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Abstract
This paper proves the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of nonlinear impulsive Volterra integro-delay

dynamic system on time scales via a fixed point approach. The uniqueness and existence of the solution of nonlinear impulsive
Volterra integro-delay dynamic system is proved with the help of Picard operator. The main tools for proving our results are
abstract Grönwall lemma and Banach contraction principle. We also make some assumptions along with Lipschitz condition
which make our results appropriate for the approach we are using. c©2017 All rights reserved.
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1. Introduction

Let (G, ∗) and (H, .) be groups, then a function φ : (G, ∗)→ (H, .) is said to be a group homomorphism
if it is given by

φ(x ∗ y) = φ(x).φ(y), ∀ x,y ∈ G.

Ulam [23, 24] considered (H, ., d) a metric group with metric d(., .) and inquired a question, if for any
ε > 0 and φ : (G, ∗)→ (H, .) satisfies the inequality

d(φ(x ∗ y),φ(x).φ(y)) 6 ε, ∀ x,y ∈ G,

then for an approximate homomorphism ψ : (G, ∗)→ (H, .) can we find a real number δ > 0 such that

d(φ(x),ψ(x)) 6 δ, ∀ x ∈ G.

To deal this problem, Hyers [10] using direct method, brilliantly gave a partial answer to the case of
functional equation by considering G and H to be Banach spaces. Afterward, it was called the Hyers-Ulam
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problem and the study of this area has grown-up to be one of the important subjects in mathematical
analysis. In 1978, Rassias [21] provided an extension of the Hyers-Ulam stability by introducing new
function variables. As a result, another new stability concept, Hyers-Ulam-Rassias stability, was named
by mathematicians.

In the literature, many researchers paid attention to the stability properties of different kinds of dif-
ferential equations. We emphasize that Ulam’s type stability problems have been taken up by a huge
amount of mathematicians and the study of this region has grown-up to be one of the vital subjects in
mathematical analysis. However, among the functional equations, Obłoza seems to be the first math-
ematician who has investigated the Hyers-Ulam stability of linear differential equations (see [18, 19]).
Thereafter, Alsina and Ger published their paper which handles the Hyers-Ulam stability of the linear
differential equation y

′
(t) = y(t). They proved that if a differentiable function y(t) is a solution of the

inequality |y
′
(t) − y(t)| 6 ε for some ε > 0 and for all t ∈ (a,∞), then there exists a constant c such

that |y(t) − cet| 6 3ε for all t ∈ (a,∞), where a ∈ R ([2]). Jung in 2004 [11] investigated Hyers-Ulam
stability of first order linear differential equations. In 2010, Li and Shen [15] studied the Hyers-Ulam
stability of linear differential equations of second order. For more details on Hyers-Ulam stability, see
[12–14, 16, 18, 25, 26, 28–31].

Many real world phenomena are represented by smooth differential equations. However, the situation
becomes quite different in the case when a physical phenomena has sudden changes in its state such as
mechanical systems with impact, biological systems with heart beats, blood flows, population dynamics,
theoretical physics and so on (see [4]). Adequate mathematical models of such processes are systems
of differential equations with impulses i.e., impulsive differential equations. An impulsive differential
equation is described by three components: a continuous time differential equation, which governs the
state of the system between impulses; an impulse equation, which models an impulsive jump defined by
a jump function at the instant an impulse occurs; and a jump criterion, which defines a set of jump events
in which the impulse equation is active.

The theory of dynamic equations on time scale has been developing rapidly and has received a lot
of attention in recent years. This theory was introduced by Hilger [9] in 1990, with the motivation of
providing a unification to continuous and discrete calculus. For more details on time scale, see [5–
8, 17, 20, 27]. In 2013, András and Mészáros [3] obtained some results about the Hyers-Ulam stability of
some integral equations on time scale via Picard operators. Agarwal et al. [1] in 2014, discussed some
results about the stability of linear impulsive Volterra integro-dynamic system on time scales. To the best
of our knowledge, only few papers are devoted to the stability of impulsive Volterra integro-dynamic
systems. However, as far as we know, the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of
nonlinear impulsive Volterra integro-delay dynamic systems have not been studied yet.

In this paper, we obtain Hyers-Ulam stability and Hyers-Ulam-Rassias stability of nonlinear impulsive
Volterra integro-delay dynamic system of the form

z∆(t) =M(t)z(t) +

∫t
t0

K(t, s, z(s), z(h(s)))∆s, t ∈ TS
′ = TS

0\{t1, t2, · · · , tm},

∆z(tk) = z(t
+
k ) − z(t

−
k ) = Υk(z(t

−
k )), k = 1, 2, · · · ,m,

z(t) = α(t), t ∈ [t0 − λ, t0],
z(t0) = α(t0) = z0,

(1.1)

where λ > 0, M(t) is piecewise continuous and a regressive square matrix of order m on TS
0 := [t0, tf]zTS

,
tf > t0 > 0 and K(t, s, z(s), z(h(s))) is piecewise continuous operator on

Γ = {(t, s, z) : t0 6 s 6 t 6 tf, z ∈ Rm}.

Also Υk : R → R, α : [t0 − λ, t0] → R are continuous functions, z(t+k ) = limτ→0+ z(tk + τ) and z(t−k ) =
limτ→0+ z(tk − τ) are respectively the right and left side limits of z(t) at tk, where tk satisfies

t0 < t1 < t3 < · · · < tm < tm+1 = tf < +∞.
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Moreover, h : TS
0 → TS

0 ∩ [t0 − λ, t0] is a continuous delay function such that h(t) 6 t.

2. Preliminaries

The time scale is defined to be any nonempty closed subset of real numbers and is denoted by TS.
The forward jump operator Θ : TS → TS, backward jump operator ρ : TS → TS and graininess function
µ : TS → [0,∞) are respectively defined as:

Θ(s) = inf{t ∈ TS : t > s}, ρ(s) = sup{t ∈ TS : t < s}, µ(s) = Θ(s) − s.

For any t ∈ TS, if t < ρ(t) then point t is said to be left-scattered and if t = ρ(t) then t is called left-dense.
If t < Θ(t) and Θ(t) = t, then point t ∈ TS is called right-scattered and right-dense, respectively. The set
TS
z is known as derived form of time scale TS and is defined as:

TS
z =

{
TS\(ρ(supTS), supTS], if supTS <∞,
TS, if supTS =∞.

The real-valued function W : TS → R is called right-dense continuous, if it is continuous at every right-
dense point on TS and its left-sided limit exists at every left-dense point on TS. The real-valued function
W : TS → R is called regressive, if 1 + µ(t)W(t) 6= 0, for all t ∈ TS

z and if 1 + µ(t)W(t) > 0, then W is
called positively regressive. The set of all right-dense continuous and regressive, right-dense continuous
and positively regressive functions, respectively, will be denoted by RG(TS) and RG(TS)

+. The delta
derivative of the function W : TS → R at t ∈ TS

z is defined by

W∆(t) = lim
s→t, s6=Θ(t)

W(Θ(t)) −W(s)

Θ(t) − s
.

The ∆-integral of the rd-continuous function W : TS → R is defined by∫b
a

W(t)∆t = w(b) −w(a), ∀ a,b ∈ TS,

where the rd-continuous function w is an anti-derivative of W, i.e., w∆ =W on TS
z.

The generalized exponential function eW(a,b) for W ∈ RG(TS) on TS is defined as

eW(a,b) = exp

(∫b
a

Φµ(s)W(s)∆s

)
, ∀ a,b ∈ TS,

where

Φµ(t)W(t) =


log(1 + µ(t)W(t))

µ(t)
, if µ(t) 6= 0,

W(t), if µ(t) = 0,

is the cylindrical transformation.
The fundamental matrix is defined to be the general solution to the matrix dynamic equation z∆(t) =

M(t)z(t), z(t0) = z0, t ∈ TS
0 and is denoted by ΨM(t, t0).

Consider the metric space TS1 × TS2 = {(m,n) : m ∈ TS1, n ∈ TS2} which is a complete metric space
with the metric defined by

d((m1,n1), (m2,n2)) =
√
(m1 −m2)2 + (n1 −n2)2, (m1,n1), (m2,n2) ∈ TS1 × TS2,

where TS1 and TS2 are the time scales.
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The function W : TS1 × TS2 → R is said to be continuous at (m,n) ∈ TS1 × TS2 if for every ε > 0 there
exists δ > 0 such that ||g(m,n) − g(m0,n0)|| < ε for all (m0,n0) ∈ TS1 × TS2 satisfying

d((m,n), (m0,n0)) < δ.

Let C(TS
0, Rm) be the Banach space of continuous functions with norm ||z|| = supt∈TS

0 ||z(t)||, PC(TS
0∩

[t0 − λ, t0], Rm) denotes the Banach space of piecewise continuous functions with norm

||z|| = sup
t∈TS

0∩[t0−λ,t0]

||z(t)||,

and PC1(TS
0, Rm) = {z ∈ PC(TS

0 ∩ [t0 − λ, t0], Rm) : z∆ ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm)} is Banach space with

norm ‖z‖PC1 = max{‖z‖PC, ‖z∆‖PC}. Consider the following inequalities,
∣∣∣∣∣∣∣∣y∆(t) −M(t)y(t) −

∫t
t0

K(t, s,y(s),y(h(s)))∆s
∣∣∣∣∣∣∣∣ 6 ε, t ∈ TS

′,∣∣∣∣∣∣∣∣∆y(tk) −Υk(y(t−k ))∣∣∣∣∣∣∣∣ 6 ε, k = 1, 2, · · · ,m,
(2.1)


∣∣∣∣∣∣∣∣y∆(t) −M(t)y(t) −

∫t
t0

K(t, s,y(s),y(h(s)))∆s
∣∣∣∣∣∣∣∣ 6 ϕ(t), t ∈ TS

′,∣∣∣∣∣∣∣∣∆y(tk) −Υk(y(t−k ))∣∣∣∣∣∣∣∣ 6 κ, k = 1, 2, · · · ,m,
(2.2)

where ϕ ∈ C(TS
0, Rm) is an increasing function.

Definition 2.1. Equation (1.1) is Hyers-Ulam stable on TS
0 ∩ [t0 − λ, t0] if for every

y ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS

0, Rm),

satisfying (2.1), there exists a solution y0 ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS

0, Rm) of (1.1) with

||y0(t) − y(t)|| 6 Kε, K > 0, ∀ t ∈ TS
0 ∩ [t0 − λ, t0].

Definition 2.2. Equation (1.1) is Hyers-Ulam-Rassias stable on TS
0 ∩ [t0 − λ, t0] if for every

y ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS

0, Rm),

satisfying (2.2), there exists a solution y0 ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS

0, Rm) of (1.1) with

||y0(t) − y(t)|| 6 Kϕ(t), K > 0, ∀ t ∈ TS
0 ∩ [t0 − λ, t0].

Definition 2.3. Let (X; d) be any metric space. An operator Λ : X → X is a Picard operator, if it has a
unique fixed point x∗ ∈ X such that for all x ∈ X, {Λ(n)(x)}→ x∗ as n→∞.

Lemma 2.4 ([17]). Let τ ∈ T+
S , y, b ∈ RG(TS

+), p ∈ RG(TS
+)+ and c, bk ∈ R+, k = 1, 2, · · · , then

y(t) 6 c+
∫t
τ

p(s)y(s)∆s+
∑

τ<tk<t

bky(tk),

implies
y(t) 6 c

∏
τ<tk<t

(1 + bk)ep(t, τ), t > τ.

Lemma 2.5 (Abstract Grönwall Lemma [22]). Let (X, d,6) be an ordered metric space and Λ : X → X be an
increasing Picard operator with fixed point x∗. Then for any x ∈ X, x 6 Λ(x) implies x 6 x∗ and x > Λ(x) implies
x > x∗.
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Remark 2.6. A function
y ∈ PC1(TS

0, Rm),

satisfies (2.1) if and only if there is a function f ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm) and a sequence fk (which

depends on y) such that ||f(t)|| 6 ε for all t ∈ TS
0 ∩ [t0 − λ, t0], ||fk|| 6 ε for all k = 1, 2, · · · ,m, andy

∆(t) =M(t)y(t) +

∫t
t0

K(t, s,y(s),y(h(s)))∆s+ f(t), y(t0) = y0, t ∈ TS
′,

∆y(tk) = Υk(y(t
−
k )) + fk, k = 1, 2, · · · ,m.

We have similar remark for (2.2).

Lemma 2.7. Every y ∈ PC1(TS
0, Rm) that satisfies (1.1) also comes out perfect on the following inequality:∣∣∣∣∣∣∣∣y(t) −ΨM(t, t0)y0 −

k∑
j=1

Υ(y(t−j )) −

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u,y(u),y(h(u)))∆u∆s
∣∣∣∣∣∣∣∣ 6 (k+ tf − t0)ε

for t ∈ (tk, tk+1] ⊂ TS
0.

Proof. If y ∈ PC1(TS
0, Rm) satisfies (2.1), then by Remark 2.6, we havey

∆(t) =M(t)z(t) +

∫t
t0

K(t, s, z(s), z(h(s)))∆s+ f(t), t ∈ T ′S,

∆y(tk) = Υk(y(t
−
k )) + fk, k = 1, 2, · · · ,m.

Then

y(t) = y0 +ΨM(t, t0)y0 +

k∑
j=1

Υ(y(t−j )) +

k∑
i=1

fi +

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u,y(u),y(h(u)))∆u∆s+
∫t
t0

f(s)∆s.

So, ∣∣∣∣∣∣∣∣y(t) − y0 −ΨM(t, t0)y0 −

k∑
j=1

Υ(y(t−j )) −

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u,y(u),y(h(u)))∆u∆s
∣∣∣∣∣∣∣∣

6
∫t
t0

||f(s)||∆s+

k∑
i=1

||fi||

6 (k+ t− t0)ε

6 (k+ tf − t0)ε.

We have similar remarks for (2.2).

3. Main results

Now we are going to give our result on Hyers-Ulam stability.

Theorem 3.1. If

(a) The function K is piecewise continuous with the Lipschitz condition

||K(t, s, x1, x2) −K(t, s,y1,y2)|| 6
2∑
i=1

L||xi − yi||, L > 0

for t0 6 s 6 t 6 tf, and for all xi,yi ∈ Rm, i ∈ {1, 2};
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(b) Υk : R → R is such that ||Υk(x1) − Υk(x2)|| 6 Mk||x1 − x2||, Mk > 0, for all k ∈ {1, 2, · · · ,m} and
x1, x2 ∈ R, i ∈ {1, 2};

(c)
(∑m

j=1Mj + 2 supt∈TS
0∩[t0−λ,t0]

∫t
t0
||ΨM(t,Θ(s))||

∫s
t0
L∆u∆s

)
< 1;

(d) for some Ck > 0, we have ||ΨM(t,Θ(s))|| = supt∈TS
0∩[t0−λ,t0]

||ΨM(t,Θ(s))|| 6 Ck;

then equation (1.1) has

(i) a unique solution in PC(TS
0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS

0, Rm);

(ii) Hyers-Ulam stability on TS
0 ∩ [t0 − λ, t0].

Proof.

(i) Define an operator Λ : PC(TS
0 ∩ [t0 − λ, t0], Rm)→ PC(TS

0 ∩ [t0 − λ, t0], Rm) by

(Λz)(t) =



α(t), t ∈ [t0 − λ, t0],

α(t0) +ΨM(t, t0)z0 +

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (t0, t1],

α(t0) +Υ1(z(t
−
1 )) +ΨM(t, t0)z0

+

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (t1, t2],

α(t0) +

2∑
j=1

Υj(z(t
−
j )) +ΨM(t, t0)z0

+

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (t2, t3],

...

α(t0) +

m∑
j=1

Υj(z(t
−
j )) +ΨM(t, t0)z0

+

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (tm, tm+1].

(3.1)

We see that for any z1, z2 ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm) and for all t ∈ [t0 − λ, t0], we have

||(Λz1)(t) − (Λz2)(t)|| = 0.

For t ∈ (tm, tm+1] consider,∣∣∣∣∣∣∣∣(Λz1)(t) − (Λz2)(t)

∣∣∣∣∣∣∣∣ = m∑
j=1

∣∣∣∣∣∣∣∣Υj(z1(t
−
j )) −Υj(z2(t

−
j ))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ ∫t
t0

ΨM(t,Θ(s))
∫s
t0

(
K(s,u, z1(u), z1(h(u)))

−K(s,u, z2(u), z2(h(u)))

)
∆u∆s

∣∣∣∣∣∣∣∣
6

m∑
j=1

Mj

∣∣∣∣∣∣∣∣z1(t
−
j ) − z2(t

−
j )

∣∣∣∣∣∣∣∣
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+ sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

∣∣∣∣∣∣∣∣(K(s,u, z1(u), z1(h(u)))

−K(s,u, z2(u), z2(h(u)))

)∣∣∣∣∣∣∣∣∆u∆s
6

m∑
j=1

Mj sup
t∈TS

0∩[t0−λ,t0]

∣∣∣∣∣∣∣∣z1(t
−
j ) − z2(t

−
j )

∣∣∣∣∣∣∣∣
+ sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L||z1(u) − z2(u)||∆u∆s

+ sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L||z1(h(u)) − z2(h(u))||∆u∆s

6
m∑
j=1

Mj||z1 − z2||+ 2||z1 − z2|| sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L∆u∆s

6 ‖z1 − z2‖
( m∑
j=1

Mj + 2 sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L∆u∆s

)
.

Following from (c), the operator is strictly contractive and hence a Picard operator on

PC(TS
0 ∩ [t0 − λ, t0], Rm).

From (3.1), it follows that the unique fixed point of this operator is in fact the unique solution of (1.1) in
PC(TS

0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS
0, Rm).

(ii) Now let y ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm) ∩ PC1(TS

0, Rm) be a solution to (2.1). The unique solution
z ∈ PC(TS

0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS
0, Rm) of the dynamic equation

z∆(t) =M(t)z(t) +

∫t
t0

K(t, s, z(s), z(h(s)))∆s, t ∈ TS
′ = TS

0\{t1, t2 . . . , tm},

∆z(tk) = z(t
+
k ) − z(t

−
k ) = Υk(z(t

−
k )), k = 1, 2, · · · ,m,

z(t) = y(t), t ∈ [t0 − λ, t0],
z(t0) = y(t0) = z0,

is given by

z(t) =



y(t), t ∈ [t0 − λ, t0],

y(t0) +ΨM(t, t0)z0 +

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (t0, t1],

y(t0) +Υ1(z(t
−
1 )) +ΨM(t, t0)z0 +

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (t1, t2],

y(t0) +

2∑
j=1

Υj(z(t
−
j )) +ΨM(t, t0)z0 +

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (t2, t3],

...

y(t0) +

m∑
j=1

Υj(z(t
−
j )) +ΨM(t, t0)z0

+

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u, z(u), z(h(u)))∆u∆s, t ∈ (tm, tm+1].
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We observe that for all t ∈ [t0 − λ, t0], we have ||y(t) − z(t)|| = 0. For t ∈ (tm, tm+1], using Lemma 2.7, we
have ∣∣∣∣∣∣∣∣y(t) − z(t)∣∣∣∣∣∣∣∣ 6 ∣∣∣∣∣∣∣∣y(t) −ΨM(t, t0)y0 −

m∑
j=1

Υ(y(t−j ))

−

∫t
t0

ΨM(t,Θ(s))
∫s
t0

K(s,u,y(u),y(h(u)))∆u∆s
∣∣∣∣∣∣∣∣+ m∑

j=1

∣∣∣∣∣∣∣∣Υj(y(t−j )) −Υj(z(t−j ))∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ ∫t
t0

ΨM(t,Θ(s))
∫s
t0

(
K(s,u,y(u),y(h(u))) −K(s,u, z(u), z(h(u)))

)
∆u∆s

∣∣∣∣∣∣∣∣
6 (m+ tf − t0)ε+

m∑
j=1

Mj

∣∣∣∣∣∣∣∣y(t−j ) − z(t−j )∣∣∣∣∣∣∣∣
+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L||y(u) − z(u)||∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L||y(h(u)) − z(h(u))||∆u∆s.

Next, we show that the operator T : PC(TS
0 ∩ [t0 − λ, t0], Rm) → PC(TS

0 ∩ [t0 − λ, t0], Rm) given below is
an increasing Picard operator on PC(TS

0 ∩ [t0 − λ, t0], Rm).

(Tg)(t) =



0, t ∈ [t0 − λ, t0],

(tf − t0)ε+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(u)∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(h(u))∆u∆s, t ∈ (t0, t1],

(1 + tf − t0)ε+M1g(t
−
1 ) +

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(u)∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(h(u))∆u∆s, t ∈ (t1, t2],

(2 + tf − t0)ε+

2∑
j=1

Mjg(t
−
j ) +

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(u)∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(h(u))∆u∆s, t ∈ (t2, t3],

...

(m+ tf − t0)ε+

m∑
j=1

Mjg(t
−
j ) +

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(u)∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg(h(u))∆u∆s, t ∈ (tm, tm+1].

(3.2)

For any g1, g2 ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm),

∣∣∣∣∣∣∣∣(Tg1)(t) − (Tg2)(t)

∣∣∣∣∣∣∣∣ = 0 for all t ∈ [t0 − λ, t0]. For t ∈

(tm, tm+1], consider∣∣∣∣∣∣∣∣(Tg1)(t) − (Tg2)(t)

∣∣∣∣∣∣∣∣ 6 m∑
j=1

Mj

∣∣∣∣∣∣∣∣g1(t
−
j ) − g2(t

−
j )

∣∣∣∣∣∣∣∣+ ∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L

∣∣∣∣∣∣∣∣g1(u) − g2(u)

∣∣∣∣∣∣∣∣∆u∆s
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+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L

∣∣∣∣∣∣∣∣g1(h(u)) − g2(h(u))

∣∣∣∣∣∣∣∣∆u∆s
6

m∑
j=1

Mj sup
t∈TS

0∩[t0−λ,t0]

∣∣∣∣∣∣∣∣g1(t
−
j ) − g2(t

−
j )

∣∣∣∣∣∣∣∣
+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L sup
t∈TS

0∩[t0−λ,t0]

||g1(u) − g2(u)||∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L sup
t∈TS

0∩[t0−λ,t0]

||g1(h(u)) − g2(h(u))||∆u∆s

6
m∑
j=1

Mj||g1 − g2||+ 2||g1 − g2|| sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L∆u∆s

6 ‖g1 − g2‖
( m∑
j=1

Mj + 2 sup
t∈TS

0∩[t0−λ,t0]

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

L∆u∆s

)
.

Since
(∑m

j=1Mj + 2 supt∈TS
0∩[t0−λ,t0]

∫t
t0
||ΨM(t,Θ(s))||

∫s
t0
L∆u∆s

)
< 1, so the operator is contractive on

PC(TS
0 ∩ [t0 − λ, t0], Rm). Applying Banach contraction principle, T is Picard operator with unique fixed

point g∗ ∈ PC(TS
0 ∩ [t0 − λ, t0], Rm), i.e.,

g∗(t) = (m+ tf − t0)ε+

m∑
j=1

Mjg
∗(t−j ) +

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg∗(u)∆u∆s

+

∫t
t0

||ΨM(t,Θ(s))||
∫s
t0

Lg∗(h(u))∆u∆s.

Since g∗ is increasing, so g∗(h(u)) 6 g∗(u) and by using (d), we have

g∗(t) 6 (m+ tf − t0)ε+

m∑
j=1

Mjg
∗(t−j ) + 2

∫t
t0

∫s
t0

CkLg
∗(u)∆u∆s.

By Lemma 2.4, we get
g∗(t) 6 (m+ tf − t0)ε

∏
t0<tj<t

(1 +Mj)eP(t, t0),

where P(s) = 2
∫s
t0
CkL∆u. If we set g(t) = ||y(t) − z(t)||, then from (3.2), g(t) 6 (Tg)(t) from which by

using abstract Grönwall lemma, it follows that g(t) 6 g∗(t), thus∣∣∣∣∣∣∣∣y(t) − z(t)∣∣∣∣∣∣∣∣ 6 (m+ tf − t0)ε
∏

t0<tj<t

(1 +Mj)eP(t, t0).

Similarly, by following the same process, we can prove that:

Theorem 3.2. If

(a) The function K is piecewise continuous with the Lipschitz condition ||K(t, s, x1, x2) −K(t, s,y1,y2)|| 6∑2
i=1 L||xi − yi||, L > 0 for t0 6 s 6 t 6 tf and for all xi,yi ∈ Rm, i ∈ {1, 2};

(b) Υk : R → R is such that ||Υk(x1) − Υk(x2)|| 6 Mk||x1 − x2||, Mk > 0, for all k ∈ {1, 2, · · · ,m} and
x1, x2 ∈ R, i ∈ {1, 2};



A. Zada, S. O. Shah, Y. J. Li, J. Nonlinear Sci. Appl., 10 (2017), 5701–5711 5710

(c)
(∑m

j=1Mj + 2 supt∈TS
0∩[t0−λ,t0]

∫t
t0
||ΨM(t,Θ(s))||

∫s
t0
L∆u∆s

)
< 1;

(d) for some Ck > 0, we have ||ΨM(t,Θ(s))|| = supt∈TS
0∩[t0−λ,t0]

||ΨM(t,Θ(s))|| 6 Ck;

(e) ϕ ∈ C(TS
0, Rm) is increasing such that for some ρ > 0,∫t

t0

ϕ(r)∆r 6 ρϕ(t),

then (1.1) has

(i) a unique solution in PC(TS
0 ∩ [t0 − λ, t0], Rm)∩ PC1(TS

0, Rm);

(ii) Hyers-Ulam-Rassias stability on TS
0 ∩ [t0 − λ, t0].

4. Conclusion

In this paper, we have proved the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of (1.1) using
fixed point method. We proved our results by using abstract Grönwall lemma together with Lemma 2.4.
Moreover, our results guarantee that there is an exact solution of (1.1) which is close to the approximate
solution.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11571378).

References

[1] R. P. Agarwal, A. S. Awan, D. O’Regan, A. Younus, Linear impulsive Volterra integro-dynamic system on time scales,
Adv. Difference Equ., 2014 (2014), 17 pages. 1

[2] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998),
373–380. 1
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