4−p

2 (nπ̂)
p−2

2

+
δ1−p(a− 1)p−2

pδ̃2−p (nπ̂)p−1

a∫
1

qC1 (x)dx+O

(
1

np−1

)
.

For m > 2, by (1.2), using the same process as in m = 1, we can easily obtain the following formula

δλ
1/p
n,mR(a)S

′
p

(
λ

1/p
n,m θ(a, λn,m)

)
+
(
b1
√
λn,m + · · ·+ bm

(√
λn,m

)m)
R(a)Sp

(
λ

1/p
n,m θ(a, λn,m)

)
= 0,

or

−
δλ

1
p
n,m

b1
√
λn,m + · · ·+ bm

(√
λn,m

)m =
Sp

(
λ

1/p
n,m θ(a, λn,m)

)
S′p

(
λ

1/p
n,m θ(a, λn,m)

) = Tp

(
λ

1/p
n,m θ(a, λn,m)

)
, (2.7)

by considering (2.5) and (2.7) together, we deduce that

λ
1/p
n,m =

nπ̂

δ̃(a− 1)
−

δ(a− 1)
mp−4

2

δ̃
4−mp

2

(
b1δ̃

mp−p
2 (nπ̂)

p−2
2 (a− 1)

mp−p
2 + · · ·+ bm (nπ̂)

mp−2
2

)
+
δ1−p(a− 1)p−2

pδ̃2−p (nπ̂)p−1

a∫
1

qCm(x)dx+O

(
1

n2p−1

)
.
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Theorem 2.3. Asymptotic formula of the nodal points for problem (1.1) and (1.2) satisfies

xnj,1 = 1 +
jδ̃(a− 1)
δn

−
j δ̃p/2(a− 1)p/2

b1n
p+2

2 π̂
p
2

+
jδ̃p(a− 1)p

pδpnp+1π̂p

a∫
1

qC1 (t)dt

+

xnj,1∫
1

(
1 −

1
δp

+
δ̃p(a− 1)p

δp (nπ̂)p
qC1 (t)

)
Sppdt+O

(
j

np+1

)
,

(2.8)

and

xnj,m = 1 +
jδ̃(a− 1)
δn

−
j δ̃mp/2(a− 1)mp/2

b1n
p+2

2 π̂
p
2 (a− 1)

mp−p
2 δ̃

mp−p
2 + · · ·+ bmn

mp+2
2 π̂

mp
2

+
jδ̃p(a− 1)p

pδpnp+1π̂p

a∫
1

qCm(t)dt

+

xnj,m∫
1

(
1 −

1
δp

+
δ̃p(a− 1)p

δp (nπ̂)p
qCm(t)

)
Sppdt+O

(
j

n2p+1

) (2.9)

for m = 1 and m > 2, respectively as n→∞.

Proof. Integrating (2.2) from 1 to xnj,m and letting θ(xnj,m, λ) =
jπ̂

λ
1/p
n,m

, we have

xnj,m = 1 +
jπ̂

δλ
1/p
n,m

+

xnj,m∫
1

(
1 −

1
δp

+
1

δpλn,m
qCm(t)

)
Sppdt. (2.10)

For m = 1, from the formula (2.3), we deduce

1

λ
1/p
n,1

=
δ̃ (a− 1)
nπ̂

−
δ(a− 1)p/2δ̃p/2

b1 (nπ̂)
p+2

2

+
δ1−p(a− 1)pδ̃p

p (nπ̂)p+1

a∫
1

qC1 (x)dx+O

(
1

np+1

)
, (2.11)

and therefore we obtain formula (2.8) by using equations (2.10) and (2.11).
For m > 2, from the formula (2.4), we can easily obtain the following formula

1

λ
1/p
n,m

=
δ̃ (a− 1)
nπ̂

−
δ δ̃mp/2(a− 1)mp/2

b1 (nπ̂)
p+2

2 (a− 1)
mp−p

2 δ̃
mp−p

2 + · · ·+ bm (nπ̂)
mp+2

2

+
δ1−p(a− 1)pδ̃p

p (nπ̂)p+1

a∫
1

qCm(x)dx+O

(
1

n2p+1

)
,

(2.12)

and we get the formula (2.9) by using equations (2.10) and (2.12).

Theorem 2.4. Asymptotic formula of the nodal lengths for the problem (1.1) and (1.2) satisfies

lnj,1 =
δ̃ (a− 1)
nπ̂

−
δ̃p/2(a− 1)p/2

b1n
p+2

2 π̂
p
2

+
δ̃p(a− 1)p

pδpnp+1π̂p

a∫
1

qC1 (t)dt

+

xnj+1,1∫
xnj,1

(
1 −

1
δp

+
δ̃p(a− 1)p

δp (nπ̂)p
qC1 (t)

)
Sppdt+O

(
1

np+1

)
,

(2.13)
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and

lnj,m =
δ̃ (a− 1)
nπ̂

−
δ̃mp/2(a− 1)mp/2

b1n
p+2

2 π̂
p
2 (a− 1)

mp−p
2 δ̃

mp−p
2 + · · ·+ bmn

mp+2
2 π̂

mp
2

+
δ̃p(a− 1)p

pδpnp+1π̂p

a∫
1

qCm(t)dt

+

xnj+1,m∫
xnj,m

(
1 −

1
δp

+
δ̃p(a− 1)p

δp (nπ̂)p
qCm(t)

)
Sppdt+O

(
1

n2p+1

) (2.14)

for m = 1 and m > 2, respectively as n→∞.

Proof. For large n ∈ N, integrating (2.2) in [xnj,m, xnj+1,m] and using the definition of nodal lengths, we
have

π̂

δλ
1/p
n,m

=
(
xnj+1,m − xnj,m

)
−

1
p

xnj+1,m∫
xnj,m

(
1 −

1
δp

+
1

δpλn,m
qCm(t)

)
dt

−

xnj+1,m∫
xnj,m

(
1 −

1
δp

+
1

δpλn,m
qCm(t)

)(
Spp −

1
p

)
dt,

(2.15)

or

lnj,m =
π̂

δλ
1/p
n,m

+
1
p

xnj+1,m∫
xnj,m

(
1 −

1
δp

+
1

δpλn,m
qCm(t)

)
dt+O

(
1

λn,m

)
.

For m = 1 and m > 2, we can easily obtain (2.13) and (2.14) by using the formulas (2.11), (2.12) and (2.15),
respectively.

3. Reconstruction of the Coulomb potential function

Here, we give an explicit formula for the Coulomb potential function by using the nodal lengths. The
method used in the proof of the theorem is similar to classical problems: p-Laplacian Sturm-Liouville
eigenvalue problem and p-Laplacian energy-dependent Sturm-Liouville eigenvalue problem (see [5, 11,
12, 18, 20, 30, 31]).

Theorem 3.1. Let qCm(x) be a real-valued C [1,a]-function. Then

qCm(x) = lim
n→∞ pδp−1λn,m

(
δ̃λ

1/p
n,ml

n
j,m

π̂
− 1

)

for j = jn(x) = max
{
j : xnj,m < x

}
and m ∈ Z+.

Proof. We need to consider Theorem 2.4 for the proof. From (2.15), we have

pδpλ
1/p+1
n,m

π̂
lnj,m = pδp−1λn,m +

(δp − 1) λ
1
p+1
n,m

π̂
lnj,m +

λ
1/p
n,m

π̂

xnj+1,m∫
xnj,m

qCm(t)dt
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+
p (δp − 1) λ

1
p+1
n,m

π̂

xnj+1,m∫
xnj,m

(
Spp −

1
p

)
dt

+
pλ

1/p
n,m

π̂

xnj+1,m∫
xnj,m

qCm(t)

(
Spp −

1
p

)
dt.

Then, we can use similar procedure as those in [20] for j = jn(x) = max
{
j : xnj,m < x

}
to show that

λ
1/p
n,m

π̂

xnj+1,m∫
xnj,m

qCm(t)dt→ qCm(x),

and

p (δp − 1) λ
1
p+1
n,m

π̂

xnj+1,m∫
xnj,m

(
Spp −

1
p

)
dt→ 0,

pλ
1/p
n,m

π̂

xnj+1,m∫
xnj,m

qm(t)

(
Spp −

1
p

)
dt→ 0,

pointwise almost everywhere. Hence, we get

qCm(x) = lim
n→∞ pδp−1λn,m

(
δ̃λ

1/p
n,ml

n
j,m

π̂
− 1

)
.

Theorem 3.2. Let
{
lnj,m : j = 1, 2, · · · ,n− 1

}∞
n=2

be a set of nodal lengths of problem (1.1) and (1.2) where qCm is
a real-valued C [1,a]-function. Let us define

Fn,1(x) =
pδp−1 (nπ̂)p

δ̃p(a− 1)p

(
nlnj,1

a− 1
− 1
)
−

pδp (nπ̂)p/2

b1δ̃
p
2 +1

(a− 1)
p
2 +1

+
1

δ̃(a− 1)

a∫
1

qC1 (t)dt,

and

Fn,m(x) =
pδp−1 (nπ̂)p

δ̃p(a− 1)p

(
nlnj,m

a− 1
− 1
)
−

pδp(a− 1)
mp−2p−2

2 (nπ̂)p/2

δ̃
mp−2p−2

2

[
b1(a− 1)

mp−p
2 + · · ·+ bm (nπ̂)

mp−p
2

]
+

1
δ̃(a− 1)

a∫
1

qCm(t)dt

for m = 1 and m > 2, respectively. Then, {Fn,m(x)} converges to qm pointwise almost everywhere in L1(1,a), for
all cases.

Proof. For m = 1, by the asymptotic formula of eigenvalues (2.3) and nodal lengths (2.13), we get

pδp−1λn,1

(
δ̃λ

1/p
n,1 l

n
j,1

π̂
− 1

)
= pδp−1λn,1

(
nlnj,1

a− 1
− 1
)
−

pδpn
p+2

2 π̂
p
2

b1δ̃
p
2 +1

(a− 1)
p
2 +1

lnj,1

+
nlnj,1

δ̃(a− 1)2

a∫
1

qC1 (t)dt+ o(1).
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Considering nlnj,1 = (a− 1) + o(1), as n→∞ , we have

pδp−1 (nπ̂)p

δ̃p(a− 1)p

(
nlnj,1

a− 1
− 1
)
−

pδp (nπ̂)p/2

b1δ̃
p
2 +1(a− 1)

p
2 +1
→ qC1 (x) −

1
δ̃(a− 1)

a∫
1

qC1 (t)dt,

pointwise convergence almost everywhere in L1(1,a).
Similarly, form > 2, by the asymptotic formula of eigenvalues (2.4) and nodal lengths (2.14), we obtain

pδp−1λn,m

(
δ̃λ

1/p
n,ml

n
j,m

π̂
− 1

)
= pδp−1λn,m

(
nlnj,m

a− 1
− 1
)

−
pδp(a− 1)

mp−2p−4
2 n

p+2
2 π̂

p
2

δ̃
mp−2p−2

2

[
b1(a− 1)

mp−p
2 + · · ·+ bmn

mp−p
2 π̂

mp
2

]lnj,m
+

nlnj,m

δ̃(a− 1)2

a∫
1

qCm(t)dt+ o(1).

Considering nlnj,m = (a− 1) + o(1), as n→∞ , we have

pδp−1 (nπ̂)p

δ̃p(a− 1)p

(
nlnj,m

a− 1
− 1
)
−

pδp(a− 1)
mp−2p−2

2 (nπ̂)p/2

δ̃
mp−2p−2

2

[
b1(a− 1)

mp−p
2 + · · ·+ bm (nπ̂)

mp−p
2
] → qCm(x) −

1
δ̃(a− 1)

a∫
1

qCm(t)dt,

pointwise convergence almost everywhere in L1(1,a).

4. Conclusion

Generalization of a given problem is an important issue in mathematics. We extend classical Sturm-
Liouville eigenvalue problem with Coulomb potential from two perspectives. Firstly, we define p-
Laplacian form of Sturm-Liouville equation. On the other hand, we modificate the boundary condition
by putting a more general polynomially spectral parameter. In this way, we get more general results for
eigenvalues, nodal parameters and Coulomb potential function of the problem (1.1) and (1.2).
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