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Abstract
In this paper, we study second-order m-point difference boundary value problems on infinite intervals

∆2x(k− 1) + f(k, x(k),∆x(k− 1)) = 0, k ∈ N,

x(0) =
m−2∑
i=1

αix(ηi), lim
k→∞∆x(k) = 0,

where N = {1, 2, · · · }, f : N× R2 → R is continuous, αi ∈ R,
m−2∑
i=1

αi 6= 1, ηi ∈ N, 0 < η1 < η2 < · · · <∞ and

∆x(k) = x(k+ 1) − x(k),

the nonlinear term is dependent in a difference of lower order on infinite intervals. By using Leray-Schauder continuation
theorem, the existence of solutions are investigated. Finally, we give one example to demonstrate the use of the main result.
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1. Introduction

Boundary value problems on infinite intervals originated in the field of the applied mathematics
and physics. In recent years, boundary value problems (BVPs) on infinite intervals have received much
attention mainly due to their important applications in the study of plasma physics, in analyzing the heat
transfer in radial flow between circular disks, in the study of the unsteady flow of a gas through semi-
infinite porous medium, and in an analysis of the mass transfer on a rotating disk in non-Newtonian
fluid, see [13, 20] and references therein. Some works and various techniques dealing with this kind
of boundary value problems, such as different kinds of fixed point theorem, upper and lower solution
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techniques, topological degree theorem and coincidence degree theorem are used to discuss second-order
or n-th order boundary value problems on a half-line (Dirichlet problems, periodic, impulsive system,
time delay and so on), see [6, 8–11, 14, 16, 19] and the references therein.

In fact, differential equations in actual production and scientific research are extremely complex. In
many cases, it is difficult to get the analytic solutions and even to get the analytical expressions. To solve
the problem, we need to consider its approximate solutions or study on the properties of solutions. It
requires the discretization of differential equations, so difference equations is very important and prac-
tical. Therefore, many scholars devote to study difference equation boundary value problems. Recently,
boundary value problems for difference equations on infinite intervals have been considered widely, such
as modern medical biology mathematics, economics, physics, chemistry and so on, and there are some
excellent results on the existence of solutions, see [1, 2, 4, 5, 7, 12, 17, 18] and the references therein. How-
ever, to our knowledge, the theory of difference equation boundary value problems on infinite interval is
rather less, there are still lots of work and research that should be done.

In [3], Agarwal and Regan studied the existence of non-negative solutions for second order difference
boundary value problems on infinite intervals{

∆2x(i− 1) + f(i, x(i)) = 0,
x(0) = 0, lim

i→∞ x(i) = 0.

In [15], Lian et al. used the Schauder fixed point theorem and upper and lower solution technique
to study unbounded positive solutions for second-order discrete boundary value problems on infinite
intervals {

−∆2xk−1 = f(k, xk,∆xk−1), k ∈ N,
x0 − a∆x0 = B, ∆x∞ = C.

Motivated by the work above, in this paper, we consider the existence of solutions for second-order
m-point difference boundary value problems on infinite intervals

∆2x(k− 1) + f(k, x(k),∆x(k− 1)) = 0, k ∈ N,

x(0) =
m−2∑
i=1

αix(ηi), lim
k→∞∆x(k) = 0,

(1.1)

where N = {1, 2, · · · }, f : N × R2 → R is continuous, αi ∈ R,
m−2∑
i=1

αi 6= 1, αi have the same signal,

ηi ∈ N, 0 < η1 < η2 < · · · <∞ and ∆x(k) = x(k+ 1) − x(k).
We set

P =

∞∑
j=1

p(j), P1 =

∞∑
j=1

jp(j), Q =

∞∑
j=1

q(j),

and we suppose αi, i = 1, 2, · · · ,m−2 are the same signal in this paper and we always assume α =
m−2∑
i=1

αi.

In this paper, we always assume the following conditions hold:

(C1) f : N× R2 → R is continuous. For each r > 0, there exists ϕr(k) ∈ l1 with kϕr(k) ∈ l1, ϕr(k) > 0
such that max{|u|, |v|} 6 r implies |f(k,u, v)| 6 ϕr(k), for each k ∈ N.

(C2) f : N× R2 → R is continuous, there exist p(k),q(k), r(k) ∈ l1 with kp(k),kq(k),kr(k) ∈ l1, such that
for each k ∈ N, (u, v) ∈ R2 implies |f(k,u, v)| 6 p(k)|u|+ q(k)|v|+ r(k).

We deal with the existence of solutions for BVP (1.1) by using the Lerday-Schauder continuation
theorem and obtain the result which extends and improves the known results.
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2. Preliminary results

Let N0 be the set of all nonnegative integers and S be the space of sequence, that is x ∈ S, x =
{x(k)}k∈N0 . If x(k) 6 y(k) for all k ∈ N0, we call x 6 y. Consider the space

S∞ = {x ∈ S : lim
k→∞ x(k) and lim

k→∞∆x(k) exist },

with the norm ‖x‖ = max{‖x‖∞, ‖∆x‖∞}, where ‖.‖∞ is supremum norm on the infinite intervals. Obvi-
ously, (S∞, ‖.‖∞) is a Banach space. In addition, this paper also involves space l1 and for all x ∈ l1, we

have ‖x‖l1 =
∞∑
k=1

|x(k)|.

Lemma 2.1. Let v = {v(k)}k∈N,
∞∑
k=1

v(k) <∞ and
∞∑
k=1

kv(k) <∞, then the BVP


∆2x(k− 1) + v(k) = 0, k ∈ N,

x(0) =
m−2∑
i=1

αix(ηi), lim
k→∞∆x(k) = 0,

(2.1)

has a unique solution. Moreover, this unique solution can be expressed in the form

x(k) =

∞∑
j=1

G(k, j)v(j),

where G(k, j) is defined by

G(k, j) =
1
Λ



j, j 6 η1, j 6 k,
m−2∑
i=1

αij+Λk, j 6 η1, j > k,

i∑
a=1

αaηa +
m−2∑
a=i+1

αaj+Λj, 0 < ηi < j 6 ηi+1, j 6 k, i = 1, 2, · · · ,m− 3,

i∑
a=1

αaηa +
m−2∑
a=i+1

αaj+Λk, 0 < ηi < j 6 ηi+1, j > k, i = 1, 2, · · · ,m− 3,

m−2∑
i=1

αiηi +Λj, ηm−2 < j, j 6 k,

m−2∑
i=1

αiηi +Λk, ηm−2 < j, j > k.

Here Λ = 1 −
m−2∑
i=1

αi.

Proof. Since
∞∑
k=1

v(k) <∞ and
∞∑
k=1

kv(k) <∞, we obtain that

x(k) = x(0) +
k∑
i=1

∞∑
j=i

v(j). (2.2)

Since x(0) =
m−2∑
i=1

αix(ηi), from (2.2), we obtain that

x(0) =
1

1 −
m−2∑
i=1

αi

[m−2∑
i=1

αi

η1∑
j=1

jv(j) +

m−3∑
i=1

ηi+1∑
j=ηi+1

(

m−2∑
a=i+1

αaj+

i∑
a=1

αaηa)v(j) +

m−2∑
i=1

αiηi

∞∑
j=ηm−2+1

v(j)

]
.
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The unique solution of (2.1) can be stated by

x(k) =
1

1 −
m−2∑
i=1

αi

[m−2∑
i=1

αi

η1∑
j=1

jv(j) +

m−3∑
i=1

ηi+1∑
j=ηi+1

(

m−2∑
a=i+1

αaj+

i∑
a=1

αaηa)v(j) +

m−2∑
i=1

αiηi

∞∑
j=ηm−2+1

v(j)

]

+

k∑
j=1

jv(j) +

∞∑
j=k+1

kv(j).

For 0 6 k 6 η1, the unique solution of (2.1) can be stated by

x(k) =
1

1 −
m−2∑
i=1

αi

k∑
j=1

jv(j) +

η1∑
j=k+1

( m−2∑
i=1

αij

1 −
m−2∑
i=1

αi

+ k

)
v(j)

+

m−3∑
i=1

ηi+1∑
j=ηi+1

( m−2∑
a=i+1

αaj+
i∑
a=1

αaηa

1 −
m−2∑
i=1

αi

+ k

)
v(j) +

∞∑
j=ηm−2+1

( m−2∑
i=1

αiηi

1 −
m−2∑
i=1

αi

+ k

)
v(j).

For ηi < k 6 ηi+1, 1 6 i 6 m− 3, the unique solution of (2.1) can be stated by

x(k) =
1

1 −
m−2∑
i=1

αi

η1∑
j=1

jv(j) +

i−1∑
b=1

ηb+1∑
j=ηb+1

( m−2∑
a=b+1

αaj+
b∑
a=1

αaηa

1 −
m−2∑
i=1

αi

+ j

)
v(j)

+

k∑
j=ηi+1

( m−2∑
a=i+1

αaj+
i∑
a=1

αaηa

1 −
m−2∑
i=1

αi

+ j

)
v(j) +

ηi+1∑
j=k+1

( m−2∑
a=i+1

αaj+
i∑
a=1

αaηa

1 −
m−2∑
i=1

αi

+ k

)
v(j)

+

m−3∑
b=i+1

ηb+1∑
j=ηb+1

( b∑
a=1

αaηa +
m−2∑
a=b+1

αaj

1 −
m−2∑
i=1

αi

+ k

)
v(j) +

∞∑
j=ηm−2+1

( m−2∑
i=1

αiηi

1 −
m−2∑
i=1

αi

+ k

)
v(j).

For ηm−2 < k <∞, the unique solution of (2.1) can be stated by

x(k) =
1

1 −
m−2∑
i=1

αi

η1∑
j=1

jv(j) +

m−3∑
b=1

ηb+1∑
j=ηb+1

( m−2∑
a=b+1

αaj+
b∑
a=1

αaηa

1 −
m−2∑
i=1

αi

+ j

)
v(j)

+

k∑
j=ηm−2+1

( m−2∑
i=1

αiηi

1 −
m−2∑
i=1

αi

+ j

)
v(j) +

∞∑
j=k+1

( m−2∑
i=1

αiηi

1 −
m−2∑
i=1

αi

+ k

)
v(j).

We note Λ = 1 −
m−2∑
i=1

αi, and
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G(k, j) =
1
Λ



j, j 6 η1, j 6 k,
m−2∑
i=1

αij+Λk, j 6 η1, j > k,

i∑
a=1

αaηa +
m−2∑
a=i+1

αaj+Λj, 0 < ηi < j 6 ηi+1, j 6 k, i = 1, 2, · · · ,m− 3,

i∑
a=1

αaηa +
m−2∑
a=i+1

αaj+Λk, 0 < ηi < j 6 ηi+1, j > k, i = 1, 2, · · · ,m− 3,

m−2∑
i=1

αiηi +Λj, ηm−2 < j, j 6 k,

m−2∑
i=1

αiηi +Λk, ηm−2 < j, j > k.

Therefore, the unique solution of (2.1) is x(k) =
∞∑
j=1
G(k, j)v(j), which completes the proof.

Remark 2.2. Obviously G(k, j) satisfies the properties of a Green function, so we call G(k, j) the Green
function of the corresponding homogeneous multipoint BVP of (2.1) on infinite intervals.

Lemma 2.3. For all k, j ∈ N, it holds that

|G(k, j)| 6



j,
m−2∑
i=1

αi < 0,

j
Λ , 0 6

m−2∑
i=1

αi < 1,

max

{∑m−2
i=1 αij
−Λ ,

∑m−2
i=1 αiηm−2

−Λ

}
,

m−2∑
i=1

αi > 1.

Proof. For each j ∈ N, G(k, j) is nondecreasing in k, we have

min

{∑m−2
i=1 αij

Λ
,
∑i
a=1 αaηa +

∑m−2
a=i+1 αaj

Λ
,
∑m−2
i=1 αiηi

Λ

}
6 G(k, j) 6 G(j, j)

=
1
Λ



j, j 6 η1,
i∑
a=1

αaηa +
m−2∑
a=i+1

αaj+Λj, 0 < ηi < j 6 ηi+1, i = 1, 2, · · · ,m− 3,

m−2∑
i=1

αiηi +Λj, ηm−2 < j.

Further, we have ∑m−2
i=1 αij

Λ
6 G(k, j) 6 j,

m−2∑
i=1

αi < 0,

0 < min

{∑m−2
i=1 αij

Λ
,
∑m−2
i=1 αiη1

Λ

}
6 G(k, j) 6

j

Λ
, 0 6

m−2∑
i=1

αi < 1,

min

{∑m−2
i=1 αij

Λ
,
∑m−2
i=1 αiηm−2

Λ

}
6 G(k, j) 6 j,

m−2∑
i=1

αi > 1.

Therefore, this completes the proof.
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Lemma 2.4. For the Green function G(k, j), it holds that

lim
k→∞G(k, j) = G(j)

=
1
Λ



j, j 6 η1,
i∑
a=1

αaηa +
m−2∑
a=i+1

αaj+Λj, 0 < ηi < j 6 ηi+1, i = 1, 2, · · · ,m− 3,

m−2∑
i=1

αiηi +Λj, ηm−2 < j.

Theorem 2.5 ([10]). Let

M ⊂ S∞ = {x ∈ S : lim
k→∞ x(k) and lim

k→∞∆x(k) exist}.

If M is uniformly bounded, and uniformly convergent on infinite interval, then M is relatively compact.

3. Main result

Consider the space

X =

{
x ∈ S∞ : x(0) =

m−2∑
i=1

αix(ηi), lim
k→∞∆x(k) = 0

}
,

and define the operator T : X× [0, 1]→ X by

T(x, λ)(k) = λ
∞∑
j=1

G(k, j)f(j, x(j),∆x(j− 1)), k ∈ N.

The main result of this paper is the following.

Lemma 3.1. Let (C1) hold. Then, for each λ ∈ [0, 1], T(x, λ) is completely continuous in X.

Proof. First, we show T is well-defined. For each x ∈ X, then there exists r > 0 such that ‖x‖ < r. For each
λ ∈ [0, 1], it holds that

T(x, λ)(k) = λ
∞∑
j=1

G(k, j)f(j, x(j),∆x(j− 1))

6
∞∑
j=1

|G(k, j)f(j, x(j),∆x(j− 1))|

6
∞∑
j=1

|G(k, j)|ϕr(j) <∞, k ∈ N.

By the definition of T , we have

|∆T(x, λ)(k)| = |(T(x, λ)(k+ 1) − T(x, λ)(k))|

=

∣∣∣∣λ ∞∑
j=1

G(k+ 1, j)f(j, x(j),∆x(j− 1)) − λ
∞∑
j=1

G(k, j)f(j, x(j),∆x(j− 1))
∣∣∣∣

6 λ
∞∑
j=1

|G(k+ 1, j) −G(k, j)|ϕr(j)

<∞, k ∈ N.

Therefore, Tx ∈ S∞.



C. L. Yu, J. F. Wang, Y. P. Guo, S. Miao, J. Nonlinear Sci. Appl., 10 (2017), 5734–5743 5740

Obviously, T(x, λ)(0) =
m−2∑
i=1

αiT(x, λ)(ηi), and notice that

lim
k→∞∆T(x, λ)(k) = lim

k→∞ λ
∞∑

j=k+1

f(j, x(j),∆x(j− 1)) = 0,

so we can get Tx ∈ X.
Second, we claim that T(x, λ) is completely continuous in X, that is, for each λ ∈ (0, 1), T(x, λ) is

continuous in X and maps a bounded subset of X into a relatively compact set.
For each xn ∈ X, xn → x as n → ∞. Next, we prove that for each λ ∈ (0, 1), T(xn, λ) → T(x, λ) as

n→∞ in X. By condition (C1), we have∣∣∣∣ ∞∑
j=1

G(k, j)f(j, xn(j),∆xn(j− 1)) −
∞∑
j=1

G(k, j)f(j, x(j),∆x(j− 1))
∣∣∣∣

6

∣∣∣∣ ∞∑
j=1

G(k, j)(f(j, xn(j),∆xn(j− 1)) − f(j, x(j),∆x(j− 1)))
∣∣∣∣

6 2
∞∑
j=1

|G(j)|ϕr0(j), as n→∞,

where r0 > 0 is a real number, such that maxn∈N{‖xn‖, ‖x‖} = r0, we have

|T(xn, λ)(k) − T(x, λ)(k)| 6
∞∑
j=1

|G(k, j)||f(j, xn(j),∆xn(j− 1)) − f(j, x(j),∆x(j− 1))|→ 0, as n→∞,

and

|∆T(xn, λ)(k) −∆T(x, λ)(k)| 6
∞∑
j=1

|f(j, xn(j),∆xn(j− 1)) − f(j, x(j),∆x(j− 1))|→ 0, as n→∞.

Therefore, T is continuous.
Finally, we claim that T is compact set, that is, T maps a bounded subset of X into a relatively compact

set. Let B ⊂ X be a bounded subset. For each x ∈ B, ‖x‖ < r, there exists r > 0, we have

‖T(x, λ)(k)‖∞ = sup
k∈N0

|T(x, λ)(k)| = sup
k∈N0

∣∣∣∣λ ∞∑
j=1

G(k, j)f(j, x(j),∆x(j− 1))
∣∣∣∣

6
∞∑
j=1

|G(k, j)|ϕr(k) <∞, (k→∞).

Similarly, we have

‖∆T(x, λ)(k)‖∞ = sup
k∈N0

|∆T(x, λ)(k)| = sup
k∈N0

∣∣∣∣ ∞∑
j=k+1

f(j, x(j),∆x(j− 1))
∣∣∣∣

6 sup
k∈N0

∞∑
j=k+1

ϕr(j) <∞, (k→∞).

Therefore, TB is bounded. At the same time, we obtain that

|(T(x, λ)(k) − lim
k→∞ T(x, λ)(k))| = λ|

∞∑
j=1

(G(k, j) −G(j))f(j, x(j),∆x(j− 1))|

6
∞∑
j=1

|G(k, j) −G(j)|ϕr(j)→ 0, (k→∞),

and
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|∆(T(x, λ)(k) − lim
k→∞∆T(x, λ)(k))| = |∆T(x, λ)(k)|

6
∞∑

j=k+1

|f(j, x(j),∆x(j− 1))|

6
∞∑

j=k+1

ϕr(j)→ 0, (k→∞).

So, TB is uniformly convergent on infinity. Thus, by Theorem 2.5, T(·, λ) : X× [0, 1] → X is completely
continuous on infinite intervals.

Theorem 3.2. Let (C1) and (C2) hold. Then BVP (1.1) has at least one solution provided:

ηm−2P+ P1 +Q < 1, α < 0,
αηm−2

1 −α
P+ P1 +Q < 1, 0 6 α < 1,

max{
αηm−2

α− 1
P+ P1 +Q,

αηm−2

α− 1
P+

α

α− 1
P1} < 1, α > 1.

Proof. In view of Lemma 2.1, it is clear that x ∈ X is a solution of the BVP (1.1) if and only if x is a fixed
point of T(·, 1). Clearly, T(x, 0) = 0 for each x ∈ X. If for each λ ∈ [0, 1], the fixed points T(·, λ) in X
belong to a closed ball of X independent of λ, then the Leray-Schauder continuation theorem completes
the proof. We have known T(·, λ) is completely continuous by Lemma 3.1. Next, we show that the fixed
point of T(·, λ) has a priori bound M independently of λ. Assume x = T(x, λ) and set

Q1 =

∞∑
j=1

jq(j), R =

∞∑
j=1

r(j), R1 =

∞∑
j=1

jr(j).

Case 1: (α < 0). For any x ∈ X, k ∈ N, we have

|x(k)| =

∣∣∣∣ k∑
j=1

∆x(j− 1) + x(0)
∣∣∣∣ = ∣∣∣∣ k∑

j=1

∆x(j− 1) +

m−2∑
i=1

αi

1 −
m−2∑
i=1

αi

ηi∑
j=1

∆x(j− 1)
∣∣∣∣

6 k‖∆x‖∞ +

∣∣∣∣ α

1 −α

∣∣∣∣ηm−2‖∆x‖∞
6 (k+ ηm−2)‖∆x‖∞, k ∈ N,

and so it holds that

‖∆x‖∞ 6 ‖λf(j, x(j),∆x(j− 1))‖l1 6 ‖f(j, x(j),∆x(j− 1))‖l1
6 ‖p(j)|x(j)|+ q(j)|∆x(j− 1)|+ r(j)‖l1
6 (ηm−2P+ P1 +Q)‖∆x‖∞ + R,

therefore,
‖∆x‖∞ 6

R

1 − ηm−2P− P1 −Q
:= ∆M1.

At the same time, we have

|x(k)| 6

∣∣∣∣λ ∞∑
j=1

G(k, j)f(j, x(j),∆x(j− 1))
∣∣∣∣ 6 ∞∑

j=1

|jf(j, x(j),∆x(j− 1))|

6
∞∑
j=1

∣∣∣∣j[p(j)x(j) + q(j)∆x(j− 1) + r(j)]
∣∣∣∣



C. L. Yu, J. F. Wang, Y. P. Guo, S. Miao, J. Nonlinear Sci. Appl., 10 (2017), 5734–5743 5742

6 P1‖x(j)‖∞ +Q1‖∆x(j− 1)‖∞ + R1

6 P1‖x‖∞ +Q1∆M1 + R1, k ∈ N,

and so
‖x‖∞ 6

Q1∆M1 + R1

1 − P1
:=M1.

Set M = max{M1,∆M1}, which is independent of λ, so ‖x‖ 6M.

Case 2: (0 6 α < 1). For any x ∈ X, k ∈ N, we have

|x(k)| =

∣∣∣∣∣
m−2∑
i=1

αi

1 −
m−2∑
i=1

αi

ηi∑
j=1

∆x(j− 1) +
k∑
j=1

∆x(j− 1)

∣∣∣∣∣ 6 (
αηm−2

1 −α
+ k)‖∆x‖∞, k ∈ N.

In the same way as for Case 1, we can get

‖∆x‖∞ 6
(1 −α)R

(1 −α)(1 − P1 −Q) −αηm−2P
:= ∆M2,

‖x‖∞ 6
Q1∆M1 + R1

1 − P1
:=M2.

Set M = max{M2,∆M2}, which is independent of λ and is what we need, so ‖x‖ 6M.

Case 3: (α > 1). For any x ∈ X, k ∈ N, we have

|x(k)| =

∣∣∣∣x(0) + k∑
j=1

∆x(j− 1)
∣∣∣∣ 6 (

αηm−2

α− 1
+ k

)
‖∆x‖∞, k ∈ N.

Similarly, we obtain

‖∆x‖∞ 6
(α− 1)R

(α− 1)(1 − P1 −Q) −αηm−2P
:= ∆M3,

and

|x(k)| 6
∞∑
j=1

|G(k, j)f(j, x(j),∆x(j− 1))|

6
∞∑
j=1

∣∣∣∣ αj

α− 1
f(j, x(j),∆x(j− 1))

∣∣∣∣+ ∞∑
j=η

∣∣∣∣αηm−2

α− 1
f(j, x(j),∆x(j− 1))

∣∣∣∣
6

α

α− 1
(P1‖x‖∞ +Q1∆M3 + R1) +

αηm−2

α− 1
(P‖x‖∞ +Q∆M3 + R),

that is,

‖x‖∞ 6
α(Q1∆M3 + R1) +αηm−2(Q1∆M3 + R)

α− 1 −α(P1 + ηm−2P)
:=M3.

Set M = max{M3,∆M3} and this is what we need. Hence, BVP (1.1) has at least one solution.

4. Example

Example 4.1. Consider the following second-order four-point difference equation BVP on infinite intervals{
∆2x(k− 1) + sin(x(k))

102k! +
arctan(∆x(k−1))+1

3k = 0, k ∈ N,
x(0) = 1

10x(10) + 1
10x(100), lim

k→∞∆x(k) = 0, (4.1)

where m = 4,α1 = α2 = 1
10 , η1 = 10, η2 = 100, f(t,u, v) =

sin(x(k))
102k! +

arctan(∆x(k−1))+1
3k , and p(k) =
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1
102k! , q(k) =

1
3k , r(k) = 1

3k .
Obviously, f(t,u, v) 6 p(k)|u|+q(k)|v|+ r(k). By a simple calculation, we find that (C1) and (C2) hold.

Since α = α1 + α2 = 1
5 < 1, αη2

1−αP + P1 +Q ≈ 0.96 < 1. Hence, by Theorem 3.2, we obtain the BVP (4.1)
has at least one solution.
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