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Abstract
In this paper a new concept of comparison function is introduced and discussed and some fixed point theorems are

established for ϕ-contractive mappings in fuzzy normed linear spaces. In this way we obtain fuzzy versions of some classical
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1. Introduction

After Zadeh introduced in his famous paper [31] the brilliant concept of fuzzy set, many mathemati-
cians became aware of the multitude of possibilities of extending the classical results in the new fuzzy
framework and of their numerous applications. The fuzzification of classical structures started in 1968,
when Chang published his seminal paper entitled “Fuzzy topological spaces” [9]. The fuzzification of
algebraic structures has been initiated by Rosenfeld [24] in 1971. Other examples of fuzzification of clas-
sical structures are: fuzzy relations, fuzzy metric spaces, fuzzy topological vector spaces, fuzzy measure
theory and fuzzy integrals, etc.. For an excellent overview on the evolution of mathematics of fuzziness
we refer to the surveys of Kerre [21] and Dzitac [12].

The concept of fuzzy norm was introduced for the first time by Katsaras [20]. Since then, many
mathematicians have introduced several notions of fuzzy norm from different points of view. Thus,
Felbin [14] advanced an idea of fuzzy norm on a linear space by assigning a fuzzy real number to each
element of a linear space. Following Cheng and Mordeson [10], in 2003, Bag and Samanta [3] introduced
a more adequate notion of fuzzy norm. Another approaches for fuzzy norm was considered in papers
[1, 16, 22, 27].

After the definition of fuzzy metric space, the fixed point theory on fuzzy metric spaces constitutes an
attraction for many authors which have generalized and extended fixed point, common fixed point, and
coincidence point theorems on fuzzy context (see [2, 11, 13, 17–19, 23]). Recently, fuzzy version of various
fixed point theorems was discussed in the context of fuzzy normed linear spaces (see [5, 6, 26, 30, 32]).

∗Corresponding author
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2. Preliminaries

In this section we recall some known notions and results.

Theorem 2.1 (Nemytzki-Edelstein’s theorem). Let (X,d) be a compact metric space and f : X → X be a
contractive mapping. Then f has a unique fixed point x∗ and (fn(x0)) converges to x∗ for all x0 ∈ X.

Theorem 2.2 (Maia’s theorem). Let X be a nonempty set, d and ρ be two metrics on X and f : X→ X such that:

1. d(x,y) 6 ρ(x,y), ∀x,y ∈ X;
2. f : (X,d)→ (X,d) is continuous;
3. f : (X, ρ)→ (X, ρ) is a contraction;
4. (X,d) is a complete metric space.

Then f has a unique fixed point x∗ and (fn(x0)) converges in (X,d) to x∗ for all x0 ∈ X.

Definition 2.3 ([29]). A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called triangular norm (t-norm) if it
satisfies the following conditions:

1. a ∗ b = b ∗ a, ∀a,b ∈ [0, 1];
2. a ∗ 1 = a, ∀a ∈ [0, 1];
3. (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a,b, c ∈ [0, 1];
4. If a 6 c and b 6 d with a,b, c,d ∈ [0, 1], then a ∗ b 6 c ∗ d.

Example 2.4. Three basic examples of continuous t-norms are ∧, ·, ∗L, which are defined by a ∧ b =
min{a,b}, a · b = ab (usual multiplication in [0, 1]) and a ∗L b = max{a + b − 1, 0} (the Lukasiewicz t-
norm).

Definition 2.5 ([22]). Let X be a vector space over a field K (where K is R or C) and ∗ be a continuous
t-norm. A fuzzy set N in X× [0,∞) is called a fuzzy norm on X if it satisfies:

(N1) N(x, 0) = 0, ∀x ∈ X;
(N2) [N(x, t) = 1, ∀t > 0] if and only if x = 0;

(N3) N(λx, t) = N
(
x, t

|λ|

)
, ∀x ∈ X, ∀t > 0, ∀λ ∈ K∗;

(N4) N(x+ y, t+ s) > N(x, t) ∗N(y, s), ∀x,y ∈ X, ∀t, s > 0;
(N5) ∀x ∈ X, N(x, ·) is left continuous and lim

t→∞N(x, t) = 1.

The triple (X,N, ∗) will be called fuzzy normed linear space (briefly FNLS).

Remark 2.6.

a) Bag and Samanta [3, 4] gave a similar definition for ∗ = ∧, but in order to obtain some important
results they assume that the fuzzy norm satisfies also the following conditions:

(N6) N(x, t) > 0, ∀t > 0⇒ x = 0;
(N7) ∀x 6= 0,N(x, ·) is a continuous function and strictly increasing on the subset {t : 0 < N(x, t) < 1}

of R.
In this paper we do not need to assume these conditions.

b) Goleţ [16], and Alegre and Romaguera [1] gave also this definition in the context of real vector spaces.

Theorem 2.7 ([22]). Let (X,N, ∗) be a fuzzy normed linear space. For x ∈ X, r ∈ (0, 1), t > 0 we define the open
ball B(x, r, t) := {y ∈ X : N(x− y, t) > 1 − r}. Then

TN := {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T }

is a topology on X.
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Definition 2.8 ([3]). Let (X,N, ∗) be an FNLS and (xn) be a sequence in X.

1. The sequence (xn) is said to be convergent if there exists x ∈ X such that

lim
n→∞N(xn − x, t) = 1 , ∀t > 0 .

In this case, x is called the limit of the sequence (xn) and we denote lim
n→∞ xn = x or xn → x.

2. The sequence (xn) is called Cauchy sequence if

lim
n→∞N(xn+p − xn, t) = 1 , ∀t > 0,∀p ∈N∗ .

3. (X,N, ∗) is said to be complete if any Cauchy sequence in X is convergent to a point in X. A complete
FNLS will be called a fuzzy Banach space.

Definition 2.9 ([4]). Let (X,N1, ∗1), (Y,N2, ∗2) be two fuzzy normed linear spaces. A mapping T : X → Y

is said to be fuzzy continuous at x0 ∈ X, if for all ε > 0, for all α ∈ (0, 1), there exist δ = δ(ε,α) > 0, and
β = β(ε,α) ∈ (0, 1) such that for all x ∈ X, N1(x− x0, δ) > β implies N2(T(x) − T(x0), ε) > α . If T is fuzzy
continuous at each point of X, then T is called fuzzy continuous on X.

Theorem 2.10 ([4]). Let (X,N1, ∗1), (Y,N2, ∗2) be two fuzzy normed linear spaces. A mapping T : X→ Y is fuzzy
continuous at x0 ∈ X, if and only if for any sequence (xn) ⊆ X, with xn → x0, implies T(xn)→ T(x0).

Definition 2.11 ([28]). Let (X,N, ∗) be a fuzzy normed linear space and T ⊆ X. An element x0 ∈ T is called
an interior point of T if there exist α0 ∈ (0, 1) and t0 > 0 such that B(x0,α0, t0) ⊆ T . We will denote by
Int(T) the set of all interior points of T ; T is called fuzzy open set if Int(T) = T .

A fuzzy normed linear space (X,N, ∗) is called fuzzy compact if every fuzzy open cover of X has
a finite sub-cover. A fuzzy normed linear space (X,N, ∗) is called fuzzy sequentially compact if every
sequence of points of X has a subsequence convergent to a point of X.

3. Main results

Definition 3.1. A function ϕ : (0,∞) → (0,∞) will be called comparison function if ϕn(t) → ∞, as
n→∞ for all t > 0, where ϕn stands for the nth iterate of ϕ.

Remark 3.2. Other comparison functions were considered by numerous authors (see for instance [7, 25]).

Example 3.3. For c ∈ (0, 1), the mapping ϕ : (0,∞) → (0,∞) defined by ϕ(t) = t
c is a comparison

function.

Definition 3.4. Let (X,N1, ∗1), (X,N2, ∗2) be two fuzzy normed linear spaces. A mapping T : (X,N1, ∗1)→
(X,N2, ∗2) is said to be ϕ-metric-contraction if there exists a comparison function ϕ : (0,∞)→ (0,∞) such
that

N2(Tx− Ty, t) > N1(x− y,ϕ(t)),∀x,y ∈ X, ∀t > 0 .

A mapping T : (X,N1, ∗1) → (X,N2, ∗2) is said to be ϕ-norm-contraction if there exists a comparison
function ϕ : (0,∞)→ (0,∞) such that

N2(Tx, t) > N1(x,ϕ(t)), ∀x ∈ X,∀t > 0 .

The next example shows that the two notions are different from one another.

Example 3.5. Let ϕ : (0,∞) → (0,∞),ϕ(t) = t
1/2 be a comparison function and (X,N,∧) be a fuzzy

normed linear space, where X = R and N is defined by

N(x, t) =
{ t
t+|x| , if t > 0,
0, if t = 0.

Then

1. T : X→ X defined by T(x) = 1
2x+

1
2 is a ϕ-metric-contraction but T is not a ϕ-norm-contraction;
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2. T : X → X defined by T(x) =

{
0, if x ∈ (−∞, 1)∪ (2,∞),
x− 1, if x ∈ [1, 2] is a ϕ-norm-contraction, but T is

not a ϕ-metric-contraction.

Proof. 1. For all x,y ∈ X, t > 0, we have that

N(Tx− Ty, t) = N
(

1
2
(x− y), t

)
= N

(
x− y,

t

1/2

)
= N (x− y,ϕ(t)) .

Thus T is a ϕ-metric-contraction.
On the other hand, for x0 = 1

2 and t > 0 we have that

N(Tx0, t) = N(3/4, t) =
t

t+ 3/4
<

t
1/2

t
1/2 + 1/2

= N

(
x0,

t

1/2

)
= N (x0,ϕ(t)) .

Thus T is not a ϕ-norm-contraction.
2. If x ∈ (−∞, 1)∪ (2,∞), then N(Tx, t) = N(0, t) = 1 > N(x,ϕ(t)) for all t > 0. If x ∈ [1, 2], then

N(Tx, t) = N(x− 1, t) =
t

t+ x− 1
>

t
1/2
t

1/2 + x
= N (x,ϕ(t)) , ∀t > 0.

Thus T is a ϕ-norm-contraction.
On the other hand, for x = 2,y = 1, and t > 0, we have that

N(Tx− Ty, t) = N(1, t) =
t

t+ 1
<

t
1/2
t

1/2 + 1
= N (x− y,ϕ(t)) .

Hence T is not a ϕ-metric-contraction.

Remark 3.6. If T(0) = 0, then any ϕ-metric-contraction T is a ϕ-norm-contraction.

Indeed, by N2(Tx− Ty, t) > N1(x− y,ϕ(t)) for all x,y ∈ X and t > 0, in particular, for y = 0, we
obtain the desired result.

Remark 3.7. Let ϕ : (0,∞) → (0,∞) be a comparison function and let (X,N1, ∗1), (X,N2, ∗2) be two fuzzy
normed linear spaces. If S, T : (X,N1, ∗1)→ (X,N2, ∗2) satisfy

N2(Sx− Ty, t) > N1(x− y,ϕ(t)), ∀x,y ∈ X, ∀t > 0,

then S = T and S, T are ϕ-metric-contractions.

Indeed, for y = x, we obtain that

N2((S− T)x, t) > N1(0,ϕ(t)) = 1, ∀x ∈ X, ∀t > 0.

Thus (S− T)(x) = 0, ∀x ∈ X, i.e., S = T .

Remark 3.8. Let ϕ : (0,∞) → (0,∞) be a comparison function and let (X,N1, ∗1), (X,N2, ∗2) be two fuzzy
normed linear spaces. If S, T : (X,N1, ∗1)→ (X,N2, ∗2) satisfy

N2((S− T)x, t) > N1(x,ϕ(t)), ∀x ∈ X, ∀t > 0,

then S(0) = T(0).

Indeed, N2((S− T)(0), t) > N1(0,ϕ(t)) = 1, ∀t > 0. Thus (S− T)(0) = 0.
The first result states that every iterate of a ϕ-norm-contraction has a unique fixed point.
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Theorem 3.9. Let (X,N, ∗) be a fuzzy normed linear space and T : (X,N, ∗) → (X,N, ∗). If there exists q ∈ N∗

such that Tq is a ϕ-norm-contraction, then T has 0 as a unique fixed point and

lim
n→∞ Tn(x) = 0, ∀x ∈ X .

Proof. By N(Tqx, t) > N(x,ϕ(t)) for all x ∈ X and t > 0, it results that N(Tq(0), t) > N(0,ϕ(t)) = 1 for all
t > 0. Thus Tq(0) = 0.

We show that Tq has 0 as a unique fixed point. We assume that x0 6= 0 is a fixed point for Tq. As
x0 6= 0, there exists s > 0 such that N(x0, s) = a < 1. Then

a = N(x0, s) = N(Tnq(x0), s) > N(T (n−1)q(x0),ϕ(s)) > · · · > N(x0,ϕn(s))→ 1,

as n→∞. Thus a = 1, which is a contradiction. Therefore Tq has 0 as a unique fixed point.
We prove now that 0 is a fixed point for T . Let z = T(0). Then

z = T(0) = T(Tq(0)) = Tq+1(0) = Tq(T(0)) = Tq(z).

Thus z is a fixed point for Tq. Hence z = 0 and therefore T(0) = 0.
Now we show the uniqueness. We assume that y ∈ X is a fixed point for T . Thus Tqy = y. As Tq has

0 as a unique fixed point, we obtain that y = 0.
Let x ∈ X be arbitrary. Then

N(Tnqx, t) > N(T (n−1)qx,ϕ(t)) > · · · > N(x,ϕn(t))→ 1, as n→∞.

Thus Tnqx→ 0, as n→∞. If m ∈N is arbitrary, then m = nq+ r and

Tmx = Tnq+rx = Tnq(Trx)→ 0, as n→∞,

which finishes the proof.

Theorem 3.10 (A fuzzy version of Nemytzki-Edelstein’s theorem). Let (X,N, ∗) be a fuzzy sequentially com-
pact normed linear space and T : X→ X be a ϕ-metric-contraction. Then T has a unique fixed point x∗ and

lim
n→∞ Tn(x) = x∗, ∀x ∈ X.

Proof. Let x ∈ X be arbitrary and xn = Tn(x). As (X,N, ∗) is fuzzy sequentially compact, there exists a
subsequence (xnk) of (xn) such that xnk → x∗ ∈ X, namely

lim
k→∞N(xnk − x

∗, t) = 1, ∀t > 0.

Therefore

N(T(xnk) − xnk , t) = N(T(Tnk(x)) − Tnk(x), t)

= N(Tnk+1(x) − Tnk(x), t)

> N(Tnk(x) − Tnk−1(x),ϕ(t)) > · · · > N(Tx− x,ϕnk(t))→ 1, as k→∞, ∀t > 0.

On the other hand

N(T(xnk) − T(x
∗), t) > N(xnk − x

∗,ϕ(t))→ 1, as k→∞, ∀t > 0.

Finally, we have that

N(T(x∗) − x∗, t) = N(T(x∗) − T(xnk) + T(xnk) − xnk + xnk − x
∗, t)

> N

(
T(x∗) − T(xnk),

t

3

)
∗N

(
T(xnk) − xnk ,

t

3

)
∗N

(
xnk − x

∗,
t

3

)
→ 1,
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as k→∞ for all t > 0. Thus T(x∗) = x∗, i.e., x∗ is a fixed point for T . We show that xn → x∗, as n→∞.
Indeed,

N(xn − x∗, t) = N(Tn(x) − T(x∗), t)

> N(Tn−1(x) − x∗,ϕ(t)) > · · · > N(T(x) − x∗,ϕn−1(t))→ 1, as n→∞, ∀t > 0.

Now we prove the uniqueness. We assume that there exist x,y ∈ X, x 6= y such that T(x) = x, T(y) = y.
Therefore, there exists s > 0 such that N(x− y, s) = a < 1. Consequently,

a = N(x− y, s) = N(Tn(x) − Tn(y), s)

> N(Tn−1(x) − Tn−1(y),ϕ(s)) > · · · > N(x− y,ϕn(s))→ 1, as n→∞.

Thus a = 1, which is contradiction. Hence T has a unique fixed point.

In [15] a positive fuzzy metric is introduced, which was necessary for proving the space endowed
with this metric to become a Hausdorff fuzzy metric space. In 2009, Sadeqi and Kia [28], proved the same
result within the framework of fuzzy normed linear spaces where the fuzzy norm satisfies (N6) and (N7).
Later in 2014, Nadaban and Dzitac [22] proved that a fuzzy normed linear space (X,N, ∗) as in our setting
is Hausdorff if sup

x∈(0;1)
x ∗ x = 1.

Our result is valid in more general conditions and it is crucial for the uniqueness of a convergent
sequence limit.

Proposition 3.11. If (X,N, ∗) is a fuzzy normed linear space, then (X,TN) is Hausdorff.

Proof. Let x,y ∈ X, x 6= y. Then there exists t > 0 such that N(x− y, t) = a < 1. Let ε > 0 such that
0 < a+ ε < 1. By [8] we obtain that there exist α,β ∈ (0, 1) such that α ∗ β = a+ ε. Let r1 = max{α,β}.
Then r1 ∗ r1 > α ∗β = a+ ε > a. We show that

B

(
x, 1 − r1,

t

2

)
∩B

(
y, 1 − r1,

t

2

)
= ∅.

Indeed, if we suppose that there exists z ∈ B
(
x, 1 − r1, t2

)
∩B

(
y, 1 − r1, t2

)
, we obtain that

N

(
x− z,

t

2

)
> r1, N

(
y− z,

t

2

)
> r1.

Thus

a = N(x− y, t) > N
(
x− z,

t

2

)
∗N

(
z− y,

t

2

)
> r1 ∗ r1 > a,

which is a contradiction.

Theorem 3.12 (A fuzzy version of Maia’s theorem). Let (X,N1, ∗1), (X,N2, ∗2) be fuzzy normed linear spaces.
We suppose that:

1. N2(x, t) > N1(x, t), ∀x ∈ X, ∀t > 0;
2. T : (X,N2, ∗2)→ (X,N2, ∗2) is fuzzy continuous;
3. T : (X,N1, ∗1)→ (X,N1, ∗1) is ϕ-metric-contraction;
4. (X,N2, ∗2) is complete.

Then

i) T has a unique fixed point x∗ ∈ X;
ii) {Tn(x)}n∈N is convergent in (X,N2, ∗2) to x∗ for all x ∈ X.
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Proof. Let x ∈ X be fixed. First we prove that {Tn(x)}n∈N is a Cauchy sequence in (X,N1, ∗1). Indeed,

N1(T
n+p(x) − Tn(x), t) > · · · > N1(T

p(x) − x,ϕn(t))→ 1, as n→∞, ∀t > 0.

Using 1, we obtain that

N2(T
n+p(x) − Tn(x), t) > N1(T

n+p(x) − Tn(x), t)→ 1, as n→∞, ∀t > 0.

Thus {Tn(x)}n∈N is a Cauchy sequence in (X,N2, ∗2). As (X,N2, ∗2) is a fuzzy Banach space, there exists
x∗ ∈ X such that Tn(x)→ x∗, as n→∞.

Since T : (X,N2, ∗2) → (X,N2, ∗2) is fuzzy continuous, we obtain that Tn+1(x) → T(x∗). Thus T(x∗) =
x∗, namely x∗ is a fixed point for T .

Like in the proof of Theorem 3.10, the uniqueness follows.

Theorem 3.13. Let (X,N, ∗) be a fuzzy normed linear space, let ϕ be a comparison function and f : [0, 1]→ [0, 1]
with the following properties:

1. f is a nondecreasing function;
2. f(1) = 1;
3. for any sequence (sn), lim

n→∞ fn(sn) = 1 whenever lim
n→∞ sn = 1.

If T : X→ X satisfies N(Tx, t) > f(N(x,ϕ(t))), then T has a unique fixed point.

Proof. For x = 0 we obtain that N(T(0), t) = 1 for all t > 0. Hence T(0) = 0.
We assume that x∗ 6= 0 is a fixed point for T . Then there exists s > 0 such that N(x∗, s) = a < 1. We

have that

a = N(x∗, s) = N(Tnx∗, s) > f(N(Tn−1x∗,ϕ(s))) > · · · > fn(N(x∗,ϕn(s)))→ 1,

as n→∞, which is a contradiction.

Theorem 3.14. Let (X,N, ∗) be a fuzzy Banach space, ϕ a comparison function, and T : X → X be a fuzzy
continuous mapping such that

N(T 2(x) − T(y), t) > N(T(x) − y,ϕ(t)), ∀x,y ∈ X, ∀t > 0.

Then T has a unique fixed point x∗ ∈ X and lim
n→∞ Tn(x) = x∗, ∀x ∈ X.

Proof. Let x ∈ X be fixed. Then

N(Tn+p(x) − Tn(x), t) > N(Tn+p−1(x) − Tn−1(x),ϕ(t))
> · · · > N(Tp(x) − x,ϕn(t))→ 1, as n→∞, ∀t > 0.

Thus {Tn(x)} is a Cauchy sequence. As (X,N, ∗) is complete, we obtain that there exists x∗ ∈ X such that
Tn(x)→ x∗, as n→∞. As T is fuzzy continuous, we have that Tn+1(x)→ T(x∗). Thus T(x∗) = x∗.

We assume now that x,y ∈ X, x 6= y are fixed points for T . Then there exists s > 0 such that
a = N(x− y, s) < 1. We have that

a = N(x− y, s) = N(Tn+1x− Tny, s) > · · · > N(Tx− y,ϕn(s))→ 1,

as n→∞, which is a contradiction.

Theorem 3.15. Let (X,N,∧) be a fuzzy Banach space, ϕ1 a comparison function, and T : X → X be a fuzzy
continuous mapping such that

N(T(x) − T(y), t) > N(T(x) − x,ϕ1(t))∧N(T(y) − y,ϕ2(t)), ∀x,y ∈ X, ∀t > 0,

where ϕ2 : (0,∞)→ (0,∞) satisfies N(T 2(x) − T(x),ϕ2(t)) > N(T 2(x) − T(x), t) for all x ∈ X and t > 0.
Then T has a unique fixed point x∗ ∈ X and lim

n→∞ Tn(x) = x∗ for all x ∈ X.
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Proof. Let x ∈ X be arbitrary. For y = T(x) we obtain that

N(T(x) − T 2(x), t) > N(T(x) − x,ϕ1(t))∧N(T 2(x) − T(x),ϕ2(t)).

But N(T 2(x) − T(x),ϕ2(t)) > N(T 2(x) − T(x), t). Hence N(T(x) − T 2(x), t) > N(T(x) − x,ϕ1(t)). Thus

N(Tn+p(x) − Tn(x), t) > N(Tn+p−1(x) − Tn−1(x),ϕ1(t))

> · · · > N(Tp(x) − x,ϕn1 (t))→ 1 as n→∞.

Thus {Tn(x)} is a Cauchy sequence. As (X,N,∧) is complete, we obtain that there exists x∗ ∈ X such
that Tn(x)→ x∗, as n→∞. As T is fuzzy continuous, we have that Tn+1(x)→ T(x∗). Thus T(x∗) = x∗.

We assume now that x,y ∈ X, x 6= y are fixed points for T . Then there exists s > 0 such that
a = N(x− y, s) < 1. We have that

a = N(Tx− Ty, s) > N(T(x) − x,ϕ1(t))∧N(T(y) − y,ϕ2(t)) = 1,

which is a contradiction.

Lemma 3.16. Let f,g be two nondecreasing comparison functions. Then ϕ(t) = min{f(t),g(t)} is a comparison
function.

Proof. We note that f(t) > t for all t > 0. Indeed, if we assume that there exists t0 such that f(t0) < t0,
then fn(t0) < t0, which contradicts the fact that lim

n→∞ fn(t0) =∞. Similarly g(t) > t for all t > 0.

Let now t > 0 be fixed. As fn(t) → ∞, for all M > 0, there exists k0 ∈ N∗ such that fk0(t) > M.
Similarly, there exists k1 ∈ N∗ such that gk1(t) > M. We remark that ϕk0+k1(t) is a composition of f
and g, where f occurs at least k0 times or g occurs at least k1 times. Thus ϕk0+k1(t) > fk0(t) > M or
ϕk0+k1(t) > gk1(t) > M. Therefore lim

n→∞ϕn(t) =∞.

The last theorem is a generalization of Banach’s contraction principle for (X,N,∧) fuzzy Banach
spaces.

Theorem 3.17. Let (X,N,∧) be a fuzzy Banach space, ϕ1,ϕ2 be comparison functions, and T : X→ X be a fuzzy
continuous mapping such that

N(T(x) − T(y), t) > N(x− y,ϕ1(t))∧N(y− T(y),ϕ2(t)), ∀x,y ∈ X, ∀t > 0.

Then T has a unique fixed point x∗ ∈ X and lim
n→∞ Tn(x) = x∗ for all x ∈ X.

Proof. Let x0 ∈ X be arbitrary. For x = T(x0),y = x0, we have that

N(T 2(x0) − T(x0), t) > N(T(x0) − x0,ϕ1(t))∧N(x0 − T(x0),ϕ2(t)).

Thus N(T 2(x0) − T(x0), t) = N(T(x0) − x0,ϕ(t)), where ϕ(t) = min{ϕ1(t),ϕ2(t)}. We note that, according
to Lemma 3.16, ϕ is a comparison function. Thus

N(Tn+p(x) − Tn(x), t) > N(Tn+p−1(x) − Tn−1(x),ϕ(t))
> · · · > N(Tp(x) − x,ϕn(t))→ 1 as n→∞.

Hence {Tn(x)} is a Cauchy sequence. As (X,N,∧) is complete, we obtain that there exists x∗ ∈ X such that
Tn(x)→ x∗, as n→∞. As T is fuzzy continuous, we have that Tn+1(x)→ T(x∗). Thus T(x∗) = x∗.

Now we assume that x,y ∈ X, x 6= y are fixed points for T . Then there exists s > 0 such that
a = N(x− y, s) < 1. We have that

a = N(Tn(x) − Tn(y), s) > N(Tn−1(x) − Tn−1(y),ϕ1(s))∧N(Tn−1(y) − Tn(y),ϕ2(s))

= N(Tn−1(x) − Tn−1(y),ϕ1(s))

> N(Tn−2(x) − Tn−2(y),ϕ2
1(s)) > · · · > N(x− y,ϕn1 (s))→ 1 as n→∞,

which is a contradiction.
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