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Abstract
In this paper, we study the perturbation resilience of a proximal gradient algorithm under the general Hilbert space setting.

With the assumption that the error sequence is summable, we prove that the iterative sequence converges weakly to a solution
of the composite optimization problem. We also show the bounded perturbation resilience of this iterative method and apply it
to the lasso problem. c©2017 All rights reserved.
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1. Introduction

Perturbation resilience is concerned with the recent developed optimization scheme called “superi-
orization” [4], which provides a novel way to obtain solutions by carefully selecting perturbations in an
active way. Contrary to exacted methods, superiorization approach does not necessarily find an optimal
solution for a given objective function. Instead, it may try to find a point. This point will have a low cost
function value and hence it will be superior to other points. This heuristic method is usually less time
consuming that makes it applicable to some important practical problems such as medical image recovery
[9, 16], computed tomography [20], intensity-modulated radiation therapy [8], and so on.

Nevertheless, the superiorized version produced by superiorization methodology is heavily based
on the bounded perturbation resilience of the original iterative algorithm. Very recently, several articles
investigated the perturbation resilience. [6] considered the perturbation resilience and convergence of
dynamic string-averaging projection method for solving the convex feasibility problem. [10] studied the
convex minimization problem:

min
x∈C

f(x),

where C is a nonempty closed convex subset of finite dimension space RJ and the objective function f is
convex. The following projected scaled gradient (PSG) algorithm with errors:
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xn+1 = PC(xn − γnD(xn)∇f(xn) + e(xn)) (1.1)

is introduced, and the exact PSG algorithm is proved to be bounded perturbation resilient. Later on, [22]
generalized algorithm (1.1) to general Hilbert space setting and showed that (1.1) converges in a sublinear
rate. The bounded perturbation resilience is also concluded. Equation (1.1) is in fact a kind of inexact
iterative scheme, which was developed in many literatures over the past two decades for the reason that
solving the problems is either expensive or impossible, see [11, 13, 19, 23, 24] and references therein for
instance.

Motivated by [10] and [22], we consider the non-smooth composite optimization problem of the form

min
x∈H

Φ(x), Φ(x) = f(x) + g(x) (1.2)

in a real Hilbert space H, where f,g are proper lower semi-continuous convex functions and satisfy
assumptions:

(A1) f is differentiable, whose gradient is Lipschitz continuous with constant L. That is,

‖∇f(x) −∇f(y)‖ 6 L‖x− y‖, x,y ∈ H.

g may not be differentiable.
(A2) f+ g = Φ is coercive, namely,

lim
‖x‖→+∞Φ(x) = +∞.

Hence, Φ has a minimizer over H, or S := Argmin(Φ) 6= ∅ ([3, Proposition 11.14]).

The proximal gradient (PG) algorithm, or forward-backward splitting method ([12, 17]), with the combi-
nations of explicit (forward) gradient steps with respect to the smooth part and proximal (backward) part
with respect to the non-smooth part, is an appealing approach for solving these types of non-smooth op-
timization problems because of their fast theoretical convergence rates and strong practical performance
[15].

The classical proximal gradient algorithm generates a sequence {xn}
∞
n=0 starting from a given x0 ∈ H

and recursively utilizes the rule

xn+1 = (I+α∂g)−1(I−α∇f)(xn), for n > 0, (1.3)

where α > 0 is the step size. It is known that if

S := Argmin(Φ) 6= ∅,

any sequence generated by algorithm (1.3) converges weakly to an element of S if

0 < α <
2
L

(see, for instance, [3, Theorem 25.8]).
Recently, a slightly more general PG algorithm, where α is replaced by αn, was introduced by Xu [21]:

xn+1 = (I+αn∂g)
−1(I−αn∇f)(xn) (1.4)

for convex optimization problem (1.2). The weak convergence of the algorithm is given as follows.

Theorem 1.1 ([21, Theorem 3.1]). Let H be a real Hilbert space, f,g ∈ Γ0(H). Assume that (1.2) is solvable.
Assume in addition that

(1) ∇f is Lipschitz continuous on H, that is, there exists a number L > 0 such that

‖∇f(x) −∇f(y)‖ 6 L‖x− y‖, ∀ x,y ∈ H.
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(2)

0 < infαn 6 αn 6 supαn <
2
L

.

Then the sequence {xn}∞n=0 generated by algorithm (1.4) converges weakly to a solution of (1.2). No strong conver-
gence is guaranteed if dimH =∞.

In this paper, we shall prove that a more general PG algorithm is perturbation resilient in the general
setting of Hilbert space. In addition, we will see that the bounded perturbation resilience can be changed
into a special case of perturbation resilience. Given x0 ∈ H arbitrarily, the algorithm we shall focus on is

xn+1 = (I+αn∂g)
−1(xn −αnD(xn)∇f(xn) + e(xn)) (1.5)

with the following conditions hold.

(A3) For each x ∈ H, D(x) : H→ H is a bounded linear operator.
(A4) 0 < infαn 6 αn 6 supαn < 2

L .
(A5) e(xn) denotes the computational error in computing the gradient ∇f(xn) and satisfies

∞∑
n=0

‖e(xn)‖ < +∞. (1.6)

To ensure that D(xn)∇f(xn) does not deviate too much from the gradient ∇f(xn), we define

θn := ∇f(xn) −D(xn)∇f(xn),

and assume that

(A6) ∞∑
n=0

‖θn‖ < +∞. (1.7)

We proceed as follows. In Section 2, we list some definitions and lemmas that will be useful in the
next section. In Section 3, we prove that the sequence {xn}

∞
n=0 generated by (1.5) converges weakly to a

solution of problem (1.2). In Section 4, we deal with the bounded perturbation resilience of (1.4) and the
basic algorithm of (1.5). Finally, in Section 5, we apply the bounded perturbation resilience of (1.4) to the
lasso problem.

2. Preliminaries

Let H be a real Hilbert space with inner product < ·, · > and the induced norm ‖ · ‖. Recall that a
mapping V : H→ H is non-expansive if

‖Vx− Vy‖ 6 ‖x− y‖, ∀x, y ∈ H.

A mapping V : H→ H is α-averaged if
V = (1 −α)I+αT ,

where α ∈ (0, 1) and T is non-expansive. Let Fix(T) stand for the fixed point set of T .
Denote by

Γ0(H) = {f : H→ (−∞,∞]| f is proper lower semi-continuous, convex}.

We need the following definition.
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Definition 2.1 ([14, Proximal Operator]). Let g ∈ Γ0(H). The proximal operator of g is defined by

proxg(x) := arg min
y∈H

{
‖y− x‖2

2
+ g(y)

}
, x ∈ H.

The proximal operator of g of order α > 0 is defined as the proximal operator of αg, that is,

proxαg(x) := arg min
y∈H

{
‖y− x‖2

2α
+ g(y)

}
, x ∈ H.

The following Lemmas 2.2 and 2.3 describe the properties of the proximal operators.

Lemma 2.2 ([21]). Let g ∈ Γ0(H), α > 0, µ > 0. Then
(i) proxαg(x) = (I+α∂g)−1(x);

(ii) proxαg(x) = proxµg
(
µ
α + (1 − µ

α)proxαgx
)

.

Lemma 2.3 ([3, Non-expansiveness]). Let g be a convex function on H, and α > 0. Then the proximal operator
of g is non-expansive:

‖(I+α∂g)−1(x) − (I+α∂g)−1(y)‖ 6 ‖x− y‖, ∀x,y ∈ H. (2.1)

Lemma 2.4 ([18, Decent Lemma]). Let f : H → R be a differentiable function with L-Lipschitz continuous
gradient ∇f. Then for any x,y ∈ H , we have

f(x) 6 f(y)+ < ∇f(y), x− y > +
L

2
‖x− y‖2.

Lemma 2.5 ([21, Proposition 3.2]). Let the functions f,g ∈ Γ0(H), z ∈ H and α > 0. Assume that f is
differentiable on H. Then z is an element of the solution set S if and only if z solves the fixed point equation

z = (I+α∂g)−1(I−α∇f)z.

Lemma 2.6 ([7, Lemma 2.1]). Let {αn}
∞
n=0 ⊂ R+ be a sequence of nonnegative real numbers. If it holds that

0 6 αn+1 6 αn + δn for all n > 0, where δn > 0 for all n > 0 and
∑∞
n=0 ‖δn‖ <∞, then {αn}

∞
n=0 converges.

The following two lemmas play important roles in proving the weak convergence of {xn}∞n=0 generated
by (1.5).

Lemma 2.7 ([16]). Let H be a real Hilbert space, and T : H→ H a non-expansive mapping with the fixed point set
Fix(T) 6= ∅. If {xn}∞n=0 is a sequence in H converging weakly to x, and if {(I− T)xn} converges strongly to 0, then
(I− T)x = 0.

Lemma 2.8 ([1, Opial]). Let H be a Hilbert space, and {xn}
∞
n=0 be a sequence such that there exists a nonempty

set S ⊂ H satisfying
(i) lim

n→∞ ‖xn − p‖, ∀p ∈ S exists;
(ii) if xnj converges weakly to a point x in H for a subsequence nj → +∞, then x ∈ S.

Then there exists x̄ ∈ S such that {xn}∞n=0 converges weakly to x̄ as n→∞.

3. Convergence analysis

The proof of the main convergence theorem (Theorem 3.5 below) is based on several propositions.

Proposition 3.1. Let the functions f,g ∈ Γ0(H). Let {xn}∞n=0 be a sequence generated by algorithm (1.5). Assume
that (A1)-(A6) hold. Then the sequence of function values {Φ(xn)}

∞
n=0 converges.

Proof. Note that (1.5) implies that

1
αn

(xn − xn+1) −D(xn)∇f(xn) +
1
αn
e(xn) ∈ ∂g(xn+1).

We get from the convexity of g and Lemma 2.4,
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g(xn) > g(xn+1)+ < s, xn − xn+1 >, ∀s ∈ ∂g(xn+1),

f(xn) > f(xn+1)− < ∇f(xn), xn+1 − xn > −
L

2
‖xn+1 − xn‖2.

Summing the both inequalities, we conclude

Φ(xn+1) 6 Φ(xn)+ < ∇f(xn) + s, xn+1 − xn > +
L

2
‖xn+1 − xn‖2.

Choose
s =

1
αn

(xn − xn+1) −D(xn)∇f(xn) +
1
αn
e(xn) ∈ ∂g(xn+1),

and denote

δn =
1
αn
e(xn) + θ

n. (3.1)

We have

Φ(xn+1) 6 Φ(xn) + (
L

2
−

1
αn

)‖xn+1 − xn‖2 + ‖δn‖ · ‖xn+1 − xn‖

6 Φ(xn) − η1‖xn+1 − xn‖2 + ‖δn‖ · ‖xn+1 − xn‖,

where η1 = 1
supn{αn}

− L
2 > 0 owing to assumption (A4). Or

Φ(xn) −Φ(xn+1) > η1‖xn+1 − xn‖2 − ‖δn‖ · ‖xn+1 − xn‖

> η1(‖xn+1 − xn‖−
1

2η1
‖δn‖)2 −

1
4η1
‖δn‖2.

(3.2)

Let Φ = infx∈HΦ(x), then Φ(x) > Φ for all x ∈ H. Consequently,

0 6 Φ(xn+1) −Φ 6 Φ(xn) −Φ+
1

4η1
‖δn‖2. (3.3)

So Φ(xn) −Φ converges according to Lemma 2.5 and that
∑∞
n=1 ‖δn‖2 <∞ (see (3.1), (A5)-(A6)). Hence

the sequence {Φ(xn)}
∞
n=0 also converges.

Proposition 3.2. Let {xn}∞n=0 be generated by algorithm (1.5). It holds that

‖xn+1 − xn‖ 6

√
2
η1

|Φ(xn+1) −Φ(xn)|
1
2 +

1
η1
‖δn‖.

Hence, it has limn→∞ ‖xn+1 − xn‖ → 0.

Proof. In view of (3.2), we observe

‖xn+1 − xn‖2 = (‖xn+1 − xn‖−
1

2η1
‖δn‖+

1
2η1
‖δn‖)2

6 2
[(
‖xn+1 − xn‖−

‖δn‖
2η1

)2
+

1
4η2

1
‖δn‖2

]
6

2
η1

[Φ(xn) −Φ(xn+1)] +
‖δn‖2

η2
1

.

Thereby,

‖xn+1 − xn‖ 6

√
2
η1

|Φ(xn) −Φ(xn+1)|
1/2 +

‖δn‖
η1

,

which follows from the inequality
√
a2 + b2 6 a+ b for all a,b > 0. Accordingly, we get

lim
n→∞ ‖xn+1 − xn‖ → 0 (3.4)

by Proposition 3.1.



Y. Guo, W. Cui, Y. Guo, J. Nonlinear Sci. Appl., 10 (2017), 5566–5575 5571

We need the non-expansive property of the mapping (I+α∂g)−1(I−α∇f).

Proposition 3.3. Let f,g ∈ Γ0(H). For any 0 < α < 2
L , where L is the Lipschitz constant of ∇f, (I+α∂g)−1(I−

α∇f) is αL+2
4 -averaged. Hence, it is non-expansive.

Proof. At first, ∇f is L-Lipschitzian indicates that ∇f is 1
L -ism ([2]). Consequently, I−α∇f is αL2 -averaged

as 0 < α < 2
L ([3, Proposition 4.33]). Besides, (I+ α∂g)−1 is 1

2 -averaged, the composite (I+ α∂g)−1(I−

α∇f) is αL+2
4 -averaged, then it is non-expansive.

Proposition 3.4. Let f,g ∈ Γ0(H). Let {xn}∞n=0 be generated by algorithm (1.5), and assumptions (A1)-(A6) hold.
Then there exists a subsequence {xnk}

∞
k=0 ⊆ {xn}

∞
n=0 converging weakly to x∗ ∈ S.

Proof. Applying (3.3) recursively, we obtain

Φ(xn+1) 6 Φ(xn−1) +
1

4η1
(‖δn‖2 + ‖δn−1‖2) 6 Φ(x0) +

1
4η1

n∑
k=0

‖δk‖2.

Denote by M := 1
4η1

∑∞
k=0 ‖δk‖2 as

∑∞
k=0 ‖δk‖2 < +∞. Clearly, {xn}

∞
n=0 ⊂ {x ∈ H|Φ 6 Φ(xn+1) 6

Φ(x0) +M}, which is bounded owing to the coercivity of Φ and Φ = infx∈HΦ(x) > −∞. The Bolzano
Weierstrass theorem shows that there exists a subsequence {xnk}

∞
k=0 which is weakly convergent.

Denote by x∗ the weak convergence of {xnk}
∞
k=0. Let α be the limitation of the subsequence {αnj}

∞
j=0

of {αn}∞n=0 since {αn}
∞
n=0 is bounded. Then 0 < α < 2

L as assumption (A4) holds. Next, we will show that
x∗ ∈ S, which is equivalent to show that

‖xnj − (I+α∂g)−1(I−αOf)(xnj)‖ → 0, as j→∞
according to Lemma 2.5 as well as Lemma 2.7 and Proposition 3.3.

As a matter of fact, notice from Lemma 2.2 that, for any α,αnj > 0,

(I+α∂g)−1(x) = (I+αnj∂g)
−1[
αnj
α
x+ (1 −

αnj
α

)(I+α∂g)−1(x)]. (3.5)

We deduce from (3.5), (2.1), and Proposition 3.3, that

‖xnj − (I+α∂g)−1(I−αOf)(xnj)‖
6 ‖xnj − xnj+1‖+ ‖xnj+1 − (I+α∂g)−1(I−αOf)(xnj)‖
= ‖xnj − xnj+1‖+ ‖(I+αnj∂g)

−1[(I−αnjDOf) + e](xnj) − (I+α∂g)−1(I−αOf)(xnj)‖
= ‖xnj − xnj+1‖+ ‖(I+αnj∂g)

−1[(I−αnjDOf) + e](xnj)

− (I+αnj∂g)
−1[
αnj
α
I+ (1 −

αnj
α

)(I+α∂g)−1](I−αOf)(xnj)‖

6 ‖xnj − xnj+1‖+ ‖[(I−αnjDOf) + e](xnj)

− [
αnj
α
I+ (1 −

αnj
α

)(I+α∂g)−1](I−αOf)(xnj)‖

= ‖xnj − xnj+1‖+ ‖(1 −
αnj
α

)xnj +
αnj
α
·αOf(xnj) −αnjDOf(xnj) + e(xnj)

− (1 −
αnj
α

)(I+α∂g)−1(I−αOf)(xnj)‖

= ‖xnj − xnj+1‖+ ‖(1 −
αnj
α

)xnj +αnj(Of−DOf)(xnj) + e(xnj)

− (1 −
αnj
α

)(I+α∂g)−1(I−αOf)(xnj)‖

6 ‖xnj − xnj+1‖+ (1 −
αnj
α

)‖xnj‖+αnj‖(Of−DOf)(xnj)‖+ ‖e(xnj)‖



Y. Guo, W. Cui, Y. Guo, J. Nonlinear Sci. Appl., 10 (2017), 5566–5575 5572

+ (1 −
αnj
α

)‖(I+α∂g)−1(I−αOf)(xnj)‖

6 ‖xnj − xnj+1‖+ 2(1 −
αnj
α

)‖xnj‖+αnj‖θnj‖+ ‖e(xnj)‖.

Now since {‖xnj‖}∞j=0 is bounded, we can use αnj → α (j → +∞) and (1.6), (1.7), together with (3.4) to
conclude that ‖xnj − (I+α∂g)−1(I−αOf)(xnj)‖ → 0 as j→∞. The proof is completed.

Theorem 3.5. Let f,g ∈ Γ0(H). Let {xn}∞n=0 be generated by algorithm (1.5). If the assumptions (A1)-(A6) hold,
then {xn}

∞
n=0 converges weakly to x̄ ∈ S as n→∞, where S is the solution set of problem (1.2).

Proof. We will apply Lemma 2.8 to the sequence {xn}
∞
n=0 and the solution set S. Due to Proposition 3.4, it

remains to prove that limn→∞ ‖xn − z‖ exists for each z ∈ S. To see this, we rewrite xn+1 as

xn+1 = (I+αn∂g)
−1[(I−αnDOf)(xn) + e(xn)]

= (I+αn∂g)
−1(I−αnOf)(xn) + (I+αn∂g)

−1[(I−αnDOf)(xn) + e(xn)]

− (I+αn∂g)
−1(I−αnOf)(xn)

=: (I+αn∂g)
−1(I−αnOf)(xn) + ẽ(xn),

where
ẽ(xn) = (I+αn∂g)

−1[(I−αnDOf)(xn) + e(xn)] − (I+αn∂g)
−1(I−αnOf)(xn)

such that

‖ẽ(xn)‖ 6 ‖(I−αnDOf)(xn) + e(xn) − (I−αnOf)(xn)‖ 6 αn‖θn‖+ ‖e(xn)‖.

Hence, we have
∑∞
n=0 ‖ẽ(xn)‖ <∞ in view of (1.6) and (1.7).

By observing that Fix[(I+αn∂g)−1(I−αn∇f)] = S for each n, we compute

‖xn+1 − z‖ = ‖(I+αn∂g)−1[(I−αnD∇f) + e](xn) − z‖
6 ‖(I+αn∂g)−1(I−αn∇f)(xn) − z‖+ ‖ẽ(xn)‖
= ‖(I+αn∂g)−1(I−αn∇f)(xn) − (I+αn∂g)

−1(I−αn∇f)z‖+ ‖ẽ(xn)‖
6 ‖xn − z‖+ ‖ẽ(xn)‖.

Now by virtue of Lemma 2.6, and that
∑∞
n=0 ‖ẽ(xn)‖ <∞, we conclude that limn→∞ ‖xn − z‖ exists.

4. Bounded perturbation resilience

In this section, we prove the bounded perturbation resilience of the proximal gradient method by
transform the bounded perturbation into a special case of the summable perturbation studied in the
previous section. The following definition can be found in [5], which was originally given with a finite-
dimensional Euclidean space [4].

Definition 4.1 (Bounded Perturbation Resilience). Let H be a real Hilbert space. Given a problem Φ, an
algorithmic operator AΦ : H → H is said to be bounded perturbation resilient if the following holds. If
the sequence {xn}

∞
n=0, generated by xn+1 = AΦxn, for all n ∈ N, with x0 ∈ H, converges to a solution

of Φ, then any sequence {yn}
∞
n=0, starting from given y0 ∈ H, generated by yn+1 = AΦ(yn + βnvn) also

converges to a solution of Φ, where the vector sequence {vn}
∞
n=0 is bounded, and the scalars {βn}

∞
n=0 are

such that βn > 0, n ∈N, and
∑∞
n=0 βn <∞.

If we treat the PG algorithm (1.5) with e(xn) ≡ 0 (n ∈N) as the basic algorithm AΦ, then the bounded
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perturbation of (1.5) is a sequence {xn}
∞
n=0 generated by

xn+1 = (I+αn∂g)
−1(I−αnD∇f)(xn +βnvn), (4.1)

where {βn}
∞
n=0, {vn}

∞
n=0 satisfy the conditions in Definition 4.1, respectively. Denote by

θn := (D∇f)(xn +βnvn) −∇f(xn +βnvn). (4.2)

Theorem 4.2. Let f,g ∈ Γ0(H), the assumptions (A1)-(A4) and (A6) hold with θn defined by (4.2), and {βn}
∞
n=0,

{vn}
∞
n=0 satisfy the conditions in Definition 4.1, respectively. Then any sequence {xn}

∞
n=0 generated by algorithm

(4.1) converges weakly to a solution of (1.2).

Proof. The idea of verifying the convergence of algorithm (4.1) is to build a relationship between (4.1) and
(1.5). It is not hard to see that (4.1) can be rewritten as

xn+1 = (I+αn∂g)
−1(xn −αn∇f(xn) + ê(xn)),

where

ê(xn) = βnvn +αn[∇f(xn) − (D∇f)(xn +βnvn)] = βnvn +αn[∇f(xn) −∇f(xn +βnvn) − θn].

Consequently,

‖ê(xn)‖ 6 ‖βnvn‖+αn[‖∇f(xn) −∇f(xn +βnvn)‖+ ‖θn‖]
6 ‖βnvn‖[1 +αnL] +αn‖θn‖ 6 3(sup

n

‖vn‖)βn + (sup
n

αn)‖θn‖ <∞
from the conditions imposed on {vn}

∞
n=0, {βn}

∞
n=0, and (A6). The conclusion follows from Theorem 3.5 if

we take D(xn) = I in algorithm (1.5).

If we treat the PG algorithm (1.4) as the basic algorithm AΦ, the bounded perturbation of (1.4) is a
sequence {xn}

∞
n=0 generated by

xn+1 = (I+αn∂g)
−1(I−αn∇f)(xn +βnvn). (4.3)

Theorem 4.3. Let f,g ∈ Γ0(H), the assumptions (A1)-(A2) and (A4) hold, and {βn}
∞
n=0, {vn}

∞
n=0 satisfy the

conditions in Definition 4.1, respectively. Then any sequence {xn}
∞
n=0 generated by algorithm (4.3) converges

weakly to a critical point of (1.2).

Proof. The conclusion is an obvious result of Theorem 4.2 if we choose D(xn +βnvn) = I for all n ∈N in
algorithm (4.1).

5. An application to lasso problem

Consider the lasso problem

min
x∈RJ

1
2
‖Ax− b‖2

2 + γ‖x‖1, (5.1)

where A is an m× J (real) matrix, b ∈ Rm, and γ > 0 is a regularization parameter. We take f(x) =
1
2‖Ax− b‖

2
2 and g(x) = γ‖x‖1. Then ∇f(x) = AT (Ax− b), which is Lipschitz continuous with constant

L = ‖A‖2
2, and

(I+αn∂g)
−1(xn) = (I+αn∂(γ‖ · ‖1))

−1(xn) = ((1 +αnγ∂| · |)−1(x1
n), · · · , (1 +αnγ∂| · |)−1(xJn))

T ,

where

(1 +αn∂γ| · |)−1(xkn) = sgn(xkn)max{|xkn|−αnγ, 0}, k = 1, 2, · · · , J.

We can solve the lasso problem (5.1) by applying Theorem 4.3.
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Theorem 5.1. Let the vector sequence {vn}∞n=0 be bounded in RJ, and the nonnegative scalars βn,n = 0, 1, · · · be
such that

∑∞
n=0 βn <∞. Then any sequence {xn}∞n=0 generated by the algorithm

xn+1 = (I+αnγ∂‖ · ‖1)
−1[(xn +βnvn) −αnA

TA(xn +βnvn) +αnA
Tb)],

where αn satisfies 0 < infαn 6 αn 6 supαn < 2
‖A‖2

2
, converges weakly to a solution of (5.1).

Proof. Observe that Φ(x) := 1
2‖Ax− b‖

2
2 + γ‖x‖1 is a continuous convex function, and

lim
‖x‖2→∞Φ(x) =∞.

Besides, the assumptions (A1)-(A2) and (A4) are satisfied. Consequently, the weak convergence of {xn}∞n=0
follows from Theorem 4.3.
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