
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 5433–5444

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Strong convergence theorems for the general split common fixed point
problem in Hilbert spaces

Rudong Chena,∗, Tao Suna, Huimin Heb, Jen-Chih Yaoc

aDepartment of Mathematics, Tian jin Polytechnic University, Tian jin 300387, China.
bSchool of Mathematics and Statistics, Xidian University, Xi’an 710071, China.
cCenter for General Education, China Medical University, Taichung 40402, Taiwan, ROC.

Communicated by X. Qin

Abstract
In this paper, we propose and investigate a new iterative algorithm for solving the general split common fixed point problem

in the setting of infinite-dimensional Hilbert spaces. We also prove the sequence generated by the proposed algorithm converge
strongly to a common solution of the general split common fixed point problem. As application, some particular cases of directed
operator and quasi-nonexpansive operator are also considered. Finally, we present several numerical results for general split
common fixed point problem to demonstrate the efficiency of the proposed algorithm. c©2017 All rights reserved.

Keywords: General split common fixed point problem, demicontractive operator, quasi-nonexpansive operator, directed
operator.
2010 MSC: 47J25, 47H09, 65J25.

1. Introduction

The split feasibility problem was first introduced in 1994 by Censor and Elfving [4]. Let H1 and H2
be real Hilbert spaces, C and Q be two nonempty closed convex sets of H2 and H2, respectively. Let
A : H1 7−→ H2 be a bounded linear operator. The split feasibility problem SFP is formulated as to find a
point x ∈ C such that

x ∈ C and Ax ∈ Q.

Throughout this paper, we use S to denote the solution set of the SFP, that is

S = { x ∈ H1 | x ∈ C,Ax ∈ Q}.

As we know, the SFP has received much attention due to its application in intensity-modulated radia-
tion therapy, signal processing, and image reconstruction, for instance [2, 3, 5, 6, 8, 9, 11, 12, 14, 16, 17].
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To solve the SFP, an algorithm called the CQ-algorithm was proposed by Byrne [1, 2]as the following:

xn+1 = PC(xn − ρA∗(I− PQ)Axn), n > 0,

where 0 < ρ < 2/‖A‖2 and PQ denotes the nearest point projection from H2 onto Q. The sequence
generated by CQ-algorithm converges to a solution of the SFP for any starting point x0 ∈ H1, whenever the
SFP has a solution. However, when the split feasibility problem has no solution, the sequence generated
by CQ-algorithm converges to a minimizer of ‖PQ(Az) −Az‖ over all z ∈ C, whenever such a minimizer
exists.

Split common fixed point problem is a generalization of the split feasibility problem, which is an
inverse problem that consists of finding an element in a fixed point set of some operator, whose image
under a bounded linear operator is an element of another fixed point set of operator. Split common fixed
point problem SCFP is finding a point x ∈ H1, with the property:

x ∈ Fix(U) such that Ax ∈ Fix(T), (1.1)

where Fix(U) and Fix(T ) denote the fixed point sets of nonlinear operators U : H1 7−→ H1 and T : H2 7−→
H2, respectively. A is a bounded linear operator. This problem was introduced by Censor and Segal [6],
who proposed the following algorithm for solving such a problem. For given x0 ∈ H1, then iterative
sequence {xn} is generated as follows:

xn+1 = U(I− ρA∗(I− T)A)xn, n > 0,

where U and T are two directed operators. This algorithm was extended to the case of finitely many
directed operators by Wang and Xu [14], quasi-nonexpansive operators by Moudafi [12],and demicon-
tractive mappings by Moudafi [11]. Recently, Cui and Wang [9] proposed the following iterative method
to solve the problem (1.1). For given x0 ∈ H1 and λ ∈ (0, 1 − τ), the iterative sequence {xn} is generated as
follows:

xn+1 = Uλ(xn − ρnA
∗(I− T)Axn), n > 0, (1.2)

where H1,H2 are two real Hilbert spaces, U : H1 → H1 is a k-demicontractive operator with k < 1, and
T : H2 → H2 is a τ-demicontractive operator with τ < 1. Denote Uλ := (1 − λ)I+ λU a λ relaxation of the
operator U. A is a bounded linear operator with adjoint A∗ and the step size ρn is chosen in such a way
that {

ρn =
(1−τ)‖(I−T)Axn‖2

2‖A∗(I−T)Axn‖2 , Axn 6= T(Axn),
ρn = 0, otherwise.

and they proved the sequence converges weakly to a solution of the SCFP.
Motivated and inspired by Cui and Wang’s work [9], we consider the general split common fixed

point problem GSCFP and construct an algorithm for demicontractive operators that produces sequences
that always converge strongly to a solution of GSCFP and whose step size does not depend on the norm
of the operator A. The constructed algorithm is Halpern type [10]. We also consider particular cases such
as directed operators and quasi-nonexpansive mappings.

Find x ∈
∞⋂
i=1

Fix(Ui) such that Ax ∈
∞⋂
i=1

Fix(Ti), (1.3)

where H1,H2 are real Hilbert spaces, Ui : H1 7−→ H1 is a ki-demicontractive operator with ki < 1,
Ti : H2 7−→ H2 is a τi-demicontractive operator with τi < 1, i = 1, 2, . . . ,∞. A : H1 7−→ H2 is a bounded
linear operator.
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In this paper, we will introduce a more general iterative method for GSCFP (1.3) and fixed point
problem, which is defined in the following way:

xn+1 = αnv+βnxn +

∞∑
i=1

γn,iU
i
λi
(xn − ρn,iA

∗(I− Ti)Axn), n > 0, (1.4)

where αn,βn,γn,i ∈ (0, 1), v ∈ H1 and αn + βn +
∑∞
i=1 γn,i = 1; Uiλi := (1 − λi)I+ λiU

i. Note that, if
i = 1,αn = βn = 0,γn = 1, scheme (1.4) can be reduced to (1.2).

Meanwhile, we will prove the sequence generated by (1.4) converges strongly to a common element
of the solution set of the GSCFP, and what is more important is that when v = 0, the {xn} generated by
(1.4) converges strongly to the minimum norm solution of the GSCFP. As application, particular cases
of directed operator and quasi-nonexpansive operator are also considered. Finally, we present several
numerical results for the general split common fixed point problem to demonstrate the efficiency of the
proposed algorithm.

2. Preliminaries

We first recall some definitions, notations and conclusions which will be used in the proof of our main
results. Let H be a real Hilbert space with inner product 〈·, ·〉 and the norm ‖ · ‖. We denote by “ → ”
strong convergence, by ⇀ weak convergence. In order to establish our convergence theorem, we need the
following definition.

Definition 2.1.

(1) A mapping T : H 7−→ H is nonexpansive if

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ H.

(2) A mapping PC is called the metric (nearest point) projection of H onto C, if PCx is the unique point
in C with the property

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}, ∀x ∈ H.

It is well-known that PC is nonexpansive mapping of H onto C and it is characterized as follows:
given x ∈ H, there holds the inequality

〈x− PCx,y− PCx〉 6 0, ∀y ∈ C. (2.1)

Note that (2.1) is equivalent to

‖PCx− y‖2 6 ‖x− y‖2 − ‖x− PCx‖2.

(3) A mapping T : H 7−→ H is said to be quasi-nonexpansive if the fixed point of T , given by Fix(T ):={x ∈
H|Tx = x}, is not empty and for all z ∈ Fix(T ), x ∈ H

‖Tx− z‖ 6 ‖x− z‖.

(4) (Demiclosedness-principle) Let C be a nonempty closed convex subset of H, and let T : C 7−→ C be a
non-expansive mapping with Fix(T ) 6= ∅. Then I− T is said to be demiclosed at zero, that is, if for any
sequence {xn} ⊂ C with xn ⇀ x ∈ C and ‖xn − Txn‖ → 0, then x = Tx.

(5) Let T : H→ H be an operator with Fix(T ) 6= φ. Then, for all z ∈ Fix(T ) and x ∈ H, T is
1. τ-demicontractive with τ < 1 if

‖Tx− z‖2 6 ‖x− z‖2 + τ‖x− Tx‖2, ∀z ∈ Fix(T). (2.2)

It is easy to verify that (2.2) is equivalent to

〈z− x, x− Tx〉 6 τ− 1
2
‖x− Tx‖2, x ∈ H.
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2. If τ = 0, then the inequality (2.2) becomes

‖Tx− z‖ 6 ‖x− z‖, ∀z ∈ Fix(T).

In the case T is a quasi-nonexpansive operator.
3. If τ = −1, then the inequality (2.2) becomes

‖Tx− z‖2 6 ‖x− z‖2 + (−1)‖x− Tx‖2, ∀z ∈ Fix(T). (2.3)

In the case T is a directed operator, it is easy to verify that (2.3) is equivalent to

〈z− Tx, x− Tx〉 6 0, ∀z ∈ Fix(T).

Proposition 2.2 ([7]). In Hilbert spaces, the following inequality holds,

‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉, ∀x,y ∈ H. (2.4)

Proposition 2.3 ([13]). Let H be a real Hilbert space, and {xn} be a sequence in H. Then, for any given sequence
{αn} of positive numbers with

∑∞
n=1 αn = 1 for any positive integers i, j with i < j the following holds:

‖
∞∑
n=1

αnxn‖2 6
∞∑
n=1

αn‖xn‖2 −αiαj‖xi − xj‖2. (2.5)

Lemma 2.4 ([9]). Let A : H1 7−→ H2 be a bounded linear operator and T : H2 7−→ H2 be a τ-demicontractive
operator with τ < 1. If A−1(Fix(T)) 6= ∅, then:

(1) (I− T)Ax = 0⇔ A∗(I− T)Ax = 0, ∀x ∈ H;

(2) in addition, for z ∈ A−1(Fix(T))

‖x− ρA∗(I− T)Ax− z‖2 6 ‖x− z‖2 −
(1 − τ)2

4
‖(I− T)Ax‖4

‖A∗(I− T)Ax‖2 , (2.6)

where x ∈ H,Ax 6= Tx and

ρ :=
(1 − τ)

2
‖(I− T)Ax‖2

‖A∗(I− T)Ax‖2 .

Lemma 2.5 ([9]). Let U : H 7−→ H be a k-demicontractive operator with k < 1. Denote Uλ := (1 − λ)I+ λU a λ
relaxation of the operator U, where λ ∈ (0, 1 − k). Then for all x ∈ H and z ∈Fix(U)

‖Uλx− z‖2 6 ‖x− z‖2 − λ(1 − k− λ)‖x−Ux‖2. (2.7)

Clearly, z ∈ Fix(U) if and only if z ∈ Fix(Uλ).

Lemma 2.6 ([15]). Assume {an} is a sequence of non-negative real numbers satisfying:

an+1 6 (1 −αn)an +αnbn + cn, n > 0,

where {αn}, {bn}, {cn} satisfy the following conditions:

(i) αn ∈ [0, 1], with
∑∞
n=0 αn =∞;

(ii) cn > 0 for all n > 0 with
∑∞
n=0 cn 6∞;

(iii) lim supn→∞ bn 6 0.

Then, limn→∞ an = 0.
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Lemma 2.7 ([10]). Let {Sn} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence {Snj}j>0 of {Sn} such that

{Snj} < {Snj+1} for all j > 0.

Also consider the sequence of the integers {η(n)}n>n0 defined by

η(n) = max{k 6 n|Sk < Sk+1}.

Then {η(n)}n>n0 is a nondecreasing sequence verifying limn→∞ η(n) =∞, and for all n > n0, the following two
estimates hold:

Sη(n) 6 Sη(n)+1, Sn 6 Sη(n)+1.

3. Strong convergence theorems for GSCFP

Throughout this section, we propose an iterative method for solving the GSCFP and prove the theo-
retical convergence.

We denote Γ the solutions of set the GSCFP (1.3).

Γ =

{
x∗ ∈

∞⋂
i=1

Fix(Ui),Ax∗ ∈
∞⋂
i=1

Fix(Ti)

}
. (3.1)

Proposition 3.1. Denote tn = xn − ρn,iA
∗(I− Ti)Axn, if ρn,i 6= 0, and take an x̂ ∈ Γ , arbitrarily. We derive

from (2.6) and (2.7)

‖Uiλitn − x̂‖2 6 ‖tn − x̂‖2 − λi(1 − λi − κi)‖tn −Uitn‖2

= ‖xn − ρn,iA
∗(I− Ti)Axn − x̂‖2 − λi(1 − λi − κi)‖tn −Uitn‖2

6 ‖xn − x̂‖2 −
(1 − τi)

2

4
‖(I− Ti)Ax‖4

‖A∗(I− Ti)Ax‖2 − λi(1 − λi − κi)‖tn −Uitn‖2 6 ‖xn − x̂‖2.

(3.2)

On the other hand, in the case ρn,i = 0, then tn = xn, we derive from (2.7)

‖Uiλixn − x̂‖2 6 ‖xn − x̂‖2 − λi(1 − λi − κi)‖xn −Uixn‖2 6 ‖xn − x̂‖2. (3.3)

Next we prove the strong convergence of the sequence generated by the iterative method (1.4). Denote
PΓv is the metric (nearest point) projection of v onto Γ .

Theorem 3.2. Let H1, H2, A, A∗, Ui, Ti be the same as above, and assume that the solution set Γ is nonempty. If
the sequences {αn}, {βn}, {γn,i} satisfy the following conditions:

(i) αn,βn,γn,i ∈ (0, 1);

(ii) αn +βn +
∑∞
i=1 γn,i = 1;

(iii) limn→∞ αn = 0 and
∑∞
n=0 αn =∞,

then the sequence {xn} converges generated by iterative method (1.4) strongly to a point x∗, where x∗ is the nearest
to v, that is x∗ = PΓv.

Proof. We divide the proof into three steps.

Step 1. We prove that the following inequality holds:

‖xn+1 − x
∗‖2 6 (1 −αn)‖xn − x∗‖2 + 2αn〈v− x∗, xn+1 − x

∗〉. (3.4)
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For the case ρn,i 6= 0, from (2.4), (2.5), and (3.3), we have

‖xn+1 − x
∗‖2 6 ‖βn(xn − x∗) +

∞∑
i=1

γn,i(U
i
λi
tn − x∗)‖2 + 2αn〈v− x∗, xn+1 − x

∗〉

6 βn‖xn − x̂‖2 +

∞∑
i=1

γn,i‖Uiλitn − x∗‖2 + 2αn〈v− x∗, xn+1 − x
∗〉

6 βn‖xn − x∗‖2 +

∞∑
i=1

γn,i[‖xn − x∗‖2 −
(1 − τ)2

4
‖(I− Ti)Ax‖4

‖A∗(I− Ti)Ax‖2 ]

−

∞∑
i=1

γn,iλi(1 − λi − κi)‖tn −Uitn‖2 + 2αn〈v− x∗, xn+1 − x
∗〉

6 βn‖xn − x∗‖2 +

∞∑
i=1

γn,i‖xn − x̂‖2 + 2αn〈v− x∗, xn+1 − x
∗〉

= (1 −αn)‖xn − x∗‖2 + 2αn〈v− x∗, xn+1 − x
∗〉.

(3.5)

For the case ρn,i = 0, from (2.4), (2.5), and (3.2), we have

‖xn+1 − x
∗‖2 6 ‖βn(xn − x∗) +

∞∑
i=1

γn,i(U
i
λi
xn − x∗)‖2 + 2αn〈v− x∗, xn+1 − x

∗〉

6 βn‖xn − x∗‖2 +

∞∑
i=1

γn,i‖Uiλixn − x∗‖2 + 2αn〈v− x∗, xn+1 − x
∗〉

6 βn‖xn − x∗‖2 +

∞∑
i=1

γn,i[‖xn − x∗‖2 − λi(1 − λi − κi)‖xn −Uixn‖2]

+ 2αn〈v− x∗, xn+1 − x
∗〉

6 βn‖xn − x∗‖2 +

∞∑
i=1

γn,i‖xn − x∗‖2 + 2αn〈v− x∗, xn+1 − x
∗〉

= (1 −αn)‖xn − x∗‖2 + 2αn〈v− x∗, xn+1 − x
∗〉.

(3.6)

Therefore, the inequality (3.4) is proved.

Step 2. We show that the sequence {xn} is bounded, and take an x̂ ∈ Γ , arbitrarily.
We will prove that the following inequality holds:

‖xn − x̂‖2 6 max{‖v− x̂‖2, ‖x0 − x̂‖2}. (3.7)

If ρn,i 6= 0, from (3.1), (2.5), and (3.2), we get

‖xn+1 − x̂‖2 = ‖αn(v− x̂) +βn(xn − x̂) +

∞∑
i=1

γn,i(U
i
λi
tn − x̂)‖2

6 αn‖v− x̂‖2 +βn‖xn − x̂‖2 +

∞∑
i=1

γn,i‖Uiλitn − x̂‖2

6 αn‖v− x̂‖2 +βn‖xn − x̂‖2 +

∞∑
i=1

γn,i‖xn − x̂‖2

= αn‖v− x̂‖2 + (1 −αn)‖xn − x̂‖2

6 max{‖v− x̂‖2, ‖xn − x̂‖2}
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...

6 max{‖v− x̂‖2, ‖x0 − x̂‖2}.

For the case ρn,i = 0, we have tn = xn and by (3.1), (2.5), and (3.3), we get

‖xn+1 − x̂‖2 = ‖αn(v− x̂) +βn(xn − x̂) +

∞∑
i=1

γn,i(U
i
λi
xn − x̂)‖2

6 αn‖v− x̂‖2 +βn‖xn − x̂‖2 +

∞∑
i=1

γn,i‖Uiλixn − x̂‖2

6 αn‖v− x̂‖2 +βn‖xn − x̂‖2 +

∞∑
i=1

γn,i‖xn − x̂‖2

= αn‖v− x̂‖2 + (1 −αn)‖xn − x̂‖2

6 max{‖v− x̂‖2, ‖xn − x̂‖2}

...

6 max{‖v− x̂‖2, ‖x0 − x̂‖2}.

Therefore, the inequality (3.7) is proved and this implies that the sequence {xn} is bounded.

Step 3. Let yn := ‖xn − x∗‖2 and we prove {yn} converges strongly to zero by considering two cases on
the sequence {yn}.

Case 1: Suppose that {yn} is a monotone sequence, since {xn} is bounded, it follows that {yn} is conver-
gent. For the case ρn,i 6= 0, let un,i = γn,iλi(1− λi − κi)‖tn −Uitn‖2 +

(1−τ)2

4
‖(I−Ti)Axn‖4

‖A∗(I−Ti)Axn‖2 , by (3.5) and
the boundedness of the sequence {xn}, there exists a constant L1 > 0, such that

∞∑
i=1

γn,iun,i 6 (yn − yn+1) + 2αn〈v− x∗, xn+1 − x
∗〉

6 (yn − yn+1) + 2αn‖v− x∗‖ ‖xn+1 − x
∗‖

6 (yn − yn+1) +αnL1.

Take on both sides of the inequality limits and by the fact that {yn} is convergent, we get

lim
n→∞un,i = 0.

In other words,

lim
n→∞ ‖tn −Uitn‖2 = lim

n→∞ (1 − τ)2

4
‖(I− Ti)Axn‖4

‖A∗(I− Ti)Axn‖2 = 0. (3.8)

If ρn,i = 0, then, clearly (I− Ti)Axn = 0 and it follows from (3.6) and the boundedness of the sequence
{xn}, there exists a constant L1 > 0 such that

∞∑
i=1

γn,iλi(1 − λi − κi)‖xn −Uixn‖2 6 (yn − yn+1) + 2αn〈v− x∗, xn+1 − x
∗〉

6 (yn − yn+1) + 2αn‖v− x∗‖ ‖xn+1 − x
∗‖

6 (yn − yn+1) +αnL1.
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Take on both sides of the inequality limits and by the fact that {yn} is convergent, we arrive at

lim
n→∞ ‖xn −Uixn‖2 = 0. (3.9)

By (3.8) and (3.9), we get

lim
n→∞ ‖xn −Uixn‖2 = lim

n→∞ ‖tn −Uitn‖2 = lim
n→∞ (1 − τ)2

4
‖(I− Ti)Axn‖4

‖A∗(I− Ti)Axn‖2 = 0. (3.10)

Now suppose {xnk} is a subsequence of {xn} that converges weakly to z such that

lim sup
n→∞ 〈v− x∗, xn − x∗〉 = lim

k→∞〈v− x∗, xnk − x∗〉 = 〈v− x∗, z− x∗〉. (3.11)

For ρn,i 6= 0, we have from the definitions of tn and ρn,i that

‖tn − xn‖ = ρn,i‖A ∗ (I− Ti)Axn‖ =
1 − τi

2
‖(I− Ti)Axn‖2

‖A ∗ (I− Ti)Axn‖
.

Moreover,
1
‖A‖
‖(I− Ti)Axn‖ =

‖(I− Ti)Axn‖2

‖A‖ ‖(I− Ti)Axn‖
6
‖(I− Ti)Axn‖2

‖A∗(I− Ti)Axn‖
.

Then from (3.10), we derive that

lim
n→∞ ‖tn − xn‖ = lim

n→∞ ‖(I− Ti)Axn‖ = 0. (3.12)

Because {xnk} converges weakly to z, it implies that {tnk} converges weakly to z as well. Then from (3.10)
and the demiclosedness of I−Ui at zero, we obtain that z ∈ Fix(Ui). Moreover, from Axnk ⇀ Az as
k→∞ and (3.10) that the demiclosedness of I− Ti at zero, we obtain that Az ∈ Fix(Ti). So, z ∈ Γ .

Next we derive that z ∈ Γ for ρn,i = 0, it follows from xnk → z as k → ∞, lim
k→∞ ‖xnk −Uixnk‖ = 0,

that the demiclosedness of I−Ui at zero, we obtain z ∈ Fix(Ui). Moreover, from continuity of A, we have
Axnk ⇀ Az as k→∞. By lim

k→∞ ‖Axnk − TiAxnk‖ = 0 and the demiclosedness of I− Ti at zero, we obtain

that Az ∈ Fix(Ti). So, z ∈ Γ . Since z ∈ Γ , by (3.11) and (2.1), we have

lim sup
n→∞ 〈v− x∗, xn − x∗〉 = 〈v− x∗, z− x∗〉 6 0.

From the definition of Uλ, we have Uλix− x = λi(U
ix− x), for all x ∈ H, it follows that for ρn,i 6= 0

‖xn+1 − xn‖ 6 αn‖v− xn‖+
∞∑
i=1

γn,i‖Uiλitn − xn‖

= αn‖v− xn‖+
∞∑
i=1

γn,i‖Uiλitn − tn + tn − xn‖

6 αn‖v− xn‖+ ‖Uiλitn − tn‖+ ‖tn − xn‖
6 αn‖v− xn‖+ λi‖Uitn − tn‖+ ‖tn − xn‖.

Together with (3.10) and (3.12), which implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

By (3.11), we get

lim sup
n→∞ 〈v− x∗, xn+1 − x

∗〉 6 0. (3.13)
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Note that for ρn,i = 0, we have tn = xn and

‖xn+1 − xn‖ 6 αn‖v− xn‖+
∞∑
i=1

γn,i‖Uiλixn − xn‖

6 αn‖v− xn‖+ ‖Uiλixn − xn‖

= αn‖v− xn‖+ λi‖Uixn − xn‖.

Take on both sides of the inequality limits and by (3.10), we get

lim
n→∞ ‖xn+1 − xn‖ = 0.

Therefore, by (3.11) we again derive (3.13).
Take bn = 〈v − x∗, xn+1 − x

∗〉, then lim supn→∞ bn 6 0, from Lemma 2.6 and (3.4). Therefore,
lim
n→∞yn = lim

n→∞ ‖xn − x∗‖ = 0, xn → x∗ as n→∞.

Case 2: If {‖xn− x∗‖} is not a monotone sequence, we consider the sequence of the integers {η(n)} defined
by

η(n) = max{k 6 n : ‖xk − x∗‖ 6 ‖xk+1 − x
∗‖}.

It is easy to see that {η(n)} is nondecreasing and when n→∞ we get η(n)→∞. For all n > 0, we obtain
‖xη(n) − x∗‖ < ‖xη(n)+1 − x

∗‖. Then {‖xη(n) − x∗‖} is a monotone sequence and according to Case 1, we
have lim

n→∞ ‖xη(n) − x∗‖ = 0 and lim
n→∞ ‖xη(n)+1 − x

∗‖ = 0. Finally, from Lemma 2.7, we have

0 6 ‖xn − x∗‖ 6 max{‖xn − x∗‖, ‖xη(n) − x∗‖} 6 ‖xη(n)+1 − x
∗‖ → 0, n→∞.

Therefore, the sequence {xn} converges strongly to x∗. This completes the proof of the theorem.

4. Application: some special cases of GSCFP

In this section, we consider general split common fixed point problem for some special cases of k-
demicontractive operator (k < 1). In (1.3),

• Ui is a quasi-nonexpansive operator, if ki = 0;

• Ui is a directed operator, if ki = −1;

• Ti is a quasi-nonexpansive operator, if τi = 0;

• Ti is a directed operator, if τi = −1;

• both I−Ui and I− Ti are demiclosed at zero.

Let in following Ui, Ti be the same as above assumptions.

Algorithm 4.1. Choose initial point x0 ∈ H1 arbitrarily, and let λi ∈ (0, 1 − ki), the iterative sequence {xn}

is generated as follows:

xn+1 = αnv+βnxn +

∞∑
i=1

γn,iU
i
λi
(xn − ρn,iA

∗(I− Ti)Axn), n > 0,

where A is a bounded linear operator with adjoint A∗ and the step size ρn is chosen in such a way that{
ρn,i =

(1−τi)‖(I−Ti)Axn‖2

2‖A∗(I−Ti)Axn‖2 , Axn 6= Ti(Axn),
ρn,i = 0, otherwise.

We denote Γ that is the set of all solutions of problem GSCFP (1.3).

Γ = {x∗ ∈ Fix(Ui) : Ax∗ ∈ Fix(Ti)}.
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Proposition 4.2. Denote tn = xn − ρn,iA
∗(I− Ti)Axn, for ρn,i 6= 0, and take an x̂ ∈ Γ , arbitrarily. We derive

from (2.6) and (2.7),

‖Uiλitn − x̂‖2 6 ‖tn − x̂‖2 − λi(1 − λi − κi)‖tn −Uitn‖2

= ‖xn − ρn,iA
∗(I− Ti)Axn − x̂‖2 − λi(1 − λi − κi)‖tn −Uitn‖2

6 ‖xn − x̂‖2 −
(1 − τi)

2

4
‖(I− Ti)Ax‖4

‖A∗(I− Ti)Ax‖2 − λi(1 − λi − κi)‖tn −Uitn‖2

6 ‖xn − x̂‖2.

On the other hand, in the case ρn,i = 0, then tn = xn. We derive from (2.7)

‖Uiλixn − x̂‖2 6 ‖xn − x̂‖2 − λi(1 − λi − κi)‖xn −Uixn‖2 6 ‖xn − x̂‖2.

Corollary 4.3. Let H1, H2, A, A∗, Ui, Ti, tn be the same as above, and assume that the solution set Γ is nonempty.
If the sequences {αn}, {βn}, {γn,i} satisfy the following conditions:

(i) αn,βn,γn,i ∈ (0, 1);
(ii) αn +βn +

∑∞
i=1 γn,i = 1;

(iii) limn→∞ αn = 0 and
∑∞
n=0 αn =∞,

then the sequence {xn} generated by Algorithm 4.1 converges strongly to a point x∗ ∈ Γ , where x∗ is the nearest to
v, that is x∗ = PΓv.

5. Numerical results for SCFP

In this section, we give an example and several numerical results to illustrate the efficiency of our
algorithm.

Example 5.1. Let H1 = H2 = R2, i = 1, 2, then the iterative method (1.4) becomes

xn+1 = αnv+βnxn + [γn,1U
1
λ1
(xn − ρn,1A

∗(I− T1)Axn) + γn,2U
2
λ2
(xn − ρn,2A

∗(I− T2)Axn)],n > 0.

We define the mappings U1
λ1

,U2
λ2

: H1 7−→ H1, T1, T2 : H2 7−→ H2, and A : H1 7−→ H2 by

U1
λ1

=

[
0.3 3
0 1

]
, U2

λ2
=

[
1 0.2
1 0.7

]
, T1 =

[
2 3
−1 1.4

]
, T2 =

[
−0.1 0.8
−0.6 2

]
,

and

A =

[
2 3
1 −2

]
,

where U1
λ1

= (1 − λ1)I+ λ1U
1, U2

λ2
= (1 − λ2)I+ λ2U

2, λ1 ∈ (0, 1 − k1), λ2 ∈ (0, 1 − k2). We have x∗ = {0, 0},
which satisfies x∗ ∈

⋂2
i=1 Fix(Ui),Ax∗ ∈

⋂2
i=1 Fix(Ti).

Let αn = 0.5,βn = 0.3,γn,1 = 0.1,γn,2 = 0.2, then αn+βn+
∑2
i=1 γn,i = 1, ρn,1 = 0.3, ρn,2 = 0.5. Take

v = {0.1, 0.1} and these parameters satisfy all conditions of Theorem 3.2. Then we present the following
algorithm.

Algorithm 5.2. For the case ρn,i = 0:

Step 0: Choose initial point x1 ∈ {(0, 1× 105), (0, 1× 105)} arbitrarily and put n = 0.

Step 1: Compute xn+1 as follows,

xn+1 = αnv+βnxn + γn,1U
1
λ1
xn + γn,2U

2
λ2
xn, n > 0.
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Step 2: Set ‖xn‖ 6 ε as stop criterion, else set n = n+ 1 and go to Step 1.
On the other hand, for the case ρn,i 6= 0:

Step 0: Choose initial point x1 ∈ {(0, 1× 105), (0, 1× 105)} arbitrarily and put n = 0.

Step 1: Compute xn+1 as follows.

xn+1 = αnv+βnxn + γn,1U
1
λ1
(xn − ρn,1A

∗(I− T1)Axn) + γn,2U
2
λ2
(xn − ρn,2A

∗(I− T2)Axn), n > 0.

Step 2: Set ‖xn‖ 6 ε as stop criterion, else set n = n+ 1 and go to Step 1.

Table 1: ρn,i = 0, ε = 10−6.
Initial point xn+1 Iter. Time

0.01 {1.02139 ∗ 10−6, 6.50878 ∗ 10−7} 16 0.01
0.1 {1.11002 ∗ 10−6, 6.94472 ∗ 10−7} 20 0.01
1 {6.88956 ∗ 10−7, 4.25804 ∗ 10−7} 25 0.01

10 {7.43616 ∗ 10−7, 4.57234 ∗ 10−7} 29 0.01
100 {8.01605 ∗ 10−7, 4.91456 ∗ 10−7} 33 0.02

For ρn,i = 0, Table 1 presents the number of iterative step, xn+1, and CPU time of Algorithm 5.2 with
different initial points.

Table 2: ρn,i = 0, ε = 10−6.
Initial point xn+1 Iter. Time

0.01 {4.80227 ∗ 10−7, 3.59497 ∗ 10−7} 23 0.01
0.1 {−9.16139 ∗ 10−7, 8.02908 ∗ 10−8} 24 0.01
1 {4.45887 ∗ 10−7, 5.15753 ∗ 10−7} 27 0.01
10 {8.28239 ∗ 10−7, 4.00402 ∗ 10−7} 31 0.01
100 {5.73443 ∗ 10−7, 4.45479 ∗ 10−7} 36 0.02

For ρn,i 6= 0, Table 2 presents the number of iterative step, xn+1, and CPU time of Algorithm 5.2 with
different initial points.

6. Conclusions

The general split common fixed point problem arise in many practical applications in the real world.
Many iterative algorithms have been developed to solve them. In this paper, we propose and investigate a
new iterative algorithm for solving the GSCFP in the setting of infinite-dimensional Hilbert spaces. Under
proper conditions, the theoretical convergence of the algorithm proposed is presented. Several numerical
results confirm the effectiveness of the proposed algorithm.
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