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Abstract

In this paper, to find a fixed point of self-mapping in the general non-convex set with both equality constraints and
inequality constraints, a modified infeasible homotopy for perturbing only inequality constraints is constructed and the global
convergence of the smooth homotopy pathways is proved under some much weaker conditions. The advantage of the modified
homotopy is that the initial point needs to be only in the shifted set with only inequality constraints, not necessarily, a feasible
point in the original set, and hence it is more convenient to be implemented than the existing methods. The feasibility and
effectiveness of the modified homotopy method is shown by some numerical tests. c©2017 All rights reserved.
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1. Introduction

Fixed point theory has been broadly implemented in nonlinear analysis, integral and differential
equations, dynamical system theory, game theory, optimization problems and other fields. Recently,
lots of results on the fixed point theory and algorithms have appeared and attracted many attentions, see
references [2, 3, 6, 8, 12–16]. Among all of the fixed point theories, the famous Brouwer fixed point theorem
only requires that the self-mapping φ : Ω→ Ω is continuous without requiring any monotone condition
and has been extensively applied in game theory, equilibrium problems and other across numerous fields
of mathematics. For computing the Brouwer fixed point of a self-mapping in a convex set, Kellogg et
al. [7] constructed a single homotopy and gave an innovative proof in 1976. In 1978, to compute the
Brouwer fixed point more conveniently in convex set, Chow et al. [4] constructed a more simple fixed
point homotopy.

In 1996, to numerically compute a fixed point of a twice continuous differentiable self-mapping in a
set Ω = {x : gi(x) 6 0, i = 1, 2, · · · ,m} without any convexity condition, Yu and Lin [17] first proposed
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an interior point combined homotopy, which was consisted of a fixed point homotopy and a Newton
homotopy, as follows:

H(w, t) =

 (1 − t)(x−φ(x) +
m∑
i=1
∇gi(x)yi) + t(x− x0)

Yg(x) − tY0g(x0)

 , (1.1)

where (x0,y0) ∈ Ω0 × Rm++, yi > 0, t ∈ [0, 1], g(x) = (g1(x), · · · ,gm(x))T , Y and Y0 denote the diagonal
matrices whose i-th diagonal element are yi and y0

i respectively, and the strict feasible set

X0 = {x : gi(x) < 0, i = 1, 2, · · · ,m}.

In 2008, to compute a fixed point of a self-mapping in the general non-convex sets, Su and Liu [9]
generalized the homotopy (1.1) to compute fixed point of self-mapping in a broader class of non-convex
bounded sets Ω = {x : gi(x) 6 0, hj(x) = 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , l} as follows:

H(w, t) =

 (1 − t)(x−φ(x) +
m∑
i=1
∇gi(x)yi) +

l∑
j=1
∇hj(x)zj + t(x− x0)

h(x)
Yg(x) − tY0g(x0)

 ,

where w = (x,y, z) ∈ Rn × Rm+ × Rl, (x0,y0) ∈ X0 × Rm++, t ∈ [0, 1], h(x) = (h1(x),h2(x), · · · ,hl(x))T , and
the strict feasible set Ω0 = {x : gi(x) < 0, hj(x) = 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , l}.

In 2013, to relax the boundedness condition and weaken the normal cone condition in references
[9, 17], Zhu et al. [20] constructed a modified combined homotopy for computing fixed point of a self-
mapping in the general unbounded non-convex sets Ω = {x : gi(x) 6 0, hj(x) = 0, i = 1, 2, · · · ,m, j =
1, 2, · · · , l} as follows:

H(w, t) =

 (1 − t)(x−φ(x) +
m∑
i=1

ηi(x,yi)) +
l∑
j=1
ζj(x, zj) + t(x− x(0))

h(x)

Yg(x) − tY(0)g(x(0))

 ,

where w = (x,y, z), w(0) = (x(0),y(0), z(0)), y = (y1, · · · ,ym)T , z = (z1, · · · , zl), Y = diag(y), ηi(x,yi) and
ζj(x, zj) are the so-called hair mappings. The existence and global convergence of the smooth homotopy
pathway was also proved under much weaker pseudo cone condition.

Since the interior point combined homotopy method requires that the initial point must be chosen in
the original feasible set, to enlarge the chosen scope of initial points, in 2011, Su et al. [11] presented a
boundary perturbation homotopy method on non-convex bounded sets with only inequality constraints.
In 2015, Su and Qian [10] constructed a modified combined homotopy method by a perturbation on
the inequality constraints of the general non-convex unbounded sets. In 2015, Fan et al. [5] proposed an
infeasible interior point homotopy method for enlarging the choice scope of initial points by a perturbation
on equality constraints on the general unbounded sets, but some conditions were lost in the proof of the
global convergence. In 2017, Zhu et al. [22] proposed a constraint set swelling homotopy method for
computing the fixed point of self-mapping on the general non-convex set.

For the general non-convex sets with both inequality constraints and equality constraints, to enlarge
the chosen scope of initial points and weaken the convergent conditions, it seems reasonable to construct
the homotopy directly as follows:

H(w, t) =

 (1 − t)(x−φ(x) +
m∑
i=1
∇gi(x)yi) +

l∑
j=1
∇hj(x)zj + t(x− x0)

h(x) − th(x0)
Yg(x) − tY0g(x0)

 . (1.2)
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However, the probability-one regularity of the homotopy equation (1.2) cannot be assured, since for all
t ∈ (0, 1], the following sub-matrix may be not full row rank by taking x0 and y0 as variate

∂H(x, x0,y0, t)
∂(x, x0,y0)

=

 Ξ −tI 0
(∇h(x))T −t(∇h(x0))T 0
Y(∇g(x))T −tY0(∇g(x0))T −tdiag(g(x0))

 ,

where Ξ = (1 − t)(I−∇φ(x) +
m∑
i=1
∇2gi(x)yi) +

l∑
j=1
∇2hj(x)zj + tI, and diag(g(x0)) denotes the diagonal

matrix with its i-th diagonal element gi(x0).
In this paper, to overcome the defects of the initial points which must be in the original feasible set

and weaken the convergent conditions, a modified infeasible homotopy, which is more convenient and
practical, for computing the fixed point of self-mapping on the general non-convex sets is constructed
and the existence and global convergence of the smooth homotopy pathways is proven under some mild
conditions.

The rest of the paper is organized as follows. In Section 2, an equivalent condition of the existence
of fixed point will be given and some lemmas which will be used for proving the main result will be
presented. In Section 3, a modified infeasible homotopy equation for computing the fixed point on the
general non-convex sets is constructed and the existence and global convergence of a smooth path from
any initial point in constraint shifting set to a fixed point of any twice continuous differentiable self-
mapping will be proved. In Section 4, some numerical examples will be given to show the feasibility and
effectiveness of the proposed method.

2. Preliminaries

Throughout the paper, the general non-convex closed subset Ω ∈ Rn is defined as follows:

Ω = {x ∈ Rn : gi(x) 6 0, hj(x) = 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , l}. (2.1)

In this paper, to enlarge the chosen scope of initial points and weaken the convergent conditions, a
shifted constraint function is constructed as ĝi(x, t), i = 1, 2, · · · ,m, which satisfies

ĝi(x, 0) = gi(x), i = 1, 2, · · · ,m.

For the sake of convenience, denote

Ω̂ = {x : gi(x) 6 0, i = 1, · · · ,m},

Ω̂(t) = {x : ĝi(x, t) 6 0, i = 1, · · · ,m},

Ω̂0(t) = {x : ĝi(x, t) < 0, i = 1, · · · ,m},

∂Ω̂(t) = Ω̂(t)\Ω̂0(t),

and
It(x) = {i ∈ {1, · · · ,m} : ĝi(x, t) = 0},

respectively. Let ∇ĝ(x, t) denote the gradient of ĝ(x, t) with respect to the variable x.
To prove the main results, the shifted constraint function ĝ(x, t) and equality constraint function h(x)

must simultaneously satisfy the following conditions.

(A1) ĝi(x, t), i = 1, 2, · · · ,m and hj(x), j = 1, 2, · · · , l are three times continuous differentiable.
(A2) For all t ∈ [0, 1], Ω̂0(t) 6= φ and Ω̃ = ∪t∈[0,1]Ω̂(t) is bounded.
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(A3) For all t ∈ [0, 1], the matrix {(∇ĝi(x, t))i∈It(x), ∇h(x)} is positive-linearly independent at x ∈ ∂Ω̂(t),
i.e.,∑
i∈It(x)

αi∇ĝi(x, t) +
m∑
j=1
βj∇hj(x) = 0, αi ∈ R+, βj ∈ R⇒ αi = βj = 0, i ∈ It(x) and j = 1, 2, · · · ,m.

(A4) For any t ∈ [0, 1], and for all x ∈ ∂Ω̂(t), the normal cone of Ω̂(t) only meets ∂Ω̂(t) at x, i.e.,

{x+
∑
i∈It(x)

∇ĝi(x, t)yi|yi > 0}∩ Ω̂(t) = {x}, ∀x ∈ ∂Ω̂(t).

To compute a fixed point of self-mapping in the general non-convex set by the combined homotopy
method, the following theorem which is an equivalent condition of the existence for fixed point in the
general non-convex set Ω is important and will be used in the next section.

Theorem 2.1. Let the non-convex set Ω be defined as (2.1), and the constraint functions gi(x), i = 1, 2, · · · ,m
and hj(x), j = 1, 2, · · · , l be three times continuous differentiable. If the conditions (A1)-(A4) hold, then for any
twice continuous differentiable self-mapping φ : Ω→ Ω, x ∈ Ω is a fixed point of the mapping φ(x) if and only if
there exists a vector (y, z) ∈ Rm+ × Rl, such that (x,y, z) is a solution of the following system:

x−φ(x) +∇g(x)y+∇h(x)z = 0,
h(x) = 0,
Yg(x) = 0, g(x) 6 0, y > 0.

(2.2)

Proof. When the parameter t = 0, the conditions (A1)-(A3) are the same as the conditions of [9, Lemma
2.1]. Therefore, the proof is omitted here.

To prove the main results, the following parameterized Sard theorem (see [4, Theorem 2.1]) will be
used and is presented here. Let U ⊂ Rn be an open set and ϕ : U → Rp be a Cα (α > max{0,n− p})
mapping. We say that y ∈ Rp is a regular value for ϕ if

Range[∂ϕ(x)/∂x] = Rp, ∀x ∈ ϕ−1(y).

Lemma 2.2. Let V ⊂ Rn, U ⊂ Rm be open sets, and let ϕ : V ×U→ Rk be a Cα mapping, where

α > max{0,m− k}.

If 0 ∈ Rk is a regular value of ϕ, then for almost all a ∈ V , 0 is a regular value of ϕa = ϕ(a, ·).

3. Main result

By Theorem 2.1, to find a fixed point of a twice continuous differentiable self-mapping is equivalent
to solve the system (2.2). Hence, to solve the equivalent system (2.2) more conveniently, for any given
constant η ∈ Rm++ and any initial point x0 ∈ Ω̂0(1), a modified infeasible homotopy equation is constructed
as follows:

H(w, t) =

 (1 − t)(x−φ(x)+ ∇ĝ(x, t)y+∇h(x)z) + t(x− x0)
Yĝ(x, t) + tη
h(x) − tz

 = 0, (3.1)

where w = (x,y, z)T ∈ Rn × Rm+ × Rl, Y = diag(y1,y2, · · · ,ym), and ĝ(x, t) is the shifted constraint
function which satisfies conditions (A1)-(A4).

For the homotopy equation (3.1), when t = 0, the homotopy equation H(x, 0) = 0 turns to the equiva-
lent system (2.2). When t = 1, the homotopy equation H(x, 1) = 0 can be written as follows: x − x0

Yĝ(x, 1) + η

h(x) − z

 = 0,



Z. C. Zhu, R. F. Wu, Y. C. Xing, J. Nonlinear Sci. Appl., 10 (2017), 5904–5913 5908

which has a unique simple solution (x,y, z) = (x0,y0, z0) = (x0,−[diag(ĝ(x0, 1))]−1η,h(x0)).
For any given initial point w0 ∈ Ω0(1)× Rm++ × Rl, the zero-point set of H(w, t) = 0 is denoted as

follows
H−1
w0(0) = {(w, t) ∈ Ω0(1)× Rm++ × Rl × (0, 1] : H(w, t) = 0}.

Theorem 3.1. Suppose the constraint set Ω is defined as (2.1). If the constraint functions gi(x), i = 1, 2, · · · ,m
and hj(x), j = 1, 2, · · · , l are all three times continuous differentiable, and conditions (A1)-(A4) hold, then any twice
continuous differentiable self-mapping φ : Ω → Ω has a fixed point in Ω, and for any w0 ∈ Ω̂(1)0 × Rm++ × Rl,
the zero-point set H−1

w0(0) of the homotopy equation (3.1) contains a smooth curve Γw0 ⊂ Ω̂(1)× Rm+ × Rl × (0, 1],
which begins from (x0,y0, z0, 1) and terminates in or approaches to the hyperplane t = 0. Moreover, if (x̃, ỹ, z̃, 0) is
an ending limit point of the smooth curve Γw0 , then w̃ = (x̃, ỹ, z̃) is a solution to system (2.2) and the x̃-component
is a fixed point of φ(x) in Ω.

Proof. Taking x0 as variate and let Ĥ(w, x0, t) be the same mapping as H(w, t). Consider the sub-matrix
of the Jacobian DĤ(w, x0, t) as follows:

∂Ĥ(w, x0, t)
∂(x0,y, z)

=

 −tI ∗ ∗
0 diag(ĝ(x, t)) 0
0 0 −tI

 .

For all t ∈ (0, 1], and for any x ∈ Ω̂(1), since η ∈ Rm++ and Yĝ(x, t) + tη = 0, we can obtain that the matrix

diag(ĝ(x, t)) is nonsingular, which implies that the sub-matrix ∂Ĥ(w,x0,t)
∂(x0,y,z) is nonsingular. Hence, the matrix

DĤ(w, x0, t) is a matrix of full row rank, which means that 0 is a regular value of Ĥ(w, x0, t). Therefore, by
Lemma 2.2, for almost all x0 ∈ Ω̂0(1), 0 is a regular value of H(w, t). For the given w0 ∈ Ω̂0(1)×Rm++×Rl,
if 0 is a regular value of H(w, t), from the fact that H(w0, 1) = 0, the matrix

∂H(w0, 1)
∂w

=

 I 0 0
∗ diag(ĝ(x0, 1)) 0
∗ 0 −I

 ,

is also nonsingular, and the famous implicit function theorem, we get that H−1
w0(0) must contain a smooth

curve Γw0 , which starts from (x0,y0, z0, 1), goes intoΩ0(1)×Rm++×Rl× (0, 1) and terminates in the bound-
ary of Ω(t)× Rm+ × Rl × [0, 1].

Let (w̃, t̃) be an ending limit point of the smooth curve Γw0 as t → 0. Then, only the following five
cases may be possible:

(i) (w̃, t̃) ∈ Ω̂(1)× Rm+ × Rl × {1}, ‖(ỹ, z̃)‖ <∞;
(ii) (w̃, t̃) ∈ Ω̂(t̃)× Rm+ × Rl × [0, 1], ‖(ỹ, z̃)‖ = ∞;

(iii) (w̃, t̃) ∈ Ω̂(t̃)× ∂Rm+ × Rl × (0, 1), ‖(ỹ, z̃)‖ <∞;
(iv) (w̃, t̃) ∈ ∂Ω̂(t̃)× Rm++ × Rl × (0, 1), ‖(ỹ, z̃)‖ <∞;
(v) (w̃, t̃) ∈ Ω̂× Rm+ × Rl × {0}, ‖(ỹ, z̃)‖ <∞.

Since the homotopy equation H(w, 1) = 0 has a unique simple solution

w0 = (x0,y0, z0) in Ω̂0(1)× Rm++ × Rl,

and ∂H(w0,1)
∂w is nonsingular, case (i) is impossible.

Next, we will prove that case (ii) is also impossible. If the case (ii) holds, there must exist a sequence
of points {(xk,yk, zk, tk)} ⊂ Γw0 such that xk → x̃ ∈ Ω̂(t̃), ‖(yk, zk)‖ → ∞, and tk → t̃ ∈ [0, 1] as k → ∞.
From the first equation of the homotopy equation (3.1), we can get

(1 − tk)(xk −φ(xk) +

m∑
i=1

yki∇ĝi(xk, tk) +
l∑
j=1

∇hj(xk)zkj ) + tk(xk − x0) = 0. (3.2)

When k→∞, only the following three subcases are possible:



Z. C. Zhu, R. F. Wu, Y. C. Xing, J. Nonlinear Sci. Appl., 10 (2017), 5904–5913 5909

(I) t̃ = 1;

(II) t̃ ∈ (0, 1);

(III) t̃ = 0.

(I) t̃ = 1. From the third equation of (3.1), we have zk → h(x̃) as k → ∞, which implies that {zk} is
bounded. Hence, the sequence of points ‖yk‖ →∞. Then, by the second equation of (3.1) and ‖yk‖ →∞,
we get x̃ ∈ ∂Ω̂(1).

If ‖(1 − tk)y
k‖ is bounded, without loss of generality, suppose that (1 − tk)y

k → ỹ, then ỹi = 0 for
i /∈ I1(x̃) by the second equation of (3.1). Now, taking limits in (3.2) as k → ∞, by the fact that {zk} is
bounded and conditions (A1) and (A2) hold, we have

x0 = x̃+ lim
k→∞(1 − tk)(x

k −φ(xk) +

m∑
i=1

∇ĝi(xk, tk)yki +
l∑
j=1

∇hj(xk)zkj )

= x̃+ lim
k→∞(1 − tk)(x

k −φ(xk) +
∑
i/∈I1(x̃)

∇ĝi(xk, tk)yki +
l∑
j=1

∇hj(xk)zkj )

+ lim
k→∞

∑
i∈I1(x̃)

(1 − tk)y
k
i∇ĝi(xk, tk)

= x̃+ (1 − t̃)(x̃−φ(x̃) +

m∑
j=1

∇hj(x̃)z̃j) +
∑
i/∈I1(x̃)

∇ĝi(x̃, t̃)ỹi

+
∑
i∈I1(x̃)

ỹi∇ĝi(x̃, t̃)

= x̃+
∑
i∈I1(x̃)

ỹi∇ĝi(x̃, 1),

which contradicts with the condition (A4).
If ‖(1 − tk)yk‖ is unbounded, the proof is the same as the following case (II).

(II) t̃ ∈ (0, 1). From the third equation of (3.1), we have zk → h(x̃)/t̃ as k→∞, which implies that {zk} is
bounded. Hence, only the sequence of points ‖yk‖ →∞.

Since t̃ ∈ (0, 1) and ‖yk‖ → ∞, (1 − tk)y
k is unbounded, without loss of generality, we assume that

(1− tk)yk/‖(1− tk)yk‖ → α∗ with ‖α∗‖ = 1 and α∗i = 0 for i /∈ It̃(x̃). Dividing both sides of the equation
(3.2) by ‖(1 − tk)y

k‖ and taking limits as k→∞, we can get∑
i∈It̃(x̃)

α∗i∇ĝi(x̃, t̃) = 0,

which contradicts with condition (A3).

(III) t̃ = 0. Without loss of generality, suppose that (yk, zk)/‖(yk, zk)‖ → (α∗,β∗) with ‖(α∗,β∗)‖ = 1 and
α∗i = 0, for i /∈ I0(x̃). Then, through dividing the both sides of equation (3.2) by ‖(yk, zk)‖ and taking
limits as k→∞, we have ∑

i∈I0(x̃)

α∗i∇ĝi(x̃, 0) +
m∑
j=1

β∗j∇hj(x̃) = 0,

which contradicts condition (A3).
Concluded from the above discussions on subcases (I)-(III), we get that case (ii) is also impossible.
Now, we prove that case (iii) and case (iv) are also impossible. From the second equation of (3.1)

diag(ĝ(x̃, t̃))ỹ + t̃η = 0, we have that t̃ > 0 and ỹ ∈ ∂Rm+ , i.e., ỹi = 0 for some 1 6 i 6 m cannot
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happen simultaneously. Hence, case (iii) is also impossible. If ỹ > 0 and t̃ > 0, from the equation
diag(ĝ(x̃, t̃))ỹ+ t̃η = 0, we get diag(ĝ(x̃, t̃)) < 0, which implies that the case (iv) is impossible too.

In conclusion, from the above discussions, the case (v) is the only possible case. Hence, Γw0 must
terminate in or approach to the hyperplane at t̃ = 0 and w̃ = (x̃, ỹ, z̃) is a solution to the system (2.2). By
Theorem 2.1, we have that x̃ is a fixed point of φ(x) in Ω.

The proof is complete.

4. Numerical test

In this section, to show the feasibility and effectiveness of the modified infeasible homotopy method,
some numerical tests will be done through numerically tracing the smooth curve Γw0 . By Theorem 3.1, the
zero-point set H−1

w0 of the homotopy equation (3.1) must determine a smooth curve for any given initial
point w0 ∈ Ω̂0(1)×Rm++×Rl as t→ 0, and we can obtain a fixed point of a twice continuous differentiable
self-mapping φ(x) in the general non-convex set Ω. In this paper, we will use standard Euler-Newton
predictor-corrector procedure to numerically trace the homotopy path Γw0 , more details see references,
e.g., [1, 17–19, 21]. A detailed description of the implementation on the modified infeasible homotopy
method is presented as follows.

Algorithm 4.1.

Step 1. Initialization.

Set the accuracy parameters ε1 > ε2 > 0, given constant ηi > 0, i = 1, 2, · · · ,m, initial point x0 ∈
Ω̂0(1), homotopy parameter t0 = 1, initial step-length λ0 > 0, the step-length adjusting parameters
0 < ε1 < ε2 < ε3 < 1 < ε4 < ε5, the maximum number N̄ of the corrector steps, the threshold value
εα for the angle between two neighbouring predictor directions and the threshold value 0 < εt < 1
for starting the end game. Set k = 0.

Step 2. The first predictor step.

If k = 0, set λ̂ = λ0, ε = ε1;

Let d−1 = (0, · · · , 0,−1)T ∈ Rn+m+l+1, compute the predictor step d by(
DH(w0, 1)
(d−1)T

)
d = −d−1.

Set d0 = d
‖d‖ ; Determine the smallest nonnegative integer i such that

(w1,0, t1,0) = (w0, t0) + ε
i
3λ̂d

0 ∈ Ω̂(t1,0)× Rm+ × Rl × (0, 1), set λ̂ = εi3λ̂; Go to Step 3;

Else. Go to Step 5.

Step 3. The corrector step.

Set j = 0, repeat;

Compute the Newton step d̂ by solving(
DH(wk+1,j, tk+1,j)

(dk)T

)
d̂ =

(
−H(wk+1,j, tk+1,j)

0

)
.

Determine the smallest nonnegative integer i such that

(wk+1,j+1, tk+1,j+1) = (wk+1, tk+1) + ε
i
3λ̂d̂ ∈ Ω̂(tk+1,j+1)× Rm+ × Rl × (0, 1).

If ‖H(wk+1,j+1, tk+1,j+1)‖∞ 6 ‖H(wk+1,j, tk+1,j)‖∞, set j = j+ 1;

Else, set j = N̄, (wk+1,j, tk+1,j) = (wk+1,0, tk+1,0), until ‖H(wk+1,j, tk+1,j)‖∞ 6 ε or j = N̄;

Go to Step 4.
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Step 4. The step-length strategy.

If j = N̄ and ‖H(wk+1,j, tk+1,j)‖∞ > ε, set λ̂ = ε2λ̂, (wk+1,0, tk+1,0) = (wk, tk) + λ̂dk;

Go to Step 3;

Else, set (wk+1, tk+1) = (wk+1,j, tk+1,j); Adjust the step-length λ̂ as follows:

If (dk)Tdk−1 < εα, set λ̂ = ε1λ̂;

If j > 4, set λ̂ = ε2λ̂;

If j = 2, set λ̂ = ε4λ̂;

If j < 2, set λ̂ = ε5λ̂;

If tk+1 < εt, go to Step 6;

If ‖H(wk+1, 0)‖∞ 6 ε2 and wk+1 is feasible, terminate the algorithm. w̃ = wk+1 is the computed
solution to the equivalent system (2.2). Therefore, the x-component x̃ = xk+1 is a fixed point.

Set ε = min{tk+1, ε1}, k = k+ 1.

Step 5. The midway predictor step.

Let dk = ((wk, tk) − (wk−1, tk−1))/‖(wk, tk) − (wk−1, tk−1)‖;
Determine the smallest nonnegative integer i such that

(wk+1,0, tk+1,0) = (wk, tk) + εi3λ̂d
k ∈ Ω̂(tk+1,0)× Rm+ × Rl × (0, 1), set λ̂ = εi3λ̂;

Go to Step 3.

Step 6. The end game.

Set j = 0, wk+1,0 = wk+1; Repeat;

Compute the Newton step dend by solving the equation
∂H
∂w(wk+1,0, 0)dend = −H(wk+1,j, 0);

Set wk+1,j+1 = wk+1,j + dend, j = j+ 1;

Until, ‖H(wk+1,j, 0)‖∞ 6 ε2 or j = N̄;

If ‖H(wk+1,j, 0)‖∞ 6 ε2 and wk+1,j is feasible, terminate the algorithm. w̃ = wk+1,j is the com-
puted solution to the equivalent system (2.2). Therefore, the x-component x̃ = xk+1,j is a fixed
point.

Else, set εt = 0.1εt.

Algorithm 4.1 has been implemented in Matlab and some numerical tests were carried out on a com-
puter running the software Matlab R2014a on Microsoft Windows 7 Professional with Intel(R) 3.40GHz
processor and 8.00 GB megabytes of memory. And the termination tolerance is set as ε = 10−6.

For convenience, in the following numerical tests, the shifted constraint functions are constructed as
ĝi(x, t) = gi(x) − t

θτ, i = 1, 2, · · · ,m, where the constants θ and τ are chosen as θ = 2, τ = 0 when
gi(x

0) < 0 and τ = max{gi(x0)} + 10 when gi(x0) ≮ 0, respectively. The parameters in the homotopy
equation (3.1) are set as ηi = 10, i = 1, 2, · · · ,m.

The numerical results have been listed in the following tables, CPU denotes the computer time, IT
denotes the iteration step which is the summation of the predictor step and the corrector step in the
computing process, and x̃ denotes the fixed point of F(Ω) ⊆ Ω.

Example 4.2. To compute a fixed point of a self-mapping:

φ(x) = (
1
2
x1 +

1
25
x2, x2

1 +
1
4
x2)
T ,
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in the non-convex set Ω = {(x1, x2) ∈ R2 : −x1 − 5 6 0, x1 − 5 6 0, x2 − 50 6 0,−x2
1 +

1
2x2 = 0}.

In this example, the initial points are chosen as x0
1 = (1, 1), x0

2 = (10,−5), x0
3 = (−15,−10) and

x0
4 = (−30, 30), which are not interior points in the original feasible set. Hence, the combined homotopy

interior point method in [9, 21] fails. But, by the homotopy equation (3.1), we can get the unique fixed
point x̃ = (0, 0) of the self-mapping φ(Ω) ⊆ Ω as t→ 0. The numerical results are listed in Table 1.

Table 1: The numerical results of Example 4.2.

x(0) CPU IT x̃

(1,1) 0.1404 10 10−7×(1.3456, -1.6174)
(10,-5) 0.0624 19 10−10×(1.2878, -6.8530)

(-15,-10) 0.0624 21 10−7×(1.5056, -3.8393)
(-30,30) 0.1716 60 10−11×(0.3587, -2.3512)

Example 4.3. To compute a fixed point of a self-mapping:

φ(x) = (x1,−x2)
T ,

in the non-convex set Ω = {(x1, x2) ∈ R2 : −x1 − 2 6 0, x2 − 5 6 0,−x2 − 5 6 0, x1 − x
2
2 + 1 = 0}.

In this example, the initial points are chosen as x0
1 = (−2,−2), x0

2 = (10, 10), x0
3 = (30,−20) and

x0
4 = (−20, 30), which are not interior points in the original feasible set. Hence, the combined homotopy

interior point method in [9, 20, 21] fails. But, by the homotopy equation (3.1), we can get the unique fixed
point x̃ = (−1, 0) of the self-mapping φ(Ω) ⊆ Ω as t→ 0. The numerical results are listed in Table 2.

Table 2: The numerical results of Example 4.3.

x(0) CPU IT x̃

(-2,-2) 0.2340 21 (-1, 1.5349×10−7)
(10,10) 0.0468 34 (-1, 8.1671×10−11)
(30,-20) 0.1404 54 (-1, 4.0060×10−13)
(-20,30) 0.0624 43 (-1, 1.2826×10−8)
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