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1. Introduction

Consider the following second order discrete Hamiltonian system{
42u(t− 1) +∇F(t,u(t)) = 0, t ∈ Z[1, T ],
u(0) = u(T),

(1.1)

where T ∈ Z, Z[1, T ] denotes the discrete interval {1, 2, · · · , T }, 4u(t) = u(t + 1) − u(t), 42u(t) =
4(4u(t)) and ∇F(t, x) denotes the gradient of F with respect to the second variable. F satisfies the
following assumption:

(A) F(t, x) ∈ C1(RN, R) for any t ∈ Z[0, T ] and F is T -periodic in the first variable.

Since Guo and Yu developed a new method to study the existence and multiplicity of periodic solutions of
difference equations by using critical point theory (see [4–6, 18], the existence and multiplicity of periodic
solutions for problem (1.1) have been extensively studied and lots of interesting results have been worked
out, see [1–3, 7, 8, 10–17] and the references therein. In particular, when the nonlinearity ∇F(t, x) is
bounded, that is, there exists M > 0 such that |∇F(t, x)| 6M for all (t, x) ∈ Z[0, T ]×RN, and that

T∑
t=0

F(t, x)→ +∞ as |x|→∞.

Guo and Yu [6] obtained one periodic solution to problem (1.1).
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In [12, 13], Xue and Tang generalized these results to the sublinear case:

|∇F(t, x)| 6M1|x|
α +M2, ∀ (t, x) ∈ Z[0, T ]×RN,

and

|x|−2α
T∑
t=0

F(t, x)→ ±∞ as |x|→∞,

where M1 > 0, M2 > 0 and α ∈ [0, 1).
In [10], Tang and Zhang considered the nonlinearity ∇F(t, x) satisfies the following condition:

|∇F(t, x)| 6 f(t)|x|α + g(t), ∀ (t, x) ∈ Z[0, T ]×RN, (1.2)

or
|∇F(t, x)| 6 f(t)|x|+ g(t), ∀ (t, x) ∈ Z[0, T ]×RN, (1.3)

where f,g : Z[0, T ] → R+, α ∈ (0, 1). Under these conditions, periodic solutions of problem (1.1) have
been obtained, which completed and extended the results in [12, 13].

Recently, Che and Xue [1] obtained infinitely many periodic solutions for problem (1.1) when (1.2)
holds, and

lim sup
r→+∞ inf

x∈RN,|x|=r

T∑
t=0

F(t, x) = +∞, (1.4)

and

lim inf
R→+∞ sup

x∈RN,|x|=R
|x|−2α

T∑
t=0

F(t, x) = −∞, (1.5)

where α ∈ (0, 1).
In this paper, motivated by the results mentioned above, we will further investigate infinitely many

periodic solutions to the problem (1.1) under conditions (1.2) or (1.3).
Let HT be a Hilbert space defined by

HT = {u : Z→ RN| u(t) = u(t+ T), ∀t ∈ Z},

with the inner product

〈u, v〉 =
T∑
t=0

(u(t), v(t)),

and the norm

‖u‖ =

(
T∑
t=0

|u(t)|2

) 1
2

.

Let
‖u‖∞ = max

t∈Z[0,T ]
|u(t)|.

Since HT is finite dimensional, one has that:

1√
T
‖u‖ 6 ‖u‖∞ 6 ‖u‖.

Let

Φ(u) =
1
2

T∑
t=0

|4 u(t)|2 −
T∑
t=0

F(t,u(t)), ∀u ∈ HT .

It is well-known that the solutions of problem (1.1) correspond to the critical points of Φ (see [9]).
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Lemma 1.1 ([14]). As a subspace of HT , Nk is defined by

Nk = {u ∈ HT |−42u(t− 1) = λku(t)},

where λk = 2 − 2 coskω, ω = 2π
T , k ∈ Z[0, [T2 ]] (where [c] denotes the largest integer less than c). Then we have

(1) Nk ⊥ Nj for k 6= j and j,k ∈ Z[0, [T2 ]].

(2) HT = ⊕[ T2 ]

k=0Nk.

Set H1 = N0 and H2 = ⊕[ T2 ]

k=1Nk. Then HT = H1 ⊕H2 and

T∑
t=0

|4 u(t)|2 > λ1‖u‖, ∀ u ∈ H2.

The element u of H1 is just the eigenvector corresponding to λ0 = 0 which satisfies u(t) ≡ u(0) for
t ∈ Z[0, T ].

Our main results are the following theorems.

Theorem 1.2. Suppose that (A), (1.2) and (1.4) hold, and

lim inf
r→+∞ sup

x∈RN,|x|=r
|x|−2α

T∑
t=0

F(t, x) < −

(∑T
t=0 f(t)

)2

2λ1
. (1.6)

Then

(i) the problem (1.1) has infinitely many periodic solutions {un} such that Φ(un)→ +∞ as n→∞;

(ii) the problem (1.1) has infinitely many periodic solutions {u∗m} such that Φ(u∗m)→ −∞ as m→∞.

Theorem 1.3. Suppose that (A), (1.3) with
∑T
t=0 f(t) <

λ1
4 and (1.4) hold, and

lim inf
r→+∞ sup

x∈RN,|x|=r
|x|−2

T∑
t=0

F(t, x) < −

(∑T
t=0 f(t)

)2

2
(
λ1 − 2

∑T
t=0 f(t)

) . (1.7)

Then

(i) the problem (1.1) has infinitely many periodic solutions {un} such that Φ(un)→ +∞ as n→∞;

(ii) the problem (1.1) has infinitely many periodic solutions {u∗m} such that Φ(u∗m)→ −∞ as m→∞.

Remark 1.4. Obviously, the condition (1.6) is different from condition (1.5) that of in [1]; Theorem 1.3 is
completely new comparing with main result of [1] since we allow α = 1 although the method using in
this paper is same as that of in [1].

2. Proof of main results

Since the proof of Theorem 1.2 is similar to that of Theorem 1.3, we only prove Theorem 1.3.
For the sake of convenience, we denote

γ =

T∑
t=0

f(t), β =

T∑
t=0

g(t).
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Lemma 2.1. Suppose that (1.3) with
∑T
t=0 f(t) <

λ1
4 holds, then

Φ(u)→ +∞ as ‖u‖ →∞ in H2.

Proof. From (1.3), for all u in H2 we have

Φ(u) =
1
2

T∑
t=0

|4 u(t)|2 −
T∑
t=0

F(t,u(t))

>
λ1

2
‖u‖2 −

T∑
t=0

f(t)|u(t)|2 −

T∑
t=0

g(t)|u(t)|

>
λ1

2
‖u‖2 − ‖u‖2∞

T∑
t=0

f(t) − ‖u‖∞ T∑
t=0

g(t)

>
λ1

2
‖u‖2 − ‖u‖2

T∑
t=0

f(t) − ‖u‖
T∑
t=0

g(t)

=

(
λ1

2
− γ

)
‖u‖2 −β‖u‖.

So, Φ(u)→ +∞ as ‖u‖ →∞ in H2.

Lemma 2.2. Suppose that (1.4) holds. Then there exists positive real sequence {an} such that

lim
n→∞an = +∞,

lim
n→∞ sup

u∈H2,‖u‖=an
Φ(u) = −∞.

Proof. By (1.4), it is easy to obtain this result, so we omit the detail here.

Lemma 2.3. Suppose that (1.3) with
∑T
t=0 f(t) <

λ1
4 and (1.7) hold. Then there exists positive real sequence {bm}

such that

lim
m→∞bm = +∞,

lim
m→∞ inf

u∈Hbm
Φ(u) = +∞,

where Hbm = {u ∈ H1 : ‖u‖ = bm}
⊕
H2.

Proof. By (1.7), let a > 1
λ1−2γ such that

lim inf
r→+∞ sup

x∈RN,|x|=r
|x|−2

T∑
t=0

F(t, x) < −
a

2
γ2.

Let u ∈ Hbm , u = u+ ũ, where u ∈ H1, ũ ∈ H2. So, we have∣∣∣∣∣
T∑
t=0

F(t,u(t)) −
T∑
t=0

F(t,u)

∣∣∣∣∣ =
∣∣∣∣∣
T∑
t=0

∫ 1

0
∇F(t,u(0) + sũ(t), ũ(t))ds

∣∣∣∣∣
6

T∑
t=0

∫ 1

0
f(t)|u(0) + sũ(t)||ũ(t)|ds+

T∑
t=0

∫ 1

0
g(t)|ũ(t)|ds

6
T∑
t=0

f(t) (|u(0)|+ |ũ(t)|) |ũ(t)|+

T∑
t=0

g(t)|ũ(t)|
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6γ|u(0)|‖ũ‖∞ + γ‖ũ‖2∞ +β‖ũ‖∞
6

1
2a
‖ũ‖2∞ +

a

2
γ2|u(0)|2 + γ‖ũ‖2∞ +β‖ũ‖∞

6

(
1

2a
+ γ

)
‖ũ‖2 +

a

2
γ2‖u‖2 +β‖ũ‖

for all u ∈ Hbm . Therefore, one has that

Φ(u) =
1
2

T∑
t=0

|4 u(t)|2 −
T∑
t=0

F(t,u(t))

=
1
2

T∑
t=0

|4 ũ(t)|2 −

(
T∑
t=0

F(t,u(t)) −
T∑
t=0

F(t,u(t))

)
−

T∑
t=0

F(t,u(t))

>

(
λ1

2
−

1
2a

− γ

)
‖ũ‖2 −β‖ũ‖

− ‖u‖2

(
‖u‖−2

T∑
t=0

F(t,u(t)) +
a

2
γ2

)

for all u ∈ Hbm . From condition (1.7) and the above inequality the proof is finished.

Now we give the proof of Theorem 1.3.

The proof of Theorem 1.3. Let Ban be a ball in H1 with radius an. Set

Γn = {γ ∈ C(Ban ,HT ),γ |∂Ban= Id |∂Ban },

and
cn = inf

γ∈Γn
max
x∈Ban

Φ(γ(x)).

It is easy to obtain that Φ is coercive on H2 from Lemma 2.1. So, there is a constant M such that

max
x∈Ban

Φ(γ(x)) > inf
u∈H2

Φ(u) >M.

On the other hand, it is easy to see that γ(Ban)
⋂
H2 6= ∅ for any γ ∈ Γn. Therefore

cn > inf
u∈H2

Φ(u) >M.

By Lemma 2.2, for any large value of n, one has that

cn > max
u∈∂Ban

Φ(u).

For such n, there exists a sequence {γk} in Γn such that

max
x∈Ban

Φ(γk(x))→ cn, k→∞.

Applying [9, Theorem 4.3 and Corollary 4.3], there exists a sequence {vk} in HT satisfying

Φ(vk)→ cn, dist(vk,γk(Ban))→ 0, Φ ′(vk)→ 0,

as k→∞. So, for any large enough k, one has that

cn 6 max
x∈Ban

Φ(γk(x)) 6 cn + 1,
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and there exists wk ∈ γk(Ban) such that
‖vk −wk‖ 6 1.

For fix n, by Lemma 2.3, let m be large enough such that

bm > an, and inf
u∈Hbm

Φ(u) > cn + 1.

This implies that γ(Ban) cannot intersect the hyperplane Hbm for each k.
Let wk = wk + w̃k, where wk ∈ H1 and w̃k ∈ H2. Then we have |wk| < bm for each k.
From (1.3), we have that

cn + 1 >Φ(wk) =
1
2

T∑
t=0

|4wk(t)|2 −
T∑
t=0

F(t,wk(t))

>
λ1

2
‖w̃k‖2 −

T∑
t=0

f(t)|wk(t)|
2 −

T∑
t=0

g(t)|wk(t)|

>
λ1

2
‖w̃k‖2 − 2

T∑
t=0

f(t)[|wk(0)|2 + |w̃k(t)|
2] −

T∑
t=0

g(t)(|wk(0)|+ |w̃k(t)|)

>

(
λ1

2
− 2γ

)
‖w̃k‖2 − 2b2

mγ− ‖w̃k‖β− bmβ.

Therefore w̃k(t) is bounded. Hence, wk is bounded since ‖wk‖ 6 C(‖w̃k‖+ ‖wk‖). Also, {vk} is bounded
in HT .

From the fact that HT is finite dimensional, we know there is a subsequence, which is still be denoted
by {vk} such that {vk} converges to some point un. Therefore, in view of the continuity of Φ and Φ ′, it is
easy to see that accumulation point un of {vk} is a critical point and cn is a critical value of Φ.

Let n large enough such that an > bm, then γ(Ban) intersects the hyperplane Hbm for any γ ∈ Γn. It
follows that

max
x∈Ban

Φ(γ(x)) > inf
u∈Hbm

Φ(u).

In view of above inequality and Lemma 2.3, we get limn→∞ cn = +∞. So, the proof of first result of
Theorem 1.3 is finished.

Next, we prove (ii) of Theorem 1.3.
For fixed m, let

Pm = {u ∈ HT : u = u+ ũ, |u| 6 bm, ũ ∈ H2}.

For u ∈ Pm, one has that

Φ(u) =
1
2

T∑
t=0

|4 u(t)|2 −
T∑
t=0

F(t,u(t))

>
λ1

2
‖ũ‖2 −

T∑
t=0

f(t)|u(t)|2 −

T∑
t=0

g(t)|u(t)|

>
λ1

2
‖ũ‖2 − 2

T∑
t=0

f(t)[|u(0)|2 + |ũ(t)|2] −

T∑
t=0

g(t)(|u(0)|+ |ũ(t)|)

>

(
λ1

2
− 2γ

)
‖ũ‖2 − 2b2

mγ− ‖ũ‖β− bmβ.

(2.1)

So, Φ is bounded below on Pm. Let
µm = inf

u∈Pm
Φ(u),
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and choose a minimizing sequence {uk} in Pm, that is

Φ(uk)→ µm as k→∞.

According to (2.1), {uk} is bounded in HT . Then there exists a subsequence, which is still be denoted by
{uk} such that

uk ⇀ u∗m weakly in HT .

Since Pm is a convex closed subset of HT and Φ is weakly lower semicontinuous, u∗m ∈ Pm and

µm = lim
k→∞Φ(uk) > Φ(u∗m).

By u∗m ∈ Pm,
µm = Φ(u∗m).

Let u∗m = u∗m + ũ∗m. In view of Lemma 2.2 and Lemma 2.3, |u∗m| 6= bm for large m, i.e., u∗m is in the
interior of Pm. Then u∗m is a local minimum of functional. So, we have

Φ(u∗m) = inf
u∈Pm

Φ(u) 6 sup
|u|=bm

Φ(u).

Then from Lemma 2.2 we see that Φ(u∗m)→ −∞ as m→∞. Therefore, the proof is finished.
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