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Abstract
Ultimate bound sets of chaotic systems have important applications in chaos control and chaos synchronization. Ultimate

bound sets can also be applied in estimating the dimensions of chaotic attractors. However, it is often a difficult work to obtain
the bounds of high-order chaotic systems due to complex algebraic structure of high-order chaotic systems. In this paper, a new
5D autonomous quadratic chaotic system which is different from the Lorenz chaotic system is proposed and analyzed. Ultimate
bound sets and globally exponential attractive sets of this system are studied by introducing the Lyapunov-like functions. To
validate the ultimate bound estimation, numerical simulations are also investigated. c©2017 All rights reserved.
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1. Introduction

Since Lorenz chaotic system was found in 1963 [16], chaotic systems have played an important role in
a variety of engineering fields. Since then, some new chaotic systems which are not equivalent to Lorenz
system were found, i.e., Rössler system [19], Chua system [2], Chen system [1], Lü system [17], Shimizu-
Morioka system [8], etc. Not only basic properties and dynamical behaviors of these chaotic systems
have been widely studied, but also chaotic control, chaotic synchronization, and other applications have
been investigated by many researchers from various fields [3–22, 24, 26]. Various dynamical behaviors
of these chaotic systems have been studied due to their various applications in the fields of population
dynamics, atmospheric dynamics, electric circuits, image encryption, fluid dynamics, lasers, engineering,
stock exchanges, chemical reactions, and so on [23, 25, 27–34]. In 2013, Wang et al. investigated a 5D
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chaotic system to describe the evolution of permanent magnet synchronous motor system in field-oriented
rotor [25]: 

du1
dt = a (u3 − u1) ,
du2
dt = a (u4 − u2) ,
du3
dt = bu1 − u3 − u1u5,
du4
dt = bu2 − u4 − u2u5,
du5
dt = u1u3 + u2u4 − u5.

(1.1)

In this paper, we propose a generalized 5D chaotic system with five parameters as follows:

du1
dt = a (u3 − u1) ,
du2
dt = a (u4 − u2) ,
du3
dt = bu1 − du3 − u1u5,
du4
dt = bu2 − eu4 − u2u5,
du5
dt = u1u3 + u2u4 − cu5,

(1.2)

where u1,u2,u3,u4,u5 are state variables and a,b, c,d, e are positive parameters of system (1.2).
The Lyapunov exponents of the dynamical system (1.2) are calculated numerically for the parameter

values a = 35,b = 55, c = 8
3 ,d = 1, e = 1 with the initial state (u10,u20,u30,u40,u50) = (−1,−2,−3,−4, 1).

System (1.2) has Lyapunov exponents as λLE1 = 1.1041, λLE2 = 0, λLE3 = 0, λLE4 = −0.6473, λLE5 = −1.9854
for the parameters listed above (see [5] and [26] for a detailed discussion of Lyapunov exponents of strange
attractors in dynamical systems). When parameters a = 35,b = 55, c = 8

3 ,d = 1, e = 1, system (1.2) has a
chaotic attractor, as shown in Figure 1.
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Figure 1: Projection of chaotic attractor of system (1.2) in (u2,u3,u4) space.

In this paper, all the simulations are carried out by using fourth order Runge-Kutta Method with
time-step h = 0.01.

Recently, ultimate bound sets of chaotic systems and hyperchaotic systems have been discussed in
many research papers [7, 27, 28, 30, 31]. It is well-known that there is a bounded ellipsoid in R3 for
the famous Lorenz system, which all orbits of the Lorenz system will eventually enter for all positive
parameters of the Lorenz system [7, 34]. The ultimate bound sets of chaotic systems can be used in chaos
control and synchronization [32]. Furthermore, the ultimate bound sets of chaotic systems can be used for
estimation of the fractal dimension of chaotic and hyperchaotic attractors [6, 18]. Usually, the approach
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to investigate the ultimate bound set of a given chaotic system is to construct the Lyapunov-like functions
for the given system. However, the approach to construct Lyapunov-like functions in each system is only
suitable for that particular system. It is very difficult to propose a universal approach to estimate the
ultimate bound sets for an arbitrary chaotic system. Furthermore, it is often a difficult work to obtain the
bounds of high-order chaotic systems due to complex algebraic structure of high-order chaotic systems.
As far as the authors know, very little work has been done on ultimate bound sets of n-dimensional
high-order chaotic systems with n > 4.

Motivated by the above discussion, we will investigate the bounds of the new 5D Lorenz-type chaotic
system (1.2) in this paper. The innovation of the paper is that this paper not only proves this 5D system
is global bounded for all parameters of this system according to Lyapunov stability theory of dynamical
systems but also gives a family of mathematical expressions of global exponential attractive sets for this
5D system with respect to the parameters of this system.

The rest of this paper is organized as follows. The ultimate bound sets of chaotic system (1.2) are
studied in Section 2. To validate the ultimate bound estimation, numerical simulations are also provided.
In Section 3, the globally attractive sets for the chaotic attractors in (1.2) are studied based on Lyapunov
stability theory. Finally, the conclusion is drawn in Section 4.

2. Ultimate bound estimation

Lemma 2.1. Define the set

Γ0 =

{
(x1, x2,y1,y2, z)|

x2
1
a2 +

x2
2
b2 +

(z− c)2

c2 +
y2

1
d2 +

y2
2
e2 = 1, abcde 6= 0

}
,

and two functions

G1 (x1, x2,y1,y2, z) = x2
1 + x

2
2 + y

2
1 + y

2
2 + z

2,

H1 (x1, x2,y1,y2, z) = x2
1 + x

2
2 + y

2
1 + y

2
2 + (z− 2c)2, (x1, x2,y1,y2, z) ∈ Γ0.

Then, we can get

maxG1
(x1,x2,y1,y2,z)∈Γ0

= maxH1
(x1,x2,y1,y2,z)∈Γ0

=



a4

a2−c2 , a > b, a > d, a > e, a >
√

2c,
b4

b2−c2 , b > a, b > d, b > e, b >
√

2c,
d4

d2−c2 , d > a, d > b, d > e, d >
√

2c,
e4

e2−c2 , e > a, e > b, e > d, e >
√

2c,
4c2 , a <

√
2c, b <

√
2c, d <

√
2c, e <

√
2c.

Proof. It can be easily proved by the Lagrange multiplier method.

According to Lemma 2.1, we can get the following theorem for system (1.2).

Theorem 2.2. For any m > 0, λ > 0, a > 0, b > 0, c > 0, d > 0, e > 0, the following set

Ωλ,m=

{
(u1,u2,u3,u4,u5)|mu

2
1 +mu

2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

λb+ am

λ

)2

6 R2

}
, (2.1)

is the ultimate bound set and positively invariant set of system (1.2), where

R2 =



c2(bλ+am)2

4λa(c−a) , d > a, e > a, c > 2a,
c2(bλ+am)2

4λd(c−d) , a > d, e > d, c > 2d,
c2(bλ+am)2

4λe(c−e) , a > e, d > e, c > 2e,
(bλ+am)2

λ , c < 2d, c < 2a, c < 2e.
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Proof. Define the Lyapunov-like function

Vλ,m (U) = Vλ,m (u1,u2,u3,u4,u5) = mu
2
1 +mu

2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

bλ+ am

λ

)2

(2.2)

for all λ > 0, and for all m > 0, U = (u1,u2,u3,u4,u5) . Differentiating the above Lyapunov-like function
Vλ,m (U) in (2.2) with respect time t along the trajectory of system (1.2) yields

dVλ,m (U)

dt

∣∣∣∣
(1.2)

= 2mu1
du1

dt
+ 2mu2

du2

dt
+ 2λu3

du3

dt
+ 2λu4

du4

dt
+ 2λ

(
u5 −

bλ+ am

λ

)
du5

dt

= 2amu1 (u3 − u1) + 2amu2 (u4 − u2) + 2λu3 (bu1 − du3 − u1u5)

+ 2λu4 (bu2 − eu4 − u2u5) + 2λ
(
u5 −

bλ+ am

λ

)
(u1u3 + u2u4 − cu5)

= −2amu2
1 − 2amu2

2 − 2λdu2
3 − 2λeu2

4 − 2λcu2
5 + 2c (bλ+ am)u5

= −2amu2
1 − 2amu2

2 − 2λdu2
3 − 2λeu2

4 − 2λc
(
u5 −

λb+ am

2λ

)2

+
c(λb+ am)2

2λ
.

Obviously, the set Γ1 that defined by{
(u1,u2,u3,u4,u5) |amu

2
1 + amu

2
2 + λdu

2
3 + λeu

2
4 + cλ

(
u5 −

λb+ am

2λ

)2

=
c(λb+ am)2

4λ

}
, (2.3)

is an ellipsoid in R5 for all λ > 0, and for all m > 0, a > 0, b > 0, c > 0, d > 0, e > 0. Outside Γ1,
dVλ,m(U)

dt < 0, while inside Γ1, dVλ,m(U)
dt > 0. Thus, the maximum value of Vλ,m (U) can only be reached

on Γ1. Since the Vλ,m (U) is a continuous function and Γ1 is a bounded closed set, then the function (2.2)
can reach its maximum value maxVλ,m (U) = R2, (U ∈ Γ1) on the set defined in (2.3).

Obviously, {U|Vλ,m (U) 6 maxVλ,m (U) ,U ∈ Γ1} contains solutions of system (1.2). By solving the
following conditional extremum problem, one can get the maximum value of the function (2.2) as follows: max Vλ,m (U) = max

{
mu2

1 +mu
2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

bλ+am
λ

)2
}

,

s.t. amu2
1 + amu

2
2 + λdu

2
3 + λeu

2
4 + cλ

(
u5 −

bλ+am
2λ

)2
= c(bλ+am)2

4λ .

That is to say, 
max Vλ,m (U) = max

{
mu2

1 +mu
2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

λb+am
λ

)2
}

,

s.t. mu2
1

c(λb+am)2
4aλ

+
mu2

2
c(λb+am)2

4aλ

+
λu2

3
c(λb+am)2

4dλ

+
λu2

4
c(λb+am)2

4eλ

+
λ(u5−

λb+am
2λ )

2

(λb+am)2
4λ

= 1.
(2.4)

Let us take
√
mu1 = ũ1,

√
mu2 = ũ2,

√
λu3 = ũ3,

√
λu4 = ũ4,

√
λu5 = ũ5 as the new variables, then

conditional extremum problem (2.4) is transformed into the following form:
maxVλ,m (U) = max

{
ũ2

1 + ũ
2
2 + ũ

2
3 + ũ

2
4 +
(
ũ5 −

λb+am√
λ

)2
}

,

s.t. ũ2
1

c(bλ+am)2
4aλ

+
ũ2

2
c(bλ+am)2

4aλ

+
ũ2

3
c(bλ+am)2

4dλ

+
ũ2

4
c(bλ+am)2

4eλ

+

(
ũ5−

bλ+am
2
√
λ

)2

(bλ+am)2
4λ

= 1.
(2.5)

According to Lemma 2.1, we can easily get the above conditional extremum problem (2.5) as

max
U∈Γ1

Vλ,m (U) =



c2(bλ+am)2

4λa(c−a) , d > a, e > a, c > 2a,
c2(bλ+am)2

4λd(c−d) , a > d, e > d, c > 2d,
c2(bλ+am)2

4λe(c−e) , a > e, d > e, c > 2e,
(bλ+am)2

λ , c < 2d, c < 2a, c < 2e.
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Finally, it is easy to show that (2.1) is the ultimate bound set and positively invariant set of system (1.2).

Remark 2.3.

(i) Let us take λ > 0, and m > 0 arbitrarily in Theorem 2.2, then we can get a series of ultimate bounds
sets and positively invariant sets of system (1.2).

(ii) Let us take m = 1 in Theorem 2.2, then we can get that

Ωλ,1=

{
(u1,u2,u3,u4,u5)|u

2
1 + u

2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

λb+ a

λ

)2

6 r2, ∀λ > 0

}
,

is the ultimate bound set and positively invariant set of system (1.2), where

r2 =



c2(bλ+a)2

4λa(c−a) , d > a, e > a, c > 2a,
c2(bλ+a)2

4λd(c−d) , a > d, e > d, c > 2d,
c2(bλ+a)2

4λe(c−e) , a > e, d > e, c > 2e,
(bλ+a)2

λ , c < 2d, c < 2a, c < 2e.

(iii) Let us take λ = 1 in Theorem 2.2, then we can get that

Ω1,m=
{
(u1,u2,u3,u4,u5)|mu

2
1 +mu

2
2 + u

2
3 + u

2
4 + (u5 − b− am)2 6 l2, ∀m > 0

}
,

is the ultimate bound set and positively invariant set of system (1.2), where

l2 =



c2(b+am)2

4a(c−a) , d > a, e > a, c > 2a,
c2(b+am)2

4d(c−d) , a > d, e > d, c > 2d,
c2(b+am)2

4e(c−e) , a > e, d > e, c > 2e,
(b+ am)2, c < 2d, c < 2a, c < 2e.

(iv) Let us take λ = 1,m = 1 in Theorem 2.2, then we can get that

∆=
{
(u1,u2,u3,u4,u5)|u

2
1 + u

2
2 + u

2
3 + u

2
4 + (u5 − b− a)

2 6 h2
}

,

is the ultimate bound set and positively invariant set of system (1.2), where

h2 =



c2(b+a)2

4a(c−a) , d > a, e > a, c > 2a,
c2(b+a)2

4d(c−d) , a > d, e > d, c > 2d,
c2(b+a)2

4e(c−e) , a > e, d > e, c > 2e,
(b+ a)2, c < 2d, c < 2a, c < 2e.

When a = 35, b = 55, c = 8
3 , d = 1, e = 1, we can obtain that

∆=
{
(u1,u2,u3,u4,u5)|u

2
1 + u

2
2 + u

2
3 + u

2
4 + (u5 − 90)2 6 92.952

}
,

is the ultimate bound set and positively invariant set of system (1.2). In Figure 2, we give the
localization of the chaotic attractor of system (1.2) in the (u2,u3,u4) space formed by ∆.

(v) Let us take c = 1,d = 1, e = 1 in Theorem 2.2, then we can obtain the ultimate bound set and
positively invariant set of system (1.1).

Though Theorem 2.2 give the ultimate bound set and positively invariant set of the 5D Lorenz-type
system (1.2), it does not gives the global exponential attractive set of system (1.2). The global exponential
attractive set of system (1.2) is described by the following Theorem 3.1.
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Figure 2: Localization of the chaotic attractor of system (1.2) in the (u2,u3,u4) space formed by ∆.

3. Global domain of attraction

Theorem 3.1. Suppose that m > 0, λ > 0, a > 0, b > 0, c > 0, d > 0, e > 0, and let

U (t) = (u1 (t) ,u2 (t) ,u3 (t) ,u4 (t) ,u5 (t)) , θ = min (a, c,d, e) > 0,

Vλ,m (U) = mu2
1 +mu

2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

bλ+ am

λ

)2

, Lλ,m =
c(bλ+ am)2

λθ
.

When Vλ,m (U (t)) > Lλ,m, Vλ,m (U (t0)) > Lλ,m, then the estimation

Vλ,m (U (t)) − Lλ,m 6 [Vλ,m (U (t0)) − Lλ,m] e−θ(t−t0),

holds for system (1.2), and thus Ωλ,m = {U|Vλ,m (U) 6 Lλ,m} is a globally exponential attractive set of system
(1.2), i.e., lim

t→+∞Vλ,m (U (t)) 6 Lλ,m.

Proof. Define the generalized Lyapunov-like function

Vλ,m (U) = Vλ,m (u1,u2,u3,u4,u5) = mu
2
1 +mu

2
2 + λu

2
3 + λu

2
4 + λ

(
u5 −

bλ+ am

λ

)2

(3.1)

for all λ > 0, and for all m > 0, U = (u1,u2,u3,u4,u5) . Differentiating the Lyapunov-like function
Vλ,m (U) in (3.1) with respect time t along the trajectory of system (1.2) yields

dVλ,m (U)

dt

∣∣∣∣
(1.2)

= 2mu1
du1

dt
+ 2mu2

du2

dt
+ 2λu3

du3

dt
+ 2λu4

du4

dt
+ 2λ

(
u5 −

bλ+ am

λ

)
du5

dt
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= 2amu1 (u3 − u1) + 2amu2 (u4 − u2) + 2λu3 (bu1 − du3 − u1u5)

+ 2λu4 (bu2 − eu4 − u2u5) + 2λ
(
u5 −

λb+ am

λ

)
(u1u3 + u2u4 − cu5)

= −2amu2
1 − 2amu2

2 − 2λdu2
3 − 2λeu2

4 − 2λcu2
5 + 2c (bλ+ am)u5

= −amu2
1 − amu

2
2 − λdu

2
3 − λeu

2
4 − λcu

2
5 + 2c (bλ+ am)u5

− amu2
1 − amu

2
2 − λdu

2
3 − λeu

2
4 − λcu

2
5

= −amu2
1 − amu

2
2 − λdu

2
3 − λeu

2
4 − λc

(
u5 −

bλ+ am

λ

)2

+
c(bλ+ am)2

λ

− amu2
1 − amu

2
2 − λdu

2
3 − λeu

2
4 − λcu

2
5

6 −amu2
1 − amu

2
2 − λdu

2
3 − λeu

2
4 − λc

(
u5 −

bλ+ am

λ

)2

+
c(bλ+ am)2

λ

6 −θVλ,m (U) +
c(bλ+ am)2

λ

= −θ

(
Vλ,m (U) −

c(bλ+ am)2

λθ

)
< 0.

Thus, we have

Vλ,m (U (t)) 6 Vλ,m (U0) e
−θ(t−t0) +

∫t
t0

e−θ(t−τ)
c(bλ+ am)2

λθ
dτ

= Vλ,m (U0) e
−θ(t−t0) + Lλ,m

(
1 − e−θ(t−t0)

)
.

That is to say,
Vλ,m (U (t)) − Lλ,m 6 [Vλ,m (U0) − Lλ,m] e−θ(t−t0). (3.2)

Taking upper limit on both sides of the above inequality (3.2) as t→ +∞ results in

lim
t→+∞Vλ,m (U (t)) 6 Lλ,m,

which clearly shows that Ωλ,m = {U|Vλ,m (U) 6 Lλ,m} is a globally exponential attractive set of system
(1.2).

Remark 3.2.

(i) In particular, let us take m = 1, λ = 1 in Theorem 3.1, we can get that

Π =
{
(u1,u2,u3,u4,u5)|u

2
1 + u

2
2 + u

2
3 + u

2
4 + (u5 − b− a)

2 6M
}

,

is a globally exponential attractive set of system (1.2), where

M =
c(b+ a)2

θ
, θ = min (a, c,d, e) > 0.

(ii) Let us take c = 1, d = 1, e = 1 in Theorem 3.1, then we can obtain the globally exponential attractive
set of system (1.1).

4. Conclusion

A novel 5D autonomous chaotic system has been introduced and analyzed in this paper. Based
on Lyapunov stability theory and the optimization method, the bounds of this 5D autonomous chaotic
system are obtained. Numerical simulations have been used to verify the correctness of analytical results.
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The approach presented in this paper can be applied to study other chaotic systems. These theoretical
results obtained in this paper are useful in chaos control, chaos synchronization, estimating the fractal
dimensions of chaotic attractors and other applications. Further analyses like chaos control, bifurcation
analysis, and synchronization are interesting issues for future work.
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