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Abstract

In this paper, Halpern method is applied to find fixed points of a class of firmly type nonexpansive mappings. A strong
convergence result is obtained under the control conditions (C1) and (C2). Our conclusion obtained in this paper gives the
affirmative answer of the Halpern open problem for this class of mapping. (©2017 All rights reserved.
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1. Introduction

Let I be a real Hilbert space equipped up its inner product (-, -) and induced norm || - ||. Let § # € C H
be a given set. Recall that a mapping 7: € — C is said to be nonexpansive if the following inequality holds

TJu—Tul|| < lu—u' , Vu,uTEG.
|

A mapping T: € — C is called averaged, if and only if it can be written as the average of the identity
operator and a nonexpansive operator, that is,

T=Al+(1—A)S,

where A is a number in (0,1) and §: € — C is nonexpansive.

A point v € € is a fixed point of T provided Tvi = vI. Denote by Fix(T) the set of fixed points of 7,
that is, Fix(T) = {vl € €: Jvl = vT}. Tt is assumed throughout the paper that Fix(T) # (.

Iterative computation of fixed points of nonlinear mappings is an interesting topic in a large number
of applied areas, in particular in image recovery and signal processing. Constructed iteration approaches
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to find fixed points of nonexpansive mappings have received vast investigation, see, e.g., [1-3, 8-11, 17—
19, 21, 22, 24].

The aim of the present paper focuses our attention on the parameter control of iterative methods for
finding fixed points of nonexpansive mappings. We next briefly reproduce several historic approaches.

It is well-known that the Picard scheme 1,1 = Tu, = --- = Ty of the mapping T at an initial
guess ug € € may, in general, not behave well. This means that it may not converge even in the weak
topology. One pathway to overcome this disadvantage is to apply Mann’s ([14]) iteration algorithm that
generates a sequence {un} via the iterative manner:

Uny1 = Xnln + (1 —on)Tun, n>0. (1.1)

Though simple in form, the Mann iteration (1.1) is remarkably useful for finding fixed points of a
nonexpansive mapping and provides a unified framework for many algorithms from various different
fields. However, Mann iterative algorithm (1.1) for nonexpansive mappings has only weak convergence
in the infinite dimensional spaces.

A natural question rises: could we acquire the strong convergence conclusion by using the normal
Mann’s method (1.1) for nonexpansive mappings? In this respect, in 1975, Genel and Lindenstrass [4]
demonstrated a counterexample. Thus, some rectifications are necessary in order to guarantee the strong
convergence of the modified method.

In 1967, Halpern [6] constructed the following iteration scheme for computing a fixed point of a
nonexpansive mapping 7.

For fixed u € C and an initial guess ug € €, let the sequence {u,} be generated iteratively by

Uni1 = pu+ (1 —on)Tun, n=0, (1.2)

where {x,, } is a sequence in (0, 1).
Algorithm (1.2) was referred to as the Halpern algorithm. Halpern pointed out that the control condi-
tions:

(C1): limy 00 0t =0;
(C2): Y, on = oo are necessary for the strong convergence of the iteration (1.2) to a fixed point of T.
At the same time, he also put forth the following open problem.

Problem 1.1. Are the control conditions (C1) and (C2) sufficient for the convergence of the Halpern
iteration (1.2) to a fixed point of T?

Subsequently, many researchers carefully considered this problem, for instance, [7, 15]. However, this
problem was still not solved until the following important conclusion was presented by Suzuki [13] in
2005.

Conclusion 1.2 ([13]). Let X be a Banach space. Let {3.,} be a sequence in [0, 1] satisfying

0 < liminf 3, <limsup fn < 1.
n—oo n—oo

Suppose that {u,} C X and {vn} C X are two bounded sequences satisfying the conditions
(i) Uny1 =1 —=PBn)un+ Pnvn, foralln > 0;
(ii) limsupn—)oo(an"‘l — V|l = [[uns1 —unl]) <0.
Then limp o ||Un —vn || = 0.
By applying Conclusion 1.2, one can prove that the sequence {u,} generated by Halpern method

(1.2) converges strongly to the fixed point of T under the control conditions (C1) and (C2) provided T is
averaged.
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Remark 1.3. The Halpern open problem is solved for the class of averaged mappings. In this case, we can
rewrite (1.2) as
Uni1 = onu+ (I — o) Aun + (1 —A)8uyn), m=0,

or its general form
Uni1 = XnU+ Pnln +VnSUn, n =0, (1.3)

where 8 is a nonexpansive.

Note that the above iterative algorithm (1.3) has been applied to find the fixed points of a large number
of nonlinear mappings, see for instance [20, 23] and the references therein.

Recently, Song and Cai [12] introduced a class of firmly type nonexpansive mappings and proved the
strong convergence of Halpern iteration (1.2) for a firmly type nonexpansive mapping under conditions
(C1) and (C2). However, there is a gap in the proof of [12, Theorem 3.1].

The main purpose of this paper is to demonstrate the strong convergence of Halpern iteration (1.2)
for a firmly type nonexpansive mapping under conditions (C1) and (C2) by using a new technique. Our
conclusion obtained in this paper gives the affirmative answer of the Halpern open problem for this class
of firmly type nonexpansive mappings.

2. Preliminaries

Let € be a nonempty closed convex subset of a real Hilbert space J{.

Definition 2.1. A mapping 7: € — C is said to be firmly type nonexpansive if there exists a positive
constant k € (0, co) such that

[Tu—Tu)? < Jlu—ul|? = k||(I—TPu— (I—T)ul|? (2.1)
for all u,uf € ¢.
For every point z € H, there exists a unique nearest point in €, denoted by proj.z such that
|z —projez|| < |lz—u|, VzeC.

The mapping proj, is called the metric projection of 3 onto C. It is well-known that proj, is a nonexpan-
sive mapping and is characterized by the following property:

(z—projez,u—projoz) <0, vVzeXH, uecC. (2.2)

Lemma 2.2 ([5]). Let C be a nonempty closed convex subset of a Hilbert space H, and let T: € — C be a nonex-
pansive mapping with Fix(T) # 0. Assume that {un} C C is a sequence such that w, — x! and (I— T, — 0.
Then x' € Fix(7T).

Lemma 2.3 ([16]). Assume that {d} is a sequence of nonnegative real numbers such that
dnt1 < (1—an)dn+onon, m=0,
where {on } is a sequence in (0,1) and {on} is a sequence in R such that
(i) Z?:l Xn = 00,
(ii) limsup,, .. on <0o0r ) ;4 lotnon| < co.

Then limp, o0 61 = 0.

3. Main results

Let C be a nonempty closed convex subset of a Hilbert space H. Let T: ¢ — € be a firmly type
nonexpansive mapping with Fix(T) # 0.
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Algorithm 3.1 (Initialization). For fixed u € € and given an initial guess xo € € arbitrarily.
For the constructed {xn}, xn 11 is generated iteratively by the manner

Xni1 = nu+ (1 —an)Txn, n =0, (3.1)
where {o,} is a sequence in (0,1).
Theorem 3.2. Assume {xn} satisfies the following conditions
(C1) limp 00 xn =0;
(C2) Y 7 yan = oo.

Then the sequence {xn} generated by (3.1) converges strongly to projg, o (u).

Proof. Set z = projg;, (o (u). Firstly, we show that the sequence {x} is bounded. From (3.1), we have

[xn1 =zl = [lan(u—2) + (1 — o) (Txn —2)|
< anllu—z|| + (1 — on || Txn — Z||
< onflu—zl|+ (1= on)xn —z|
< max{||lu—z||, [[xn — z||}-

By induction, we get
[xn+1 =zl < max{|ju—z||, [[xo — z||}

Hence, the sequence {xn,} is bounded and so is {Txn}.
By virtue of (2.1) and (3.1), we deduce

[Xnt1 —z|* = lon (w—2) + (1 — o) (Txn, — 2)|?
< (1= on)]| Txn — 2|2 4 2000 (W — 2, X 41 — 2)

< (1= o) [|Pxn — 2|2 = K|xn — Txn [ 4 2060 (W — 2, X 41 — 2)

(3.2)
B (1 — o)k xn — Txn ||?
=on |2(0—2,Xn41 —2) —
on
+ (1= on) [ xn — 2|2
Set &, = ||xn —z||* and
1 — )k Xn — Txn|?
on =2(U—2z,Xny41 —2) — (1 = oK = Txu | (3.3)
on
foralln > 0.
According to (3.2) and (3.3), we obtain
dni1 < (1—on)dn+anon, n=0. (3.4)

Next, we show that limsup, _, oy, is finite. From (3.3), we get
on <2(UW—2,%Xn41 —2) < 2||u—2z|||xnt1 — 2z

Since {xn } is bounded, it follows that

lim sup oy, < +-00.
n—oo

Next we prove

limsup o, > —1,
n—oo
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by contradiction.
If we assume on the contrary limsup, _, on < —1, then there exists mgy such that 0, < —1 for all
n > my. It then follows from (3.4) that

dny1 < (1—an)dn —xn
<O —an
for all n > my.
By induction, we have
n
Srit < Bmg— ) . (3.5)
i:mo
By taking lim sup as n — oo in (3.5), we have
n
limsup 6 < 8y, — lim Z oy = —00,
n—oo n—00 i—mo

which induces a contradiction. So,

—1 < limsup o < 400.
n—oo

Hence, limsup,,_, oy exists. Thus, we can take a subsequence {ny} such that

limsup oy = lim op,

n—oo k—00
_ 3 (1~ atn, o, — Tt | (3
= lim [2(u—2z,Xn 41 —2) — .
k—o0 o‘nk

Since (W —z,xn,+1 — z) is a bounded real sequence, without loss of generality, we may assume that the
limit limy 00 (U — 2, X, 1 — 2) exists. Consequently, from (3.6), the following limit also exists

lim (1 - ocnk)kHXle — ‘TxnkHZ.

k—o0 Kny

(3.7)

Note that lim, o & = 0. It follows from (3.7) that

lim ||xn, —Txn, || =0.
k—o00

It follows that any weak cluster point of {x,, } belongs to Fix(T) by Lemma 2.2.
Note that
X1 = Xn | < anf[xn —ufl + (1= on )| Txn —xn .

This together with condition (C1) implies that
im_ [, 11— Xn, || = 0.
k—o0

This implies that any weak cluster point of {x,,, 11} also belongs to Fix(7). Without loss of generality, we
assume that {xn, 1} converges weakly to X. Therefore,

limsup o, < lim 2(u—2z,xn, 41 —2) =2(u—2z,%—2z) <O,
n—o00 k—o0

due to the fact that z = projg, 7 (u) and (2.2).
Finally, applying Lemma 2.3 to (3.4), we get xn — Projg;, 7 (u). The proof is completed. O
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Remark 3.3. Note that Suzuki’s conclusion 1.2 can not be used to the class of firmly type nonexpansive
mappings. Theorem 3.2 gives a positive answer to the Halpern open problem for the class of firmly
nonexpansive mappings.

Recall that a mapping 7: C — C is said to be firmly nonexpansive if
17w = Tl < Ju— |2 = (1= T — (- T2

for all u,uf € ¢.

Remark 3.4. It is obvious that the class of firmly type nonexpansive mappings includes the class of firmly
nonexpansive mappings as a special case.

As an application of Theorem 3.2, we get the following corollary.

Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let T: C — C be a firmly
nonexpansive mapping with Fix(T) # (. Assume {xr} satisfies the following conditions

(C1) limp 00 0 = 0;

Then, the sequence {xn} generated by (3.1) converges strongly to projg; ) (w).
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