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Abstract
The aim of this paper is to consider the Hyers-Ulam stability of a class of parabolic equation{

∂u
∂t − a2∆u+ b · ∇u+ cu = 0, (x, t) ∈ Rn × (0,+∞),
u(x, 0) = ϕ(x), x ∈ Rn.

We conclude that

(i) it is Hyers-Ulam stable on any finite interval;

(ii) if c 6= 0, it is Hyers-Ulam stable on the semi-infinite interval;

(iii) if c = 0, it is not Hyers-Ulam stable on the semi-infinite interval by using Fourier transformation.

Furthermore, our results can be applied to the mean square Hyers-Ulam stability of parabolic equations driven by an n-
dimensional Brownian motion. c©2017 All rights reserved.
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2010 MSC: 35A24, 35A30, 35A35.

1. Introduction

The notion of Hyers-Ulam stability arose for the stability question of functional equations posed on
by Ulam in 1940. Hyers answered it in the upcoming years [6, 16]. Theories of the stability for functional
equations have received a lot of attention in the past two decades.

In 1993, Obloza introduced the stability to study approximate solutions of differential equations
[10, 11]. Since then, there have been many papers dealing with the Hyers-Ulam stability for ordinary
differential equations [1–3, 8, 13–15, 17–19] and partial differential equations [4, 9]. Lungu and Popa [9]
investigated the sufficient conditions of Hyers-Ulam stability for the following first order linear partial
differential equation

p(x,y)
∂u

∂x
+ q(x,y)

∂u

∂y
= p(x,y)r(x)u+ f(x,y).
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András and Mészáros [4] considered the sufficient conditions of Hyers-Ulam stability for the following
elliptic partial differential equation {

∆u = f(x,u(x)) in Ω,
u = 0 on ∂Ω.

Parabolic equations play an important role in physics, chemistry and biology. There have been many
studies on the kind of equation. However, to the best knowledge of the authors, there exists no work in
the literature which discusses the Hyers-Ulam stability of parabolic equations. Motivated by the above
work [4, 9], in this paper, we will consider the Hyers-Ulam stability for the following parabolic equation

∂u

∂t
− a2∆u+ b · ∇u+ cu = 0, (x, t) ∈ Rn × (0,+∞), (1.1)

subject to u(x, 0) = ϕ(x), x ∈ Rn, (1.2)

where a2 > 0, c > 0, b is a given constant vector field in Rn, ϕ ∈ C(Rn) is bounded, x = (x1, x2, · · · , xn),

∆u =
n∑
i=1

∂2u
∂x2
i

.

Moreover, uncertainty is involved in all kinds of natural phenomena, and stochastic models are more
suitable for uncertainty phenomena. Therefore, it is important to generalize the results to perturbation
cases. We will also consider the mean square Hyers-Ulam stability of (1.1) subject to (1.2) with a stochastic
term.

The novelty of our work is the following:

(i) the necessary and sufficient conditions of Hyers-Ulam stability are considered;

(ii) the stochastic approximate solutions of (1.1) are considered and the mean square errors are studied.

The paper is organized as follows. Some background material is given in Section 2. The Hyers-Ulam
stability of (1.1) is considered in Section 3. The mean square Hyers-Ulam stability of (1.1) is considered in
Section 4.

2. Preliminary

Throughout the paper, all random variables and processes are defined on a probability space (Ω,F,P)
adopted to Ft, t > 0, filtration Ft, t > 0 satisfying the usual conditions, that is, it is right continuous and
increasing while F0 contains all P-null sets. B is a vector of n independent Brownian motions Bi (i =
1, 2, · · ·,n) adopted to Ft and independent of F0. For the details of it, we refer the reader to reference
[12]. Moreover, we also note that solutions of (1.1) subject to (1.2) denote classical solutions defined in
C2,1(Rn ×R+), where C2,1(Rn ×R+) denotes the function space having continuous derivatives up to
order two in the space variable x and having a continuous derivative with respect to the time variable t;
| · | denotes the Euclidean norm on Rn, in the context.

Now we introduce the fundamental definitions and two lemmas, which are used later in the paper.

Definition 2.1. Let I ⊂ [0,∞) be an interval, K is a positive constant. Assume that for any function
uε ∈ C2,1(Rn ×R+) with uε(x, 0) = ϕ(x) satisfying the differential inequality

∣∣ ∂
∂t
u− a2∆u+ b · ∇u+ cu

∣∣ 6 ε
for all (x, t) ∈ Rn × I and some ε > 0, there exists a solution u0 ∈ C2,1(Rn ×R+) of (1.1) subject to (1.2)
such that |uε(x, t) − u0(x, t)| 6 Kε for any (x, t) ∈ Rn × I. Then we say that (1.1) is Hyers-Ulam stable on
Rn × I, K is the Hyers-Ulam constant.
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Definition 2.2 ([12]). An n-dimensional Itô processes or stochastic integral x is a vector of n stochastic
process xi (i = 1, 2, · · ·,n) on (Ω,F,P) adopted to Ft, t > 0 which can be written in the form

xi(t) = xi(0) +
∫t

0
Ui(s)ds+ Vi(s)dBi(s), i = 1, 2, · · ·,n, (2.1)

where Ui,Vi ∈ L2, note also that L2 is a space of stochastic processes defined by

L2 =

{
u

∣∣∣∣ ∫T
0
u(t)dt exists a.s., E[

∫T
0
u2(t)dt] <∞, for every T > 0

}
.

As a shorthand notation, we will write (2.1) as

dx(t) = U(t)dt+ V(t)dB(t),

or
dx

dt
= U+ V

dB

dt
,

where x = (x1, x2, · · ·, xn), U = (U1,U2, · · ·,Un), V = (V1,V2, · · ·,Vn), B = (B1,B2, · · ·,Bn).

Definition 2.3. Let I ⊂ [0,∞) be a real interval, K is a positive constant, σ : Rn × I→ Rn,

∂u

∂t
− a2∆u+ b · ∇u+ cu = σ · dB

dt
.

Assume that for any stochastic process uε(x, ·) ∈ L2 with u(x, 0) = ϕ(x) satisfying the inequality

|σ(x, t)| 6 ε

for all (x, t) ∈ Rn × I and some ε > 0, there exists a solution u0 ∈ C2,1(Rn ×R+) of (1.1) subject to (1.2)
satisfying E|uε(t, x) − u0(t, x)|2 6 K2ε for any (x, t) ∈ Rn × I. Then we say that (1.1) is mean square
Hyers-Ulam stable on Rn × I, K is the mean square Hyers-Ulam constant.

We will use the Itô formula and Itô isometry [12] in the paper as follows.

Lemma 2.4. Let y, z be two one-dimensional Itô processes, then yz is also a one-dimensional Itô process and

dyz = ydz+ zdy+ dydz, (2.2)

where dydz is computed using the rules dtdt = dtdBi(t) = dBi(t)dt = 0, dBi(t)dBj(t) = 0 for all i 6= j and
(dBi(t))

2 = dt, i, j = 1, 2, · · ·,n.

Lemma 2.5. Let y ∈ L2, then

E
∣∣ ∫T

0
y(t)dBi(t)

∣∣2 = E
∣∣ ∫T

0
y2(t)dt

∣∣, (2.3)

where E denotes expectation, i = 1, 2, · · ·,n.

3. Hyers-Ulam stability of (1.1)

In the section, we first consider the Hyers-Ulam stability of (1.1) by using Fourier Transformation. The
Fourier transform of u with respect to x ∈ Rn is denoted by

F{u(x, t)} = û(ξ, t),
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and is defined by

F{u(x, t)} = û(ξ, t) =
1

(2π)
n
2

∫+∞
−∞ · · ·

∫+∞
−∞ e−iξ·xu(x, t)dx, (3.1)

provided the integral ∫+∞
−∞ · · ·

∫+∞
−∞ e−iξ·xu(x, t)dx,

exists, where ξ = (ξ1, ξ2 · · · ξn) is the n-dimensional transform vector and ξ · x =
n∑
i=1

ξixi. The inverse

Fourier transform, denoted by F−1{û(ξ, t)} = u(x, t) and is defined by

F−1{û(ξ, t)} = u(x, t) =
1

(2π)
n
2

∫+∞
−∞ · · ·

∫+∞
−∞ eiξ·xû(ξ, t)dξ, (3.2)

provided the integral ∫+∞
−∞ · · ·

∫+∞
−∞ eiξ·xû(ξ, t)dξ,

exists. For functions in bounded solution class of (1.1) subject to (1.2), the Fourier transform always exists.
For more details on the Fourier transform formula, we refer the reader to reference [5].

Now we introduce the function

ε :=
∂u

∂t
− a2∆u+ b · ∇u+ cu. (3.3)

Theorem 3.1. Assume that β > 0, β = +∞ is allowed, if and only if c 6= 0, ϕ ∈ C(Rn) is bounded. For every
uε ∈ C2,1(Rn ×R+) satisfying {

|ε(t, x)| 6 ε, (x, t) ∈ Rn × [0,β],
u(x, 0) = ϕ(x), x ∈ Rn, (3.4)

there exists a solution u0 ∈ C2,1(Rn ×R+) of (1.1) subject to (1.2) satisfying

|uε(x, t) − u0(x, t)| 6
1
c
ε, for every (x, t) ∈ Rn × [0,β], when c 6= 0,

|uε(x, t) − u0(x, t)| 6 βε, for every (x, t) ∈ Rn × [0,β], when c = 0.

That is, (1.1) is Hyers-Ulam stable on Rn × [0,β] and 1
c is the Hyers-Ulam constant, when c 6= 0; β is the

Hyers-Ulam constant, when c = 0.

Proof. First, we would like to compute the classic solution of (1.1) subject to (1.2). Apply the Fourier
transform with respect to the space variable x defined by (3.1) to (1.1) and (1.2). By

F{∆u} = (i|ξ|)2û, F{
∂u

∂x
} = iξû,

(1.1) and (1.2) reduce to {
d
dt û(ξ, t) + (a2|ξ|2 + ib · ξ+ c)û(ξ, t) = 0,
û(ξ, 0) = ϕ̂(ξ).

(3.5)

Thus, the solution of this transformed problem (3.5) is

û0 = ϕ̂(ξ) exp(−(a2|ξ|2 + ib · ξ+ c)t). (3.6)

Take the inverse Fourier transform defined by (3.2) to (3.6)

u0 = F−1{û(ξ, t)} = e−ctF−1{ϕ̂(ξ) exp(−(a2|ξ|2 + ib · ξ)t)}. (3.7)
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Applying the Convolution formula to (3.7) implies

F−1{ϕ̂(ξ) exp(−(a2|ξ|2 + ib · ξ)t)} = 1
(2a
√
πt)n

∫+∞
−∞ · · ·

∫+∞
−∞ ϕ(ξ)e

−
|x+b−ξ|2

4a2t dξ.

So that,

u0 =
e−ct

(2a
√
πt)n

∫+∞
−∞ · · ·

∫+∞
−∞ ϕ(ξ)e

−
|x+b−ξ|2

4a2t dξ. (3.8)

Since ϕ ∈ C(Rn) is bounded, ∂u0
∂t , ∆u0 are uniform convergence with respect to x, t. This implies

u0, ∂u0
∂t ,∆u0 ∈ C(Rn ×R+), lim

t→0+
u0(x, t) = ϕ(x) and u0 is bounded. So that u0 ∈ C2,1(Rn ×R+) is

the unique bounded solution of (1.1) subject to (1.2). For the details about proof, we refer the reader to
reference [7].

Next, we would like to show the Hyers-Ulam stability of (1.1) subject to (1.2). Take the Fourier
transformation of (3.3) subject to (1.2) with respect to the time variable x, it is transformed to{

d
dt û(ξ, t) + (a2|ξ|2 + ib · ξ+ c)û(ξ, t) = ε̂(ξ, t),
û(ξ, 0) = ϕ̂(ξ).

(3.9)

The method of variation of constant gives the unique solution of (3.9)

ûε(ξ, t) = ϕ̂(ξ) exp(−(a2|ξ|2 + ib · ξ+ c)t) +
∫t

0
ε̂(ξ, τ) exp(−(a2|ξ|2 + ib · ξ+ c)(t− τ))dτ. (3.10)

Take the inverse Fourier transform of (3.10) with respect to the variable ξ. Similarly to the proof of (3.8),
we can get

uε(x, t) =
e−ct

(2a
√
πt)n

∫+∞
−∞ · · ·

∫+∞
−∞ ϕ(ξ)e

−
|x+b−ξ|2

4a2t dξ

+

∫t
0

e−c(t−τ)

(2a
√
π(t− τ))2

∫+∞
−∞ · · ·

∫+∞
−∞ ε(ξ, τ)e

−
|x+bt−ξ|2

4a2(t−τ) dξdτ.
(3.11)

It follows from (3.11) that if c 6= 0, then

|uε(x, t) − u0(x, t)| =
∣∣∣∣ ∫t

0

e−c(t−τ)

(2a
√
π(t− τ))n

∫+∞
−∞ · · ·

∫+∞
−∞ ε(ξ, τ)e

−
|x+b−ξ|2

4a2(t−τ) dξdτ

∣∣∣∣
6 ε

∣∣∣∣ ∫t
0
e−c(t−τ)

∫+∞
−∞ · · ·

∫+∞
−∞

1
(2a
√
π(t− τ))n

e
−

|x+bt−ξ|2

4a2(t−τ) dξdτ

∣∣∣∣
6 ε
∫t

0
e−c(t−τ)dτ =

1
c
ε.

If c = 0, then |uε(x, t) − u0(x, t)| 6 βε. This means that, (1.1) has the Hyers-Ulam stability on Rn × [0,β],
and 1

c is the Hyers-Ulam constant, when c 6= 0; β is the Hyers-Ulam constant, when c = 0. The proof is
completed.

Corollary 3.2. If c 6= 0, (1.1) is Hyers-Ulam stable on Rn × [0,+∞) and 1
c is the Hyers-Ulam constant.

Proof. Similarly to the proof of Theorem 3.1, if uε satisfies (3.4) on Rn × [0,+∞), then

|uε(x, t) − u0(x, t)| 6 ε
∫t

0
e−c(t−τ)dτ 6 ε

∫+∞
0

e−c(t−τ)dτ =
ε

c
, (x, t) ∈ Rn × [0,+∞).

This means that (1.1) has the Hyers-Ulam stability on Rn × [0,∞). 1
c is the Hyers-Ulam constant. The

proof is completed.
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Corollary 3.3. If c = 0, then (1.1) is not Hyers-Ulam stable on Rn × [0,+∞).

Proof. Let ϕ(x) = exp(b·x
a2 ), u0(x, t) = ϕ(x), (x, t) ∈ Rn × [0,+∞), then u0 is the solution of (1.1) subject

to (1.2). Furthermore, let uε(x, t) = ϕ(x) + 1
2εt, (x, t) ∈ Rn × [0,+∞) then uε(x, 0) = ϕ(x) and uε satisfies

the differential inequality ∣∣ ∂
∂t
u− a2∆u+ b · ∇u

∣∣ = 1
2
ε < ε

for all (x, t) ∈ Rn × [0,+∞), and

|uε(x, t) − u0(x, t)| =
1
2
εt,

is unbounded on [0,∞). This implies that (1.1) is not Hyers-Ulam stable on Rn × [0,∞). The proof is
completed.

4. Mean square Hyers-Ulam stability of (1.1)

Theorem 4.1. Assume that β > 0, β = +∞ is allowed, if and only if c 6= 0, ϕ ∈ C(Rn) is bounded. For every
stochastic process uε(x, ·) ∈ L2 satisfying{

∂
∂tu− a2∆u+ b · ∇u+ cu = δ · dBdt ,
u(x, 0) = ϕ(x), x ∈ Rn,

(4.1)

where δ : Rn× I→ Rn, |δ(x, t)| 6 ε for (x, t) ∈ Rn× [0,β], there exists a solution u0 ∈ C2,1(Rn×R+) of (1.1)
subject to u0(x, 0) = ϕ(x) with the property

E|uε(x, t) − u0(x, t)|2 6
1
c
ε2, for every (x, t) ∈ Rn × [0,β], when c 6= 0,

E|uε(x, t) − u0(x, t)|2 6 βε2, for every (x, t) ∈ Rn × [0,β], when c = 0.

That is, (1.1) is mean square Hyers-Ulam stable on Rn × [0,β] and 1√
c

is the mean square Hyers-Ulam constant,
when c 6= 0;

√
β is the mean square Hyers-Ulam constant, when c = 0.

Proof. Take the Fourier transformation of (4.1) with respect to the variable x. Similarly to the proof of
Theorem 3.1, we can get{

d
dt û(ξ, t) + (a2|ξ|2 + ib · ξ+ c)û(ξ, t) = δ̂(ξ, t) · dB(t)dt ,
û(ξ, 0) = ϕ̂(ξ).

(4.2)

Multiply the first equation of (4.2) by exp((a2|ξ|2 + ib · ξ+ c)t) and change it to

exp((a2|ξ|2 + ib · ξ+ c)t)dû(ξ, t) + (a2|ξ|2 + ib · ξ+ c) exp((a2|ξ|2 + ib · ξ+ c)t)û(ξ, t)dt

= exp((a2|ξ|2 + ib · ξ+ c)t)δ̂(ξ, t) · dB(t).

Using Itô formula (2.2), we have

d[exp((a2|ξ|2 + ib · ξ+ c)t)û(ξ, t)] = û(ξ, t)d exp((a2|ξ|2 + ib · ξ+ c)t)
+ exp((a2|ξ|2 + ib · ξ+ c)t)dû(ξ, t)

+ d exp((a2|ξ|2 + ib · ξ+ c)t)dû(ξ, t)

= (a2|ξ|2 + ib · ξ+ c) exp((a2|ξ|2 + ib · ξ+ c)t)û(ξ, t)dt

+ exp((a2|ξ|2 + ib · ξ+ c)t)dû(ξ, t)

+ [(a2|ξ|2 + ib · ξ+ c) exp((a2|ξ|2 + ib · ξ+ c)t)dt]
× [−(a2|ξ|2 + ib · ξ+ c)û(ξ, t)dt+ δ̂(ξ, t) · dB(t)]

= exp((a2|ξ|2 + ib · ξ+ c)t)dû(ξ, t) + (a2|ξ|2

+ ib · ξ+ c) exp((a2ξ2 + ib · ξ+ c)t)û(ξ, t)dt.
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This implies that (4.2) can be transformed to{
d[exp((a2|ξ|2 + ib · ξ+ c)t)û(ξ, t)] = exp((a2|ξ|2 + ib · ξ+ c)t)δ̂(ξ, t) · dB(t),
û(ξ, 0) = ϕ̂(ξ).

(4.3)

Thus the solution of (4.3) is

ûε(ξ, t) = ϕ̂(ξ) exp(−(a2|ξ|2 + ib · ξ+ c)t) +
∫t

0
ε̂(ξ, τ) exp(−(a2|ξ|2 + ib · ξ+ c)(t− τ)) · dB(τ). (4.4)

Take the inverse Fourier transform of (4.4) with respect to the variable ξ. Similarly to the proof of Theorem
3.1, we can get

uε(x, t) =
e−ct

2a
√
πt

∫+∞
−∞ · · ·

∫+∞
−∞ ϕ(ξ)e

−
|x+bt−ξ|2

4a2t dξ

+

∫t
0

e−c(t−τ)

2a
√
π(t− τ)

[ ∫+∞
−∞ · · ·

∫+∞
−∞ ε(ξ, τ)e

−
|x+bt−ξ|2

4a2(t−τ) dξ

]
· dB(τ).

By Itô Isometry (2.3), if c 6= 0, we have

E|uε(x, t) − u0(x, t)|2 = E

∣∣∣∣ ∫t
0

e−c(t−τ)

2a
√
π(t− τ)

[ ∫+∞
−∞ · · ·

∫+∞
−∞ ε(ξ, τ)e

−
|x+bt−ξ|2

4a2(t−τ) dξ

]
· dB(τ)

∣∣∣∣2
6 2ε2

∫t
0
e−2c(t−τ)∣∣ ∫+∞

−∞ · · ·
∫+∞
−∞

1
2a
√
π(t− τ)

e
−

(x+bt−ξ)2

4a2(t−τ) dξ
∣∣2dτ

6 2ε2
∫t

0
e−2c(t−τ)dτ

=
1
c
ε2,

if c = 0, we have E|u(x, t)−u0(x, t)|2 6 βε2. That is, (1.1) is mean square Hyers-Ulam stable on Rn× [0,β]
and 1√

c
is the mean square Hyers-Ulam constant, when c 6= 0;

√
β is the mean square Hyers-Ulam

constant, when c = 0. The proof is completed.

Corollary 4.2. If c 6= 0, (1.1) is mean square Hyers-Ulam stable on Rn × [0,+∞) and 1√
c

is the Hyers-Ulam
constant.

Proof. Similarly to the proof of Theorem 4.1, if uε satisfies (4.2) on Rn × [0,+∞), we have

E|uε(x, t) − u0(x, t)|2 6 2ε2
∫t

0
e−2c(t−τ)dτ =

ε2

c
, (x, t) ∈ Rn × [0,+∞).

This means that (1.1) is Hyers-Ulam stable on Rn × [0,+∞) and 1√
c

is the Hyers-Ulam constant. The
proof is completed.

Corollary 4.3. If c = 0, then (1.1) is not mean square Hyers-Ulam stable on Rn × [0,+∞).

Proof. Let ϕ(x) = exp(b·x
a2 ), u0(x, t) = ϕ(x), (x, t) ∈ Rn × [0,+∞), then u0 is the solution of (1.1) subject

to (1.2). Furthermore, let uε(x, t) = ϕ(x) + 1
2γ · B(t), (x, t) ∈ Rn × [0,+∞), where γ is a given constant

vector field in Rn and |γ| = ε, then uε(x, 0) = ϕ(x) and uε satisfies the following

∂

∂t
u− a2∆u+ b · ∇u =

1
2
γ · dB
dt

,

on Rn × [0,+∞), and

E|uε(x, t) − u0(x, t)|2 =
1
4
ε2t2,

is unbounded on Rn × [0,∞). This implies that (1.1) is not Hyers-Ulam stable on Rn × [0,∞). The proof
is completed.
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[4] S. András, A. R. Mészáros, Ulam-Hyers stability of elliptic partial differential equations in Sobolev spaces, Appl. Math.
Comput., 229 (2014), 131–138. 1

[5] L. Debnath, Nonlinear partial differential equations for scientists and engineers, Second edition, Birkhäuser Boston,
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