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Abstract

In this article, we investigate the nonemptiness and compactness of the solution set for vector equilibrium problem defined
in finite-dimensional spaces. We show that vector equilibrium problem has nonempty and compact solution set if and only if
linearly scalarized equilibrium problem has nonempty and compact solution set provided that R1 = {0} holds. Furthermore, we
obtain that vector equilibrium problem has nonempty and compact solution set if and only if linearly scalarized equilibrium
problem has nonempty and compact solution set when coercivity condition holds. As applications, we employ the obtained
results to derive Levitin-Polyak well-posedness, stability analysis and connectedness of the solution set of the vector equilibrium
problem. c©2017 All rights reserved.
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1. Introduction

Let X be a finite-dimensional normed space and a nonempty set K ⊆ X. Let Y be a real normed space
ordered by a proper, closed and convex cone C with int C 6= ∅, i.e., for y1,y2 ∈ Y, y1 6C y2, if and only if
y2 − y1 ∈ C. The vector equilibrium problem, abbreviated as (VEP), is to find x̄ ∈ K such that

h(x̄,y) /∈ −int C, ∀ y ∈ K,

where h : K× K → Y is a vector-valued mapping. For (VEP), a closely related problem is so-called dual
vector equilibrium problem, abbreviated as (DVEP), which is to find x̄ ∈ K such that

h(y, x̄) /∈ int C, ∀ y ∈ K.

Throughout this paper, we denote by X̄ the solution set for (VEP) and by X̄D the solution set for (DVEP).
It is well-known that the solution set for (VEP) can be characterized by the solution set for (DVEP) under
mild conditions [8].
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(VEP) includes several fundamental mathematical problems, such as vector optimization problem,
vector variational inequality problem, Nash equilibrium problem and fixed point problem, which finds
applications in economics, finance, image reconstruction, ecology, transportation, network, and elasticity;
see [15] and reference therein. One of the most important problems for (VEP) is to investigate the proper-
ties of the solution set, such as existence and uniqueness [11–13, 25–27, 31], semicontinuity and sensitivity
[1, 7], well-posedness [2, 22, 28–30, 32] and connectedness [16, 17, 23]. Among many desirable properties
of the solution set, the issue of the nonemptiness and boundedness of the solution set is interesting and
important, as it can guarantee the convergence of some solution algorithms (see, e.g., [21, 33, 34]).

Flores-Bazan [12, 13] provided characterizations of the nonemptiness and boundedness of the solution
set based on asymptotic method for generalized noncoercive equilibrium problem in finite-dimensional
spaces and reflexive Banach spaces, respectively. Meanwhile, Bianchi and Pini [6] established similar
results by using the coercivity condition for equilibrium problem with pseudomonotone functions, and
further extended to quasimonotone functions. Analogous to the scalar case, necessary and/or sufficient
conditions on the nonemptiness and boundedness of the solution set for C-psedomonotone (generalized)
(VEP) were established in [14] for finite-dimensional spaces and in [3, 11, 25] for reflexive Banach spaces.
However, it should be noted that the conditions to characterize the nonemptiness and boundedness of the
solution set used in [3, 14, 25] are relatively strong, which may not hold for vector variational inequalities
[18]. To weaken the assumption, Huang et al. [20] gave new characterizations on the nonemptiness and
compactness of the solution set for vector variational inequalities via a family of variational inequalities.
In this paper, motivated by the works in [3, 11–14, 18, 20, 25], we develop some new results to characterize
the nonemptiness and compactness of the solution set for (VEP) based on linearly scalarized equilibrium
problem. As a by-product, under mild conditions, we show that coercivity condition is weaker than the
condition R1 = {0}.

The rest of the paper is organized as follows: Section 2 is devoted to some basic notations and needed
results for our subsequent discussions. In Section 3, under the condition R1 = {0}, we show that (VEP)
has nonempty and compact solution set if and only if the linearly scalarized equilibrium problem has
nonempty and compact solution set. Furthermore, under coercivity condition, we show that (VEP)
has nonempty and compact solution set if and only if the linearly scalarized equilibrium problem has
nonempty and compact solution set. In Section 4, we employ the obtained results to derive Levitin-Polyak
well-posedness, stability analysis and connectedness of the solution set for (VEP).

2. Notations and preliminaries

In this section, we recall some basic notations and preliminary results.
For a real normed space Y, denote by Y∗ the dual space of Y. Then for any nonempty subset φ in Y,

we denote by φ∗ the positive polar cone of φ∗, i.e.,

φ∗ = {l ∈ Y∗ : l(v) > 0, ∀v ∈ φ},

and for closed and convex cone C in Y with int C 6= ∅, we denote

C∗0 = {λ ∈ C∗ : λ(e) = 1}

for any fixed e ∈ int C. From [20, Lemma 3.4], we know the C∗0 is a w∗-compact base of C∗.
The following concept plays an important role in characterizations on nonemptiness and compactness

of the solution set for (VEP).

Definition 2.1 ([9]). Let K be a nonempty convex subset of X. The mapping g : K→ Y is called:

(i) C-convex on K if

g(αx+ (1 −α)y) 6C αg(x) + (1 −α)g(y), ∀x,y ∈ K, α ∈ [0, 1];

(ii) C-concave on K if −g is C-convex;
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(iii) C-subconvexlike on K, if there exists a θ ∈ int C such that for any x,y ∈ K and any ε > 0 and
α ∈ (0, 1), there exists b ∈ K satisfying

g(b) 6C αg(x) + (1 −α)g(y) + εθ.

One can check that the C-convexity implies the C-subconvexlikeness on K. It is well-known that g is
C-subconvexlike on K if and only if the set g(K) + int C is convex from [9, Prop 1.78].

In order to investigate the relations between (VEP) and linearly scalarized equilibrium problem, we
introduce the linearly scalarized equilibrium problem of finding x̄ ∈ K

(EPλ) λ(h)(x̄,y) > 0, ∀ y ∈ K,

where λ ∈ C∗0.
For linearly scalarized equilibrium problem, a closely related problem is so-called linearly scalarized

dual equilibrium problem, which is to find x̄ ∈ K such that

(DEPλ) λ(h)(y, x̄) 6 0, ∀ y ∈ K.

Throughout this paper, we denote by X̄λ the solution set of (EPλ) and by X̄Dλ the solution set of (DEPλ).
In what follows, we recall the following monotonicity and pseudomonotonicity.

Definition 2.2 ([5]). The mapping F : K×K→ R is called:

(i) monotone on K, if for all x,y ∈ K,
F(x,y) + F(y, x) 6 0;

(ii) pseudomonotone on K, if for all x,y ∈ K,

F(x,y) > 0 ⇒ F(y, x) 6 0.

The mapping h : K×K→ Y is called:

(iii) C-monotone on K, if for all x,y ∈ K,

h(x,y) + h(y, x) ∈ −C;

(iv) C-pseudomonotone on K, if for all x,y ∈ K,

h(x,y) /∈ −int C⇒ h(y, x) /∈ int C.

Next, we shall give the following lemma to investigate between linearly scalarized (pseudomonotonic-
ity) monotonicity and (C-pseudomonotonicity) C-monotonicity.

Lemma 2.3. Let h : K×K→ Y be a mapping. For all λ ∈ C∗0

(i) if h is C-monotone on K, then λ(h) is monotone and λ(h) is pseudomonotone;

(ii) if λ(h) is pseudomonotone, then h is C-pseudomonotone.

Proof.

(i) For x,y ∈ K, if h is C-monotone on K, then h(x,y) + h(y, x) ∈ −C. So, for all λ ∈ C∗0, one has

λ(h(x,y) + h(y, x)) 6 0.

Hence, λ(h) is monotone for all λ ∈ C∗0. Moreover, λ(h) is pseudomonotone for all λ ∈ C∗0.
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(ii) For x,y ∈ K, if λ(h) is pseudomonotone, then

λ(h)(x,y) > 0 ⇒ λ(h)(y, x) 6 0.

If h(x,y) /∈ −int C, then there exists λ̄ ∈ C∗0 such that λ̄(h)(x,y) > 0. Furthermore λ̄(h)(y, x) 6 0, since
λ̄(h) is pseudomonotone. Next, we show by contradiction that

h(y, x) /∈ int C.

If h(y, x) ∈ int C, then for λ̄ ∈ C∗0, λ̄(h)(y, x) > 0, which contradicts λ̄(h)(y, , x) 6 0. So, the result
holds.

In general, the C-pseudomonotonicity of h does not imply the pseudomonotonicity of λ(h) for all
λ ∈ C∗0.

Example 2.4. Let K = R1
+, C = R2

+, e = (1, 1) ∈ int C, Y = R2 and

h(x,y) = (〈0,y− x〉, 〈x2 − x,y− x〉).

It is easy to see that h(x,y) is C-pseudomonotone and

C∗0 = {λ1 > 0, λ2 > 0 : λ1 + λ2 = 1}.

For λ̄ = (0, 1) ∈ C∗0, we obtain
λ̄(h)(x,y) = 〈x2 − x,y− x〉.

For x̄ = 0, one has
λ̄(h)(x̄,y) = 〈0,y− 0〉 > 0, ∀y ∈ R+.

However,
λ̄(h)(y, x̄) = 〈y2 − y, 0 − y〉 > 0, ∀y ∈]0, 1[.

So, λ̄(h) is not pseudomonotone.

In order to investigate the nonemptiness and compactness of solution set for (VEP), we introduce
definitions and the properties of asymptotic cone and set convergence.

Given any closed set S ⊆ Rn, we define the asymptotic cone of S as the closed set

S∞ = {d ∈ Rn : tk → +∞, ∃xk ∈ S,
xk
tk
→ d}.

If S is convex, then for given x0 ∈ K,

S∞ = {d ∈ Rn : x0 + td ∈ S, ∀t > 0}.

The following notions is from horizon limits of [24]. Let {Sv} be a sequence of sets in X. The horizon outer
limit lim sup∞v Sv and the horizon inner limit lim inf∞v Sv are defined respectively by

lim sup∞v Sv := {0}
⋃

{d ∈ X : ∃N ∈ N]∞,dv ∈ Sv, λv ↘ 0, λvdv →N d},

lim inf∞v Sv := {0}
⋃

{d ∈ X : ∃N ∈ N∞,dv ∈ Sv, λv ↘ 0, λvdv →N d},

where N
]∞ = {N ∈ IN : ∀N ′ ∈ N∞,N

⋂
N
′ 6= ∅} and N∞ = {N ∈ IN : ∀N ′ ∈ N

]∞,N
⋂
N
′ 6= ∅}.

Lemma 2.5 ([24]). A sequence of sets {Sv} in X has the property that lim sup∞v Sv := {0} if and only if it is
eventually bounded in the sense that for some index set N ∈ N

]∞, the set
⋃
v∈N S

v is bounded.
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The following lemma is the well-known generalized KKM theorem, we refer the reader to [10, Lemma
1].

Lemma 2.6 ([10]). Let K ⊆ X be a nonempty topological vector space X and F : K → 2X be a set-valued mapping
from K into X satisfying the following properties:

(i) F is called a generalized KKM mapping: for every finite subset A of K, co(A) ⊆
⋃
x∈A F(x), where co(.)

stands for the convex hull;

(ii) F(x) is closed in X for every x ∈ K;

(iii) F(x0) is compact in X for some x0 ∈ K.

Then
⋂
x∈K F(x) 6= ∅.

3. Characterizations on nonemptiness and compactness of the solution set for (VEP)

3.1. Characterizations with linearly scalarized equilibrium problem
In this subsection, we shall provide sufficient conditions to guarantee the nonemptiness and com-

pactness of the solution set for (VEP) by linear scalarization. For convenience, we make the following
assumptions.

Assumption 3.1. The mapping h : K×K→ Y is such that

(i) K ⊂ X is a nonempty and convex closed set;

(ii) for all x ∈ K,h(x, x) = 0 and h(x, .) : K→ Y is C-convex;

(iii) h(x,y) is continuous on K.

Before we proceed, technical lemma on the solution set of (VEP) is in order.

Lemma 3.2. For all x ∈ K, if h(x, .) : K→ Y is C-subconvexlike and h(x, x) = 0, then X̄ =
⋃
λ∈C∗0 X̄λ.

Proof. For all λ ∈ C∗0 and x̄ ∈ X̄λ, then

λ(h)(x̄,y) > 0, ∀ y ∈ K. (3.1)

We shall prove x̄ ∈ X̄ by reductio ad absurdum. Suppose x̄ /∈ X̄, then there exists y0 ∈ K such that

h(x̄,y0) ∈ −int C.

For all λ ∈ C∗0, we have
λ(h)(x̄,y0) < 0,

which contradicts (3.1). Consequently, x̄ ∈ X̄.
Conversely, if x ∈ X̄, then

h(x̄,y) /∈ −int C, ∀ y ∈ K,

equivalently,
0 /∈ h(x̄,K) + int C.

Since h(x, .) is C-subconvexlike, we deduce h(x̄,K) + int C is convex. By the separation theorem of convex
sets, there exists λ̄ ∈ Y∗\{0} such that

λ̄(h(x̄,y)) + λ̄c > 0, ∀ y ∈ K, c ∈ int C. (3.2)
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Setting y = x̄, from h(x, x) = 0, we obtain

λ̄c > 0, ∀c ∈ int C.

So, λ̄ ∈ C∗\{0}. On the other hand, letting c→ 0 in (3.2), we have

λ̄(h(x̄,y)) > 0, ∀ y ∈ K.

Since C∗0 is a w∗-compact base of C∗ for t > 0, there exists λ̇ ∈ C∗0 with λ̇ 6= 0 such that

λ̄ = tλ̇ and λ̇(h(x̄,y)) > 0, ∀ y ∈ K.

So, x̄ ∈
⋃
λ∈C∗0 X̄λ.

From [5, Proposition 3.1 and Theorem 3.1], we have the following lemma for (VEP).

Lemma 3.3. Assume that Assumption 3.1 holds and h is C-pseudomonotone, then X̄ = X̄D.

By [8, Proposition 3.2 and Remark 3.1], we can obtain the following lemma for linearly scalarized
equilibrium problem.

Lemma 3.4. Assume that Assumption 3.1 holds and λ(h) is pseudomonotone, X̄λ = X̄Dλ for all λ ∈ C∗0.

In what follows, we recall from [12, 13] the following cone that allows us to obtain characterization for
the solution set to the equilibrium problem to be nonempty and compact, which is defined by

R̄1 :=
⋂
y∈K

{d ∈ K∞ : h(y,y+ td) 6 0, ∀t > 0}.

Furthermore, for (VEP) we have the following definition:

R1 :=
⋂
y∈K

{d ∈ K∞ : h(y,y+ td) /∈ int C, ∀t > 0}.

In combination with [13, Theorem 5.8], we have the following lemma to characterize the nonemptiness
and compactness of solution set for linearly scalarized equilibrium problem.

Lemma 3.5. Assume that Assumption 3.1 holds for λ ∈ C∗0, and λ(h) is pseudomonotone. Then, the solution set
X̄λ of the (EPλ) is nonempty and compact, if and only if

Rλ1 :=
⋂
y∈K

{d ∈ K∞ : λ(h)(y,y+ td) 6 0, ∀t > 0} = {0}.

Theorem 3.6. Assume that Assumption 3.1 holds and λ(h) is pseudomonotone for all λ ∈ C∗0. If the solution set
X̄λ of (EPλ) is nonempty and compact, then X̄ is nonempty and compact.

Proof. Recalling that the solution set X̄λ of (EPλ) is nonempty and compact, we obtain that X̄ is nonempty.
Using the continuity of h, we know that X̄ is closed. Clearly, 0 ∈ X̄∞. For all λ ∈ C∗0, it follows from the
nonemptiness and compactness of the solution set for (EPλ) and Lemma 3.5 that

Rλ1 =
⋂
y∈K

{d ∈ K∞ : λ(h)(y,y+ td) 6 0, ∀t > 0} = {0}.

Next, we show X̄∞ = {0}. Suppose that there exists d ∈ X̄∞ with d 6= 0. With the definition of X̄∞, there
exist mk → +∞ and xk ∈ X̄ with ||xk|| → ∞ such that xk

mk
→ d. From xk ∈ X̄, there exists λk ∈ C∗0 such

that
λk(h)(xk,y) > 0.
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It follows from pseudomonotonicity of the λ(h) that

λk(h)(y, xk) 6 0.

Since C∗0 is w∗-compact, without loss of generality, we can assume that

w∗ − lim
k→∞ λk = λ∗.

For λ ∈ C∗0, y ∈ K and t > 0, as mk → +∞ for k large enough, one has 0 < t
mk

< 1 and

λk(h)(y, (1 −
t

mk
)y+

t

mk
xk) 6 (1 −

t

mk
)λk(h)(y,y) +

t

mk
λk(h)(y, xk) 6 0,

which implies

λk(h)(y, (1 −
t

mk
)y+

t

mk
xk) − λk(h)(y,y+ td) + (λk − λ

∗)(h)(y,y+ td) + λ∗(h)(y,y+ td) 6 0. (3.3)

Letting k→∞ in (3.3), we obtain
λ∗(h)(y,y+ td) 6 0,

since h(y, x) is continuous and w∗− limk→∞ λk = λ∗. So, d ∈ Rλ∗1 with d 6= 0, which contradicts Rλ
∗

1 = {0}.
Thus, X̄ is nonempty and compact.

Theorem 3.7. Assume that Assumption 3.1 holds. Then,

(i)
⋃
λ∈C∗0 R

λ
1 ⊆ R1.

(ii) If λ(h) is pseudomonotone for all λ ∈ C∗0 and R1 = {0}, then the solution set X̄λ of (EPλ) is nonempty and
compact.

Proof.

(i) For d ∈
⋃
λ∈C∗0 R

λ
1 , there exists λ ∈ C∗0 such that

λ(h)(y,y+ td) 6 0, ∀t > 0, y ∈ K. (3.4)

For all t > 0, assume by contradiction that h(y,y+ td) ∈ int C, then

λ(h)(y,y+ td) > 0, ∀λ ∈ C∗0, y ∈ K,

which contradicts (3.4). Hence,
⋃
λ∈C∗0 R

λ
1 ⊆ R1.

(ii) It follows from 0 ∈ Rλ1 ⊆
⋃
λ∈C∗0 R

λ
1 ⊆ R1 = {0} that Rλ1 = {0}. From Theorem 3.6, we deduce that the

solution set X̄λ of (EPλ) is nonempty and compact.

Remark 3.8. From Theorem 3.7, we note that R1 = {0} implies
⋃
λ∈C∗0 R

λ
1 = {0}, which shows that⋃

λ∈C∗0 R
λ
1 = {0} is weak condition for characterizing the solution set to be nonempty and compact for

(VEP) and (DVEP). It is worth noting that the solution set for (VEP) cannot be characterized by the solu-
tion set of finite (EPλ) even if Y = Rn and C = Rn+. The counter example can be found in [20, Example
3.1].

The following example shows that the inclusion
⋃
λ∈C∗0 R

λ
1 ⊂ R1.

Example 3.9. Let K = R1
+, C = R2

+, Y = R2, e = (1, 1) ∈ int C and

h(y, x) =
{

(0, (1 − y)(x2 − y2)), 0 6 y 6 1,
((y− 1)(x2 − y2), 0), y > 1.

It is clear that
C∗0 = {(λ1, λ2) : λ1 + λ2 = 1, λ1 > 0, λ2 > 0}.

For all y ∈ K, it is verified that ⋃
λ∈C∗0

Rλ1 = {0}.

On the other hand, by simple computation, we obtain R1 = [0,+∞). So,
⋃
λ∈C∗0 R

λ
1 ⊂ R1.
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Corollary 3.10. Assume that Assumption 3.1 holds, λ(h) is pseudomonotone for all λ ∈ C∗0 and R1 = {0}. Then,
the solution set X̄λ of (EPλ) is nonempty and compact if and only if that the solution set X̄ for (VEP) is nonempty
and compact.

3.2. Characterizations with coercivity condition
The purpose of the subsection is to show that coercivity condition is a sufficient condition to guarantee

the nonemptiness and compactness of the solution set for (VEP) when K is unbounded. Meanwhile, it
is worth noting that the nonemptiness and compactness of X̄ cannot imply that X̄λ is nonempty for all
λ ∈ C∗0.

For convenience, Kr is defined by

Kr := {x : x ∈ K, ||x|| 6 r}.

Then, Kr is a compact subset of K.
Consider the following coercivity condition [5]:

(C)
∃r > 0 : ∀x ∈ K\Kr,∃y ∈ Kr such that h(x,y) ∈ −int C.

The following conclusion may be not new. However, we include a compact stand-alone proof below,
both for the sake of completeness and because the proof is used in proving our next result.

Theorem 3.11. If Assumption 3.1 holds and coercivity condition (C) is satisfied, then the solution set X̄ is nonempty
and compact.

Proof. Define H : K×K→ 2Y by

H(y) = {x ∈ K : h(x,y) /∈ −int C},

for each y ∈ K. To show the assertion, we need to verify that H is a generalized KKM mapping. Suppose
there exists a finite set {y1, . . . ,ym} ∈ K such that x ∈ co{y1, · · · ,ym} with x /∈ H(yi), for all i = 1, · · · ,m.
Note that

h(x,yi) ∈ −int C, i = 1, 2, · · · ,m.

Moreover,
m∑
i=1

tih(x,yi) ∈ −int C. (3.5)

The C-convexity of h implies

m∑
i=1

tih(x,yi) ∈ h(x, x) +C ⊂ Y\− int C,

which contradicts (3.5). So, H(y) satisfies the finite-intersection property. This, in combination with
Assumption 3.1, provides that H is a generalized KKM mapping with closed values. Since the coercivity
condition (C) holds with r > 0, one derives

⋂
y∈KH(y) ⊆ Kr. It follows from Lemma 2.6 that

⋂
y∈KH(y) 6=

∅ and X̄ 6= ∅. From X̄ ⊆ Kr, we obtain that the solution set for (VEP) is nonempty and compact.

Example 3.12. Let K = R1
−, C = R2

+, Y = R2, e = (1, 1) ∈ int C and

h(x,y) = (〈x2,y− x〉, 〈1,y− x〉).

It is clear that Assumption 3.1 holds, h(x,y) is C-convex and

C∗0 = {(λ1, λ2) : λ1 + λ2 = 1, λ1 > 0, λ2 > 0}.

We break up the proof into two cases to verify that X̄ = {0}.
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(i) For the vector λ̄ = (1, 0) ∈ C∗0 and x̄ = 0, then

λ̄(h(x̄,y)) = 〈0,y− 0〉 > 0, ∀y ∈ K.

So, EPλ̄ = {0}.

(ii) For vector C = (t, 1 − t) ∈ C∗0, t ∈ [0, 1[, then

λ(h(x,y)) = 〈tx2 + (1 − t),y− x〉.

For x ∈ K, there exists ỹ such that

λ(h(x, ỹ)) = 〈tx2 + (1 − t), ỹ− x〉 < 0.

Hence, for λ = (t, 1 − t) ∈ C∗0 with t ∈ [0, 1[, (EPλ) = ∅. From Lemma 3.2, we know that

X̄ =
⋃
λ∈C∗0

X̄λ = {0},

is nonempty and compact. However, for all x 6= 0 and |y| 6 |x|, one has

h(x,y) /∈ −int C.

Consequently, coercivity condition (C) does not hold.

Remark 3.13.

(i) The nonemptiness and compactness of solution set for (VEP) cannot deduce that coercivity condition
(C) holds by Example 3.12.

(ii) From Example 3.12, the nonemptiness and compactness of X̄ cannot imply that X̄λ is nonempty for
all λ ∈ C∗0.

Corollary 3.14. If Assumption 3.1 holds and coercivity condition (C) is satisfied, then the solution set for (EPλ) is
nonempty and compact for all λ ∈ C∗0.

Proof. Since coercivity condition (C) holds, there exists r > 0 such that for all x ∈ K\Kr, there exists y ∈ Kr,

λ(h)(x,y) < 0, ∀λ ∈ C∗0.

Set
Hλ(y) := {x ∈ K : λ(h)(x,y) > 0},

for each y ∈ K. Following the similar arguments in the proof of Theorem 3.11, we can obtain the desired
result.

Corollary 3.15. Assume that Assumption 3.1 holds and coercivity condition (C) is satisfied. Then, for all λ ∈ C∗0,
the solution set X̄λ of (EPλ) is nonempty and compact if and only if the solution set X̄ of (VEP) is nonempty and
compact.

3.3. Comparison between coercivity condition (C) and asymptotic cone R1 = {0}
In this subsection, we shall discuss relations between coercivity condition (C) and R1 = {0}, since

coercivity condition (C) and R1 = {0} play a conspicuous part in characterizing the nonemptiness and
compactness of the solution set for (VEP).

Theorem 3.16. Assume that Assumption 3.1 holds and the mapping h is C-pseudomonotone. If R1 = {0}, then
coercivity condition (C) holds.
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Proof. Suppose that coercivity condition (C) fails. For every r > 0, there exists xr ∈ K\Kr such that

h(xr,y) ∈ Y\− int C, ∀ y ∈ Kr.

Set
zr := {xr ∈ K\Kr : h(xr,y) ∈ Y\− int C, ∀ y ∈ Kr},

and
Sr := {x̄ ∈ K : h(x̄,y) ∈ Y\− int C, ∀ y ∈ Kr}.

It is easy to see that zr ⊆ Sr and zr is unbounded as r→∞. Next, we claim

lim sup∞r→∞Sr = {0}.

Suppose to the contrary that there exists d ∈ lim sup∞r→∞Sr with d 6= 0. Then, there exist rk →∞, xr ∈ Srk
and mk → +∞ such that xkrk → d. Clearly, d ∈ K∞ and ||xk|| → ∞ as k → ∞. Then for any fixed y ∈ K,
from xk ∈ Srk , we know

h(xk,y) ∈ Y\− int C, ∀ y ∈ Kr
for all sufficiently large k. By the C-pseudomonotone of h, we have

h(y, xk) ∈ Y\int C, ∀ y ∈ Kr
for all sufficiently large k. For y ∈ K and t > 0, as rk → +∞ for k large enough, one has 0 < t

rk
< 1 and

h(y, (1 −
t

rk
)y+

t

rk
xk) ∈ (1 −

t

rk
)h(y,y) +

t

rk
h(y, xk) −C,

since h(x, .) is C-convex. It follows from h(y,y) = 0 and h(y, xk) ∈ Y\int C that

h(y, (1 −
t

rk
)y+

t

rk
xk) ∈ Y\int C−C ⊆ Y\int C. (3.6)

Letting k→∞ in (3.6), we deduce
h(y,y+ td) ∈ Y\int C,

which implies d ∈ R1 = {0}. This contradicts the d 6= 0. Hence,

lim sup∞r→∞Sr = {0}. (3.7)

As (3.7) holds, it follows from Lemma 2.5 that Sr is eventually bounded. This shows that X̄ is bounded
and there exists r0 > 0 such that Sr is nonempty and compact for all r > r0. Since zr ⊆ Sr, this means
that zr is nonempty and compact for all r > r0, which contradicts that zr is unbounded as r → ∞. So,
coercivity condition (C) holds.

As a consequence of Lemma 2.3, Theorem 3.6, Remark 3.8, Theorem 3.7 and Theorem 3.11, we have
the following result.

Theorem 3.17. Assume that Assumption 3.1 holds and the mapping h is C-pseudomonotone. Consider the follow-
ing statements:

(i) R1 = {0};

(ii) the coercivity condition (C) holds;

(iii) the solution set X̄λ of (EPλ) is nonempty and compact;

(iv) the solution set of (VEP) is nonempty and compact.

Then, (i)⇒ (ii)⇒ (iii) and (ii)⇒ (iv); if λ(h) is pseudomonotone, then, (i)⇒ (ii)⇒ (iii)⇒ (iv). If X̄λ 6= ∅ for
all λ ∈ C∗0, then (iv)⇒ (iii).

Remark 3.18. Compared with [20, Theorem 3.3], Theorem 3.17 establishes weaker condition to obtain the
equivalence between the nonemptiness and compactness of the solution set for (VEP) and the nonempti-
ness and compactness of the solution set for (EPλ), since Theorem 3.16 and Corollary 3.15 hold.
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4. Applications

4.1. Levitin-Polyak well-posedness for (VEP)
Levitin-Polyak well-posedness acts as a crucial role in numerical algorithms theory for (VEP), as it

guarantees that, for an approximating solution sequence, there exists a subsequence that converges to a
solution. In this subsection, we establish the equivalence between the nonemptiness and compactness
of the solution set for (VEP) and Levitin-Polyak well-posedness for (VEP) under mild conditions, which
generalizes and extends some results of [2, 22, 28, 30, 32] in some sense.

Denote by dK(x) the distance function from a point x to set K. We introduce the following definition
of Levitin-Polyak well-posed property for (VEP).

Definition 4.1.

(i) A sequence {xn} ⊆ X is called a Levitin-Polyak approximating solution sequence if there exists a
sequence {εn} ⊆ R1

+ with εn → 0 such that

dK(xn) 6 εn, (4.1)

h(xn,y) + εne /∈ −int C, ∀ y ∈ K. (4.2)

(ii) (VEP) is called Levitin-Polyak well-posed if the solution set X̄ for (VEP) is nonempty, and for Levitin-
Polyak approximating solution sequence {xn}, there exist a subsequence {xnj} of {xn} and x̄ ∈ X̄ such
that xnj → x̄.

Theorem 4.2. Assume that Assumption 3.1 holds. If R1 = {0} and h is C-monotone, then the solution set X̄ of the
(VEP) is nonempty and compact if and only if (VEP) is Levitin-Polyak well-posed.

Proof. On one hand, it follows from the definition of Levitin-Polyak well-posedness that the solution set
X̄ of (VEP) is nonempty and compact.

On the other hand, let {xn} ⊂ X be a Levitin-Polyak approximating solution sequence satisfying (4.1)
and (4.2). It follows from Theorem 3.17 that (EPλ) is nonempty and compact for all λ ∈ C∗0. Now, we
show that {xn} is bounded. Suppose to the contrary that {xn} is unbounded. We assume without loss of
generality that ||xn||→ +∞ such that

h(xn,y) + εne /∈ −int C, ∀ y ∈ K,

namely,
h(xn,y)

⋂
(−int C− εne) = ∅, ∀ y ∈ K.

Since h(x, .) is C-convex, one has h(xn,K) is a convex set and (−int C − εne) is a convex set. By the
separation theorem of convex sets, there exists λn ∈ C∗0 such that

λn(h)(xn,y) > −εn, ∀ y ∈ K.

Since C∗0 is ω∗-compact, we can assume without loss of generality that

ω∗ − lim
n→+∞ λn = λ̄ ∈ C∗0.

In view of C-monotonicity of h(x,y) on K, we have

h(xn,y) + h(y, xn) ∈ −C,

that is,
h(xn,y) + εne+ h(y, xn) − εne ∈ −C,
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λ(h(xn,y) + εne+ h(y, xn) − εne) 6 0, λ ∈ C∗0.

For λn ∈ C∗0, one has
λn(h)(y, xn) 6 εn, ∀ y ∈ K.

Let y ∈ K be an arbitrary point. We can assume without loss of generality that

lim
n→+∞ xn

||xn||
= lim
n→+∞ xn − y

||xn − y||
= d.

Thus, ||d|| = 1 and d ∈ K∞ with d 6= 0. For given y ∈ K and t > 0, as ||xn||→ +∞ for n large enough, one
has 0 < t

||xn−y||
< 1 and

λn(h)(y,y+ t
xn − y

||xn − y||
) 6

||xn − y||− t

||xn − y||
λn(h)(y,y) +

t

||xn − y||
λn(h)(y, xn),

which is equivalent to

λn(h)(y,y+ t
xn − y

||xn − y||
) 6

t

||xn − y||
λn(h)(y, xn) 6 εn,

since λn(h) is convex, h(y,y) = 0 and λn(h)(y, xn) 6 εn. That is,

λn(h)(y,y+ t
xn − y

||xn − y||
) − λn(h)(y,y+ td) + (λn − λ̄)(h)(y,y+ td) + λ̄(h)(y,y+ td) 6 εn. (4.3)

For (4.3), taking the limit in k, one has
λ̄(h(y,y+ td)) 6 0,

since h(y, x) is continuous and w∗ − limk→∞ λk = λ∗. That is, 0 6= d ∈ Rλ̄, contradicting the fact that the
solution set of EPλ̄ is nonempty and compact. Consequently, {xn} is bounded. There exist a subsequence
{xnj} of {xn} and x̄ such that xnj → x̄. Taking the limit in (4.1) (with n replaced by nj), we have x̄ ∈ K.
Moreover, taking the limit in (4.2) (with n replaced by nj), we obtain h(x̄,y) /∈ −int C, for all y ∈ K. So
x̄ ∈ X̄.

Remark 4.3. Compared with [22, Theorem 4.1], Theorem 4.2 proposes linear scalarization method to obtain
Levitin-Polyak well-posedness for (VEP). Under condition R1 = {0}, we obtain that the solution set X̄
of (VEP) is nonempty and compact if and only if (VEP) is Levitin-Polyak well-posed. Although the
condition is relatively strong, it is the first time to obtain the equivalence between the nonemptiness and
compactness of the solution set and Levitin-Polyak well-posedness of (VEP).

4.2. Stability analysis for (VEP)
The stability of the solution set is an important problem in the theory of equilibrium problem, as

they can guarantee solution set continuity [10, 19, 27]. In this subsection, we shall establish the stability
theorems for (VEP) and (DVEP) when the mapping h is perturbed.

Firstly, we recall some important notions and results. Let h : Z× K× K → Y be a parametric vector-
valued mapping. Consider the perturbed vector equilibrium problem, abbreviated as (PVEP), is to find
x̄ ∈ K such that

h(z, x̄,y) /∈ −int C, ∀ y ∈ K.

For (PVEP), a closely related problem is so-called perturbed dual vector equilibrium problem, abbreviated
as (PDVEP), which is to find x̄ ∈ K such that

h(z,y, x̄) /∈ int C, ∀ y ∈ K.

We denote by X̄(z) the solution set of the (PVEP) and by X̄D(z) the solution set of the (PDVEP). Similar
to the previous linear scalarization method, we denote by X̄λ(z) the solution set of (PEPλ) and by X̄Dλ (z)
the solution set of (PDEPλ).
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Theorem 4.4. Assume that h(z, x, .) : K → Y is C-convex for all (z, x) ∈ Z× K, h(z, x, x) = 0 and h(z, x,y) is
continuous on Z× K× K. Let λ(h) be pseudomonotone for all λ ∈ C∗0. If the solution set X̄λ(z0) of (PEPλ) is
nonempty and compact for all λ ∈ C∗0, then there exists a neighborhood U of z0 such that (PVEP) and (PDVEP)
have a nonempty and compact solution set for all z ∈ U.

Proof. Since X̄λ(z0) is nonempty and compact and λ(h) is pseudomonotone, it follows from Lemma 3.4
that X̄Dλ (z0) is nonempty and compact and

Rλ1 (z0) =
⋂
y∈K

{d ∈ K∞ : λ(h)(z0,y,y+ td) 6 0, ∀t > 0} = {0}.

We claim that there exists a neighborhood Uλ of z0 such that

Rλ1 (z) =
⋂
y∈K

{d ∈ K∞ : λ(h)(z,y,y+ td) 6 0,∀t > 0} = {0}.

Assume by contradiction that there exists zn → z0 such that Rλ1 (z) 6= {0}. Thus, we can select a sequence
dn such that ⋂

y∈K
{dn ∈ K∞ : λ(h)(zn,y,y+ tdn) 6 0, ∀t > 0}, (4.4)

with ||dn|| = 1. Without loss of generality, we can assume dn → d0 6= 0. Taking the limit in (4.4), we have⋂
y∈K

{d0 ∈ K∞ : λ(h)(z0,y,y+ td0) 6 0, ∀t > 0},

since h is continuous and λ(h) is continuous. This contradicts Rλ1 (z0) = {0}. Set
⋂
λ∈C∗0 Uλ = U 6= ∅. Hence,

there exists a neighborhood U of z0 such that Rλ1 (z) = {0} for all λ ∈ C∗0. It follows from Theorem 3.16
and Lemma 3.5 that (PVEP) and (PDVEP) have a nonempty and compact solution set for all z ∈ U.

4.3. Connectedness of the solution set for (VEP)
The purpose of this subsection is to discuss the connectedness of the solution set for (VEP), as it

provides the possibility of continuously moving from one solution to any other solution. We propose new
sufficient conditions to establish the connectedness of the solution set for (VEP) without the compactness
or monotonicity, which generalizes and extends some results of [16, 17, 23] in some sense.

Lemma 4.5 ([4]). Let X and Y be two topological vector spaces, S be a connected subset of X, F : S → 2Y be a
set-valued mapping. If F is upper semicontinuous on S and F(x) is connected subset of Y for each x ∈ S, then
F(S) =

⋃
x∈S F(x) is a connected subset of Y.

Theorem 4.6. Assume that Assumption 3.1 holds and coercivity condition (C) is satisfied. Let h(.,y) be C-concave
on K. If W = {h(x,y) : x,y ∈ K} is bounded, then the solution set for (VEP) is connected.

Proof. It follows from Corollary 3.14 that the solution set X̄λ of (EPλ) is nonempty and compact for all
λ ∈ C∗0. Indeed, for any λ ∈ C∗0 and any fixed y ∈ K, let x1, x2 ∈ X̄λ and t ∈ [0, 1]. Then, tx1 +(1− t)x2 ∈ K,
λ(h)(x1,y) > 0 and λ(h)(x2,y) > 0. From the C-concavity of h(.,y) and λ ∈ C∗0, we have

λ(h)(tx1 + (1 − t)x2,y) > 0,

which shows tx1 + (1 − t)x2 ∈ X̄λ. So, X̄λ is convex and connected.
Define a set-valued mapping L : C∗0 → 2K by

L(λ) = X̄λ, ∀λ ∈ C∗0.

Now we show that L(λ) is upper semicontinuous on C∗0. Since coercivity condition (C) is satisfied, then
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L(λn) is bounded. We need only prove that L is closed. Let {(λn, xn)} be a solution sequence such that

(λn, xn) ⊂ Graph(L) = {(λ, x) ∈ C∗0 ×K : x ∈ L(λ)},

that is,
λn(h)(xn,y) > 0, ∀y ∈ K.

Since C∗0 is ω∗-compact, without loss of generality, we can assume that

ω∗ − lim
n→+∞ λn = λ̄ ∈ C∗0.

It follows from the definition of L(λ) and coercivity condition (C) that {xn} is bounded. Without loss of
generality, we assume xn → x̄. By the boundedness of W and limn→+∞ λn = λ̄, for ε > 0, there exists n0
such that

|(λn − λ̄)(h)(xn,y)| < ε, ∀n > n0.

So,
λ(h)(xn,y) = (λn − λ̄)(h)(xn,y) + λ̄(h)(xn,y) > 0, ∀y ∈ K and n > n0,

furthermore,
λ̄(h)(xn,y) > −ε, ∀y ∈ K and n > n0. (4.5)

Taking the limit in (4.5), we have λ̄(h)(x̄,y) > 0 by the continuity of h and the arbitrariness of ε. That is,
x̄ ∈ L(λ̄). It follows that L is a closed mapping and L is upper semicontinuous on C∗0. From Lemma 4.5,
we know that X̄ =

⋃
λ∈C∗0 X̄λ is connected.

Remark 4.7. Compared with results of [16, 17, 23], Theorem 4.6 proposes linear scalarization method to
obtain the connectedness of the solution set for (VEP) without the compactness or C-pseudomonotonicity
which is different from the ones used in the previous literature.

Theorem 4.8. Assume that Assumption 3.1 holds, h is C-pseudomonotone and R1 = {0}. If W = {h(x,y) : x,y ∈
K} is bounded, then the solution set for (VEP) is connected.

Proof. It follows from Theorem 3.16 that coercivity condition (C) holds. Repeating the proof of Theorem
4.6, we obtain the results.
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