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Abstract
This paper is concerned with adaptive control for anti-synchronization of a class of uncertain fractional-order chaotic

complex systems described by a unified mathematical expression. By utilizing the recently established result for the Caputo
fractional derivative of a quadratic function and employing the adaptive control technique, we design controllers and some
fractional-order parameter update laws to anti-synchronize two fractional-order chaotic complex systems with unknown pa-
rameters. The proposed method has generality, simplicity, and feasibility. Moreover, anti-synchronization between uncertain
fractional-order complex Lorenz system and fractional-order complex Lü system is implemented as an example to demonstrate
the effectiveness and feasibility of the proposed scheme. c©2017 All rights reserved.
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1. Introduction

Based on the wide applications in the fields of secure communication, encryption, signal and con-
trol processing, fractional-order chaotic systems have attracted tremendous attention of scientists and
engineers during the past few decades [15, 27, 33]. With the help of fractional-order calculus, it is demon-
strated that there are many fractional-order chaotic systems including the fractional-order Chen system
[17], the fractional-order financial system with time delay [34], the fractional-order hyperchaotic Rössler
system [16], and so on. Meanwhile, synchronization has been a central issue in the study of fractional-
order chaotic systems and then has been extensively investigated. In previous works there are several
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different types of synchronization such as complete synchronization [11, 12, 35, 37], phase synchroniza-
tion [32], impulsive synchronization [18], lag projective synchronization [6], just to enumerate a few
examples. Among all kinds of chaos synchronization, anti-synchronization is one of the particular type
of synchronization which was observed in periodic chaotic systems [42]. In anti-synchronization scheme,
the state variables of synchronized systems with different initial values have the same absolute values but
opposite signs. As a result, when anti-synchronization occurs, the sums of two signals are expected to
converge to zero.

In contrast to the large amount of results in the literature on the fractional-order chaotic real systems,
there are very few papers dealing with fractional-order systems with complex variables. Complex vari-
ables can be widely applied to describe a variety of physical phenomena; see, for instance, the atomic
polarization amplitudes, electric field, population inversion, detuned laser systems, amplitudes of elec-
tromagnetic fields, thermal convections of liquid flows, etc. Therefore, many authors have taken complex
variables into the fractional-order chaotic systems and concentrated on dynamics, chaos control, and syn-
chronization of fractional-order complex nonlinear systems in recent years. The result shown in [10] dealt
with chaotic dynamics of fractional order periodically forced complex Duffing’s oscillators. It was known
in [9] that dynamic properties of the fractional-order logistic equation of complex variables was analyzed.
Luo and Wang [26] introduced the fractional-order complex Lorenz system and realized complete syn-
chronization. The fractional-order complex Chen system was proposed and hybrid synchronization was
applied to digital secure communication [25]. Liu et al. [20] obtained results on bifurcations, chaos con-
trol, and synchronization of the fractional-order complex T system. With respect to other related works
on this topic, we refer the reader to [13, 14, 19, 21, 31, 40] and the references cited therein.

All of the above-mentioned papers concentrate on fractional-order chaotic complex systems with
known parameters in priori, not involving unknown parameters. In fact, parameters of many systems
cannot be exactly determined in advance in various engineering applications. And then the uncertainty
of unknown parameters can destroy chaos synchronization. So unknown parameters have significantly
negative effects on chaos communication and synchronization, for instance, in secure communication, the
receiver will definitely suffer from uncertain parameters, which will no doubt influence the accuracy of
the communication. Therefore, it is very important and challenging to overcome the uncertainty of un-
known parameters to realize synchronization of the fractional-order chaotic complex systems. As far as
we know, the adaptive control theory provides us with a useful and powerful tool to achieve synchroniza-
tion of dynamical systems with unknown parameters. Up to now, many researchers have been concerned
with adaptive synchronization of the fractional-order chaotic real systems, such as [1, 28, 41] to name a
few. However, to the best of our knowledge, there are few results about anti-synchronization of different
fractional-order chaotic complex systems with unknown parameters.

Motivated by the above discussions, we investigate anti-synchronization between two different fracti-
onal-order chaotic complex systems with unknown parameters. It is necessary to point out that, unlike
the schemes proposed in the previous literature [1, 28, 41], we construct appropriate quadratic Lyapunov
functions to analyze the stability of fractional-order systems and utilize fractional-order adaptation laws
to update design parameters.

The remainder of this paper is organized as follows. Section 2 reviews some preliminaries and gives
the problem descriptions. In Section 3, we investigate adaptive anti-synchronization between two differ-
ent fractional-order chaotic complex systems with all situations of unknown parameters. In Section 4,
the proposed method is discussed numerically with the help of fractional-order chaotic complex Lorenz
system and fractional-order chaotic complex Lü system with unknown parameters. Finally, conclusions
are drawn in Section 5.

2. Preliminaries

2.1. Fractional calculus and the stability of fractional-order systems
As is known, the fractional derivative has three hundred years of history and fractional differential
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equations have been extensively studied due to their numerous applications in natural sciences and en-
gineering [29]. Meanwhile, several definitions of fractional derivatives, such as the Grunwald–Letnikov
definition, the Riemann–Liouville definition, and the Caputo definition, have been proposed. Amongst
these definitions, the Caputo definition is used the most in engineering applications, since under this def-
inition initial conditions have well-understood physical meaning. Hence, the Caputo derivative is chosen
in this paper.

Definition 2.1 ([5]). The Caputo fractional derivative of order α ∈ R+ on the half axis R+ is defined as
follows:

t0D
α
t f(t) =

1
Γ(n−α)

∫t
t0

f(n)(τ)

(t− τ)α−n+1dτ, t > t0,

where n = min{k ∈N/k > α}, Γ stands for Gamma function, and t0D
α
t is generally called α-order Caputo

differential operator.

With the rule of fractional-order calculus, the Caputo differential operator is a linear operator, which
is described as follows:

t0D
α
t (λf(t) + µg(t)) = λt0D

α
t f(t) + µt0D

α
t g(t),

where λ and µ are real constants.
Recently, there have been many papers concerning on the stability of fractional-order systems [2, 3, 7,

22, 23, 36, 39]. Next, we give the subsequent lemmas which are helpful in proving our results.

Lemma 2.2 ([2]). Suppose that x(t) ∈ R is a continuous and derivable function. Then, for any time instant t > t0,

1
2 t0D

α
t x

2(t) 6 x(t)t0D
α
t x(t), ∀α ∈ (0, 1).

Lemma 2.3 ([2]). Suppose that x(t) ∈ Rn is a continuous and derivable vector function. Then, for ∀α ∈ (0, 1)
and ∀t > t0,

1
2 t0D

α
t x
T (t)x(t) 6 xT (t)t0D

α
t x(t).

Lemma 2.4 ([24]). Let W(t) = xT (t)x(t)/2 + yT (t)y(t)/2, where x(t),y(t) ∈ Rn have continuous derivatives.
If there exists a constant h0 > 0 such that

t0D
α
tW(t) 6 −h0x

T (t)x(t),

then ||x(t)|| and ||y(t)|| are bounded for all t > 0 and x(t) converges to zero asymptotically, where || · || is the
Euclidean norm.

In this paper, we mainly consider the case of 0 < α < 1. For simplicity, we substitute Dα∗ for t0D
α
t and

use the Adams–Bashforth–Moulton predictor-correctors scheme [8] to calculate the fractional differential
equations.

2.2. Mathematical model and problem descriptions
Next, let us consider an n-dimensional fractional-order chaotic complex system with the controller as

follows:
Dα∗ y = G(y)B+ g(y) +U, (2.1)

where y = (y1,y2, . . . ,yn)T ∈ Cn is a complex state vector, G(y) ∈ Cn×n is a complex matrix, B =
(b1,b2, . . . ,bn)T represents the real (or complex) vector of unknown parameters, and g : Cn → Cn

describes the nonlinear term. U = Ur + jUi is a complex controller to be designed, where Ur =
(u1,u3, . . . ,u2n−1)

T and Ui = (u2,u4, . . . ,u2n)
T . Superscripts r and i stand for the real and imaginary

parts of the complex state vector. System (2.1) is regarded as the response system and the drive system is
described by

Dα∗ x = h(x), (2.2)

where x = (x1, x2, . . . , xn)T ∈ Cn represents the complex state vector and h : Cn → Cn describes the
nonlinear term.
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Remark 2.5. Most of the classical fractional-order chaotic complex systems can be written as the form
of system (2.1), such as the fractional-order complex Lorenz system, the fractional-order complex Chen
system, the fractional-order complex T system, the factional-order complex Lü system, and so forth.

In this article, we discuss the adaptive anti-synchronization between two different fractional-order
chaotic complex systems described by a unified mathematical expression. Anti-synchronization error
system is defined as e(t) = y(t) + x(t), namely, er(t) = yr(t) + xr(t) and ei(t) = yi(t) + xi(t). The
main idea of this paper is to design the adaptive controller and the parameter update laws such that
anti-synchronization error vector e(t) converges to zero as t→∞, i.e., limt→∞ ||e(t)|| = 0.

3. Adaptive anti-synchronization schemes

3.1. The drive system without unknown parameters
In this subsection, we consider two cases with different situations of B in the response system (2.1),

i.e., B is a real vector or a complex vector. Let us start with the first case in which B is a real vector.

Theorem 3.1. If the control law is designed as

U = Ur + jUi = −G(y)B̂− g(y) − h(x) +Ke

= −Gr(y)B̂− gr(y) − hr(x) +Ker − j
(
Gi(y)B̂+ gi(y) + hi(x) −Kei

)
,

(3.1)

and the adaptive laws are chosen as{
Dα∗ B̂ = (Gr(y))Ter + (Gi(y))Tei,
Dα∗ kl = −δl

(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,
(3.2)

then anti-synchronization between systems (2.1) and (2.2) can be achieved, where B̂ denotes the estimated value
of the unknown parameter vector B, K = diag(k1,k2, . . . ,kn) represents the real control strength matrix, δ =
diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0 (l = 1, 2, . . . ,n).

Proof. It follows from the fractional-order chaotic complex systems (2.1) and (2.2) that

Dα∗ e(t) = D
α
∗ e
r(t) + jDα∗ e

i(t) = Gr(y)B+ gr(y) +Ur + hr(x) + j
(
Gi(y)B+ gi(y) +Ui + hi(x)

)
. (3.3)

Thus, inserting (3.1) into (3.3) and separating real and imaginary parts, we obtain the error system as
follows: {

Dα∗ e
r(t) = Gr(y)B̃+Ker,

Dα∗ e
i(t) = Gi(y)B̃+Kei,

where B̃=B− B̂=(b̃1, b̃2, . . . , b̃n) denotes the parameter estimation errors, er(t)=(er1(t), e
r
2(t), . . . , ern(t))T ,

and ei(t) = (ei1(t), e
i
2(t), . . . , ein(t))T . Furthermore, one has{

Dα∗ e
r
l(t) = G

r
l(y)B̃+ kle

r
l ,

Dα∗ e
i
l(t) = G

i
l(y)B̃+ kle

i
l,

(3.4)

where Grl(y) and Gil(y) are the l-th row of Gr(y) and Gi(y), respectively. Now, we consider a positive
definite Lyapunov candidate function in the form

V(e, t) =
1
2

n∑
l=1

(
(erl(t))

2 + (eil(t))
2)+ 1

2

n∑
l=1

1
δl

(kl + L)
2 +

1
2
B̃T B̃,

where L is a positive constant. According to Lemmas 2.2 and 2.3, it is not difficult to obtain that

Dα∗ V 6
n∑
l=1

(
erlD

α
∗ e
r
l + e

i
lD
α
∗ e
i
l

)
+

n∑
l=1

1
δl

(kl + L)D
α
∗ kl + B̃

TDα∗ B̃. (3.5)
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In the case of (3.2) and (3.4), the relation (3.5) becomes

Dα∗ V 6
n∑
l=1

(
erl(G

r
l(y)B̃+ kle

r
l) + e

i
l(G

i
l(y)B̃+ kle

i
l)
)
+ B̃TDα∗ B̃−

n∑
l=1

(kl + L)
(
(erl)

2 + (eil)
2)

=

n∑
l=1

(
erlG

r
l(y)B̃+ eilG

i
l(y)B̃

)
− L

n∑
l=1

(
(erl)

2 + (eil)
2)+ B̃TDα∗ B̃.

On the other hand,
n∑
l=1

(
erlG

r
l(y)B̃+ eilG

i
l(y)B̃

)

=
[
Gr1(y)B̃,Gr2(y)B̃, . . . ,Grn(y)B̃

]

er1
er2
...
ern

+
[
Gi1(y)B̃,Gi2(y)B̃, . . . ,Gin(y)B̃

]

ei1
ei2
...
ein



= B̃T
[
(Gr1(y))

T , (Gr2(y))
T , . . . , (Grn(y))

T
]

er1
er2
...
ern

+ B̃T
[
(Gi1(y))

T , (Gi2(y))
T , . . . , (Gin(y))

T
]

ei1
ei2
...
ein



= B̃T
[
(Gr(y))T , (Gi(y))T

] [ er
ei

]
= B̃T

(
(Gr(y))Ter + (Gi(y))Tei

)
.

Thus, combining (3.2) and the latter equality implies that

Dα∗ V 6 −L
(
(er)Ter + (ei)Tei

)
.

From Lemma 2.4, we deduce that

lim
t→∞ ||er(t)|| = 0 and lim

t→∞ ||ei(t)|| = 0.

Hence, we have limt→∞ ||e(t)|| = 0. Therefore, the designed controller (3.1) and the fractional adaption
laws (3.2) enable the drive system (2.2) and the response system (2.1) to achieve anti-synchronization. The
proof is complete.

Now, we turn our attention to the case when B is a complex vector. Then B can be rewritten as
B = Br + jBi and the fractional-order system (2.1) can be represented as

Dα∗ y = G(y)Br + jG(y)Bi + g(y) +U = G(y)Br +Q(y)Bi + g(y) +U, (3.6)

where Q(y) = jG(y) describes a new n × n complex matrix. By the same procedure, we obtain the
following result.

Theorem 3.2. If the control law is designed as

U = Ur + jUi = −G(y)B̂r −Q(y)B̂i − g(y) − h(x) +Ke

= −Gr(y)B̂r −Qr(y)B̂i − gr(y) − hr(x) +Ker − j
(
Gi(y)B̂r +Qi(y)B̂i + gi(y) + hi(x) −Kei

)
,

and the adaptive laws are chosen as
Dα∗ B̂

r = (Gr(y))Ter + (Gi(y))Tei,
Dα∗ B̂

i = (Qr(y))Ter + (Qi(y))Tei,
Dα∗ kl = −δl

(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,
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then anti-synchronization between systems (2.2) and (3.6) can be achieved, where B̂r and B̂i denote the estimated
values of the unknown parameter vectors Br and Bi, respectively, K = diag(k1,k2, . . . ,kn) represents the real
control strength matrix, δ = diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0 (l = 1, 2, . . . ,n).

Proof. The proof is analogous to that of Theorem 3.1, and hence is omitted.

3.2. The drive system with unknown parameters
In this subsection, we consider the case where the drive system has unknown parameters. If some

unknown parameters exist in the drive system (2.2), then system (2.2) can be written as

Dα∗ x = F(x)A+ f(x), (3.7)

where x = (x1, x2, . . . , xn)T ∈ Cn denotes the complex state vector, F(x) ∈ Cn×n is a complex matrix,
A = (a1,a2, . . . ,an)T represents the real (or complex) vector of unknown parameters, and f : Cn → Cn is
a nonlinear complex vector function.

In what follows, we consider the case when A and B are real vectors.

Theorem 3.3. If the control law is selected as follows:

U = Ur + jUi = −G(y)B̂− g(y) − F(x)Â− f(x) +Ke

= −Gr(y)B̂− gr(y) − Fr(x)Â− fr(x) +Ker − j
(
Gi(y)B̂+ gi(y) + Fi(x)Â+ fi(x) −Kei

)
,

(3.8)

and the adaptive laws are chosen as
Dα∗ Â = (Fr(x))Ter + (Fi(x))Tei,
Dα∗ B̂ = (Gr(y))Ter + (Gi(y))Tei,
Dα∗ kl = −δl

(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,
(3.9)

then the response system (2.1) can anti-synchronize the drive system (3.7), where Â and B̂ denote the estimated
values of the unknown parameter vectors A and B, respectively, K = diag(k1,k2, . . . ,kn) is the real control strength
matrix, δ = diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0 (l = 1, 2, . . . ,n).

Proof. From the fractional-order chaotic complex systems (2.1), (3.7), and the controller (3.8), the error
dynamical system can be obtained as follows:

Dα∗ e(t) = D
α
∗ y(t) +D

α
∗ x(t) = G(y)B+ g(y) +U+ F(x)A+ f(x) = F(x)Ã+G(y)B̃+Ke, (3.10)

where Ã = A− Â = (ã1, ã2, . . . , ãn), B̃ = B− B̂ = (b̃1, b̃2, . . . , b̃n) are the errors between the true values
and estimated values of unknown parameters. Thus, separating real and imaginary parts of (3.10) gives
the error system as follows: {

Dα∗ e
r(t) = Fr(x)Ã+Gr(y)B̃+Ker,

Dα∗ e
i(t) = Fi(x)Ã+Gi(y)B̃+Kei,

where er(t) = (er1(t), e
r
2(t), . . . , ern(t))T and ei(t) = (ei1(t), e

i
2(t), . . . , ein(t))T . Moreover, we have{

Dα∗ e
r
l(t) = F

r
l(x)Ã+Grl(y)B̃+ kle

r
l ,

Dα∗ e
i
l(t) = F

i
l(x)Ã+Gil(y)B̃+ kle

i
l,

where Frl(x), F
i
l(x), G

r
l(y), and Gil(y) are the l-th row of Fr(x), Fi(x), Gr(y), and Gi(y), respectively. Define

a positive definite Lyapunov candidate function as follows:

V(e, t) =
1
2

n∑
l=1

(
(erl(t))

2 + (eil(t))
2)+ 1

2

n∑
l=1

1
δl

(kl + L)
2 +

1
2
ÃT Ã+

1
2
B̃T B̃,
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where L is a positive constant. Then,

Dα∗ V 6
n∑
l=1

(
erlD

α
∗ e
r
l + e

i
lD
α
∗ e
i
l

)
+

n∑
l=1

1
δl

(kl + L)D
α
∗ kl + Ã

TDα∗ Ã+ B̃TDα∗ B̃

6
n∑
l=1

(
erl(F

r
l(x)Ã+Grl(y)B̃+ kle

r
l)
)
+

n∑
l=1

(
eil(F

i
l(x)Ã+Gil(y)B̃+ kle

i
l)
)

−

n∑
l=1

(kl + L)
(
(erl)

2 + (eil)
2)+ ÃTDα∗ Ã+ B̃TDα∗ B̃

=

n∑
l=1

(
erlF

r
l(x)Ã+ eilF

i
l(x)Ã

)
+

n∑
l=1

(
erlG

r
l(y)B̃+ eilG

i
l(y)B̃

)
+ ÃTDα∗ Ã

+ B̃TDα∗ B̃− L

n∑
l=1

(
(erl)

2 + (eil)
2) .

From the adaptive laws (3.9) and{ ∑n
l=1
(
erlF

r
l(x)Ã+ eilF

i
l(x)Ã

)
= ÃT

(
(Fr(x))Ter + (Fi(x))Tei

)
,∑n

l=1
(
erlG

r
l(y)B̃+ eilG

i
l(y)B̃

)
= B̃T

(
(Gr(y))Ter + (Gi(y))Tei

)
,

we conclude that
Dα∗ V 6 −L

(
(er)Ter + (ei)Tei

)
.

The rest of the proof is similar to that of Theorem 3.1 and so is omitted. This completes the proof.

Thus, as a consequence of Theorem 3.3, we can obtain the following corollary.

Corollary 3.4. If the structures of general fractional-order chaotic complex systems (2.1) and (3.7) are identical,
i.e., F(·) = G(·), f(·) = g(·), and A = B, the controller is designed as

U = Ur + jUi = −(F(y) + F(x))Â− f(y) − f(x) +Ke

= −(Fr(y) + Fr(x)) Â− fr(y) − fr(x) +Ker − j
(
(Fi(y) + Fi(x))Â+ fi(y) + fi(x) −Kei

)
,

and the adaptive laws are chosen as{
Dα∗ Â = (Fr(x))Ter + (Fi(x))Tei,
Dα∗ kl = −δl

(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,

then anti-synchronization of two identical general fractional-order chaotic complex systems is also achieved, where
Â is the estimated value of the unknown parameter vector A, K = diag(k1,k2, . . . ,kn) is the real control strength
matrix, δ = diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0 (l = 1, 2, . . . ,n).

In the following, we consider three cases with different situations of unknown parameters. If A is a
real vector and B is a complex vector, then adaptive anti-synchronization scheme between systems (3.6)
and (3.7) is obtained as follows.

Theorem 3.5. If the control law is selected as

U = Ur + jUi = −G(y)B̂r −Q(y)B̂i − g(y) − F(x)Â− f(x) +Ke

= −Gr(y)B̂r −Qr(y)B̂i − gr(y) − Fr(x)Â− fr(x) +Ker

− j
(
Gi(y)B̂r +Qi(y)B̂i + gi(y) + Fi(x)Â+ fi(x) −Kei

)
,



C. M. Jiang, F. F. Zhang, H. Y. Qin, T. X. Li, J. Nonlinear Sci. Appl., 10 (2017), 5608–5621 5615

and the adaptive laws are chosen as
Dα∗ Â = (Fr(x))Ter + (Fi(x))Tei,
Dα∗ B̂

r = (Gr(y))Ter + (Gi(y))Tei, Dα∗ B̂
i = (Qr(y))Ter + (Qi(y))Tei,

Dα∗ kl = −δl
(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,

then the response system (3.6) can anti-synchronize the drive system (3.7), where Â, B̂r, and B̂i are the estimated
values of the unknown parameter vectors A, Br, and Bi, respectively, K = diag(k1,k2, . . . ,kn) denotes the real
control strength matrix, δ = diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0 (l = 1, 2, . . . ,n).

Proof. The proof is similar to that of Theorem 3.3 and thus is omitted.

If A is a complex vector and B is a real vector, then the response system is described as (2.1) and the
drive system (3.7) can be rewritten as

Dα∗ x = F(x)A
r + jF(x)Ai + f(x) = F(x)Ar + P(x)Ai + f(x), (3.11)

where P(x) = jF(x) is a new n×n complex matrix.

Theorem 3.6. If the control law is selected as follows:

U = Ur + jUi = −G(y)B̂− g(y) − F(x)Âr − P(x)Âi − f(x) +Ke

= −Gr(y)B̂− gr(y) − Fr(x)Âr − Pr(x)Âi − fr(x) +Ker

− j
(
Gi(y)B̂+ gi(y) + Fi(x)Âr + Pi(x)Âi + fi(x) −Kei

)
,

and the adaptive laws are chosen as
Dα∗ Â

r = (Fr(x))Ter + (Fi(x))Tei, Dα∗ Â
i = (Pr(x))Ter + (Pi(x))Tei,

Dα∗ B̂ = (Gr(y))Ter + (Gi(y))Tei,
Dα∗ kl = −δl

(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,

then the response system (2.1) can anti-synchronize the drive system (3.11), where Âr, Âi, and B̂ are the estimated
values of the unknown parameter vectors Ar, Ai, and B, respectively, K = diag(k1,k2, . . . ,kn) denotes the real
control strength matrix, δ = diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0 (l = 1, 2, . . . ,n).

Proof. The proof is similar to that of Theorem 3.5, and so is omitted.

When A and B are complex vectors, the response system is equivalent to (3.6) and the drive system is
(3.11). Then we have the following anti-synchronization scheme between systems (3.6) and (3.11).

Theorem 3.7. If the control law is selected as follows:

U = −G(y)B̂r −Q(y)B̂i − g(y) − F(x)Âr − P(x)Âi − f(x) +Ke,

and the adaptive laws are chosen as
Dα∗ Â

r = (Fr(x))Ter + (Fi(x))Tei, Dα∗ Â
i = (Pr(x))Ter + (Pi(x))Tei,

Dα∗ B̂
r = (Gr(y))Ter + (Gi(y))Tei, Dα∗ B̂

i = (Qr(y))Ter + (Qi(y))Tei,
Dα∗ kl = −δl

(
(erl(t))

2 + (eil(t))
2
)

, l = 1, 2, . . . ,n,

then the response system (3.6) can anti-synchronize the drive system (3.11), where Âr, Âi, B̂r, and B̂i are the
estimated values of the unknown parameter vectors Ar, Ai, Br, and Bi, respectively, K = diag(k1,k2, . . . ,kn)
denotes the real control strength matrix, δ = diag(δ1, δ2, . . . , δn) is a convergence factor matrix with δl > 0
(l = 1, 2, . . . ,n).

Proof. The proof is similar to that of Theorem 3.3, and therefore is omitted.
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4. Numerical simulations

In order to illustrate anti-synchronization between two different fractional-order chaotic complex sys-
tems with unknown parameters from the point of theoretical view, it is assumed that the fractional-order
complex Lorenz system drives the fractional-order complex Lü system. Thus, the drive system is intro-
duced in the form as 

Dα∗ x1 = a1(x2 − x1),
Dα∗ x2 = a2x1 − x2 − x1x3,
Dα∗ x3 = 1

2(x̄1x2 + x1x̄2) − a3x3,
(4.1)

where x1 = m1 + jm2, x2 = m3 + jm4 are complex state variables, x3 = m5 is a real state variable, and

F(x) =

 x2 − x1 0 0
0 x1 0
0 0 −x3

 =

 m3 −m1 0 0
0 m1 0
0 0 −m5

+ j

 m4 −m2 0 0
0 m2 0
0 0 0

 ,

f(x) =

 0
−x2 − x1x3

1
2(x̄1x2 + x1x̄2)

 =

 0
−m3 −m1m5
m1m3 +m2m4)

+ j

 0
−m4 −m2m5

0

 , A =

 a1
a2
a3

 .
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Figure 1: Chaotic attractors of the fractional-order complex Lorenz system (4.1) in different projections (a) (xr1 , x3, xr2) and (b)
(xi1, xi2, xr2).
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Figure 2: Chaotic attractors of the fractional-order complex Lü system (4.2) in different projections (a) (yr1 , y3, yr2) and (b) (yi1,
yi2, yr2).
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Figure 3: The error dynamics of anti-synchronization between two different fractional-order chaotic complex systems (4.1) and
(4.2) with δ1 = 8, δ2 = 5, and δ3 = 6.
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Figure 4: Changes of the parameters â1, â2, â3 with time t.

The response system is described as
Dα∗ y1 = b1(y2 − y1) +U1,
Dα∗ y2 = −y1y3 + b2y2 +U2,
Dα∗ y3 = 1

2(ȳ1y2 + y1ȳ2) − b3y3 +U3,
(4.2)

where y1 = s1 + js2, y2 = s3 + js4 are complex state variables, y3 = s5 is a real state variable, U1 = u1 + ju2,
U2 = u3 + ju4, U3 = u5 are control functions to be determined in the later discussion, and

G(y) =

 y2 − y1 0 0
0 y2 0
0 0 −y3

 =

 s3 − s1 0 0
0 s3 0
0 0 −s5

+ j

 s4 − s2 0 0
0 s4 0
0 0 0

 ,
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g(y) =

 0
−y1y3

1
2(ȳ1y2 + y1ȳ2)

 =

 0
−s1s5

s1s3 + s2s4)

+ j

 0
−s2s5

0

 , B =

 b1
b2
b3

 .

According to Theorem 3.3, the controller is designed as
u1 = −b̂1(s3 − s1) − â1(m3 −m1) + k1e

r
1 ,

u2 = −b̂1(s4 − s2) − â1(m4 −m2) + k1e
i
1,

u3 = s1s5 − b̂2s3 +m3 +m1m5 − â2m1 + k2e
r
2 ,

u4 = s2s5 − b̂2s4 +m4 +m2m5 − â2m2 + k2e
i
2,

u5 = −s1s3 − s2s4 + b̂3s5 −m1m3 −m2m4 + â3m5 + k3e3,

and the adaptive laws of parameters are chosen as
Dα∗ â1 = (m3 −m1)e

r
1 + (m4 −m2)e

i
1,

Dα∗ â2 = m1e
r
2 +m2e

i
2,

Dα∗ â3 = −m5e3,
Dα∗ b̂1 = (s3 − s1)e

r
1 + (s4 − s2)e

i
1,

Dα∗ b̂2 = s3e
r
2 + s4e

i
2,

Dα∗ b̂3 = −s5e3,
Dα∗ k1 = −δ1[(e

r
1)

2 + (ei1)
2],

Dα∗ k2 = −δ2[(e
r
2)

2 + (ei2)
2],

Dα∗ k3 = −δ3e
2
3.
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Figure 5: Changes of the parameters b̂1, b̂2, b̂3 with time t.
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In the numerical simulations, let α = 0.998 and the true values of the unknown parameters be chosen
as A = (10, 28, 8/3)T and B = (42, 22, 5)T . The initial values of the drive and response systems are
chosen as x(0) = (2 + 3j, 5 + 6j, 9)T and y(0) = (1 + 2j, 3 + 4j, 5)T , respectively. When we select the
above system parameters and fractional orders, systems (4.1) and (4.2) without the controller can generate
chaotic attractors, see Figures 1 and 2, respectively. In addition, we choose initial values of the estimated
parameters and control strength as Â(0) = (15, 30, 5)T , B̂(0) = (38, 25, 8)T , and K = diag(1, 1, 1). The
results on adaptive anti-synchronization between (4.1) and (4.2) are shown in Figures 3–6. The errors
of anti-synchronization converge asymptotically to zero, as demonstrated in Figure 3. Figures 4 and 5
display the estimates â1, â2, â3 and b̂1, b̂2, b̂3 of the unknown parameters. From Figure 6, it is clear that
the control coefficients kl (l = 1, 2, 3) converge to some constants as t → ∞, respectively. As expected,
the above results demonstrate the anti-synchronization has been achieved between two fractional-order
chaotic complex systems (4.1) and (4.2) with unknown parameters.
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Figure 7: The related changes caused by different fractional order.

Remark 4.1. The fractional order α has a direct effect not only on the chaotic behavior of fractional-order
nonlinear dynamical systems but also on the synchronization behavior of fractional-order systems. In
[4, 30], the authors observed that the synchronization error decreases as the order α increases. However,
the opposite phenomenon is also found in [38]. In this paper, we provide a more visible method to
examine α’s impact on the fractional-order chaotic complex systems with unknown parameters. To this
end, we consider three cases including α1 = 0.998, α2 = 0.9, and α3 = 0.8. All of the other settings remain
unchanged as stated in the above numerical example. From Figure 7, we can conclude that the small
value of the fractional order α would be harmful for identification of the unknown parameters although
it has the beneficial effect on the synchronization state.

5. Conclusions

The objective of this paper is to investigate adaptive anti-synchronization of general fractional-order
chaotic complex systems with all situations of unknown parameters. On the basis of the related re-
sults on the Caputo fractional derivative of quadratic functions and the adaptive control technique, the
anti-synchronization controllers and the fractional-order adaptive laws of uncertain parameters are pre-
sented. It should be noted that quadratic Lyapunov functions play an important role in the analysis of the
fractional-order error dynamical systems, which is different from those proposed in the existing works.
Furthermore, the theoretical results are successfully applied to realize anti-synchronization between the
fractional-order complex Lorenz and the fractional-order complex Lü systems with unknown parameters.
The corresponding numerical simulations agree with the theoretical analysis. Therefore, it is believed that
the proposed scheme will have bright prospect in practical applications.
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