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Abstract
In this paper, we investigate the spectral properties of dissipative difference operator, dissipative sum operator and con-

tractive operator. Using Solomyak’s method, we construct the characteristic function of the dissipative difference operator. For
this purpose, we use boundary spaces and functional embeddings. Then we pass to the characteristic function of the Cayley
transform of the dissipative difference operator which is a completely non-unitary contraction belonging to the class C0. With the
aid of this characteristic function we achieve to pass to the minimal function of the contraction and we investigate the complete
spectral analysis of both the contractive and dissipative operators. Embedding the associated contraction to its natural unitary
colligation, we obtain a Carathéodory function. Moreover, self-adjoint dilation of the maximal dissipative difference operator
and its incoming and outgoing eigenfunctions are constructed. Finally, the truncated CMV matrix is established which is unitary
equivalent to the contractive operator. c©2017 All rights reserved.
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1. Introduction

A model of an operator is generally defined as an operator which is equivalent to the first one in a
certain sense. These models can be described by similarity, quasi-similarity, and unitary equivalence. Unitary
equivalence is particularly interested by the authors in recent years. Namely, a famous model operator of
contractive operators acting on the Hilbert spaces belongs to Nagy and Foiaş [16, 17]. In the basic of this
theory, unitary dilation of a given contraction plays an important role. An operator U acting on a Hilbert
space H is called dilation of an operator T acting on another Hilbert space H such that H ⊂ H if

Tn = {PHU
n | H, n > 1},

where PH is the orthogonal projection of H onto H and H is called the dilation space. The geometric
structure of the dilation space was given by Sarason [22]: U : H → H is a dilation of T : H → H if and
only if

H = G∗ ⊕H⊕G,
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where UG ⊂ G, U∗G∗ ⊂ G∗ and PHU | H = T . G and G∗ are called the outgoing subspace and incoming
subspace, respectively. If U is unitary on H, then U is called unitary dilation. Moreover in the case that

span(UnH : n ∈ Z) = H,

U is called minimal. Then Wold-Kolmogorov lemma [19] implies that if U : H → H, H = G∗ ⊕H⊕G, is
the minimal unitary dilation of a contraction T : H→ H then

G =
⊕
n>0

UnE,G∗ =
⊕
n>0

U∗nE∗,

where E = G	 UG and E∗ = G∗ 	 U∗G∗. This representation makes one possible to give more precise
description of the minimal unitary dilation U on H = G∗ ⊕H⊕G as

U =

 PG∗U | G∗ 0 0
DT∗V

∗
∗ T 0

−VT∗V∗∗ VDT U | G

 ,

where DT∗ = (I− TT∗)1/2, DT = (I− T∗T)1/2, V is a partial isometry with initial space DTH and final
space E and V∗ is a partial isometry with initial space DT∗H and final space E∗. Note that an operator
V : H→ K is called partial isometry if H = Hi ⊕H0, where V : Hi → H is an isometry and V | H0 = 0. Hi is
called the initial space of V and its range VHi = VH the final space of V .

Let E and E∗ be two Hilbert spaces such that

dimE = dimG	UG, dimE∗ = dimG∗ 	U∗G∗.

Then there exists unitary mappings

υ : E→ G	UG, υ∗ : E∗ → G∗ 	U∗G

that identify these spaces. Therefore with the following unitary mappings called functional embeddings,

π : L2(E)→
⊕
n∈Z

Un(G	UG), π∗ : L
2(E∗)→

⊕
n∈Z

Un(G∗ 	U∗G∗),∑
n

znen →
∑
n

Unυen,
∑
n

zne∗n →
∑
n

Un+1υ∗e
∗
n,

where en ∈ E and e∗n ∈ E∗, one can define the functional mappings as∏
: L2(E)⊕ L2(E∗)→ H, (f,g)→ πf+ π∗g.

Finally letting
Θf = π∗∗πf, f ∈ L2(E),

it is obtained the characteristic function Θ of the contraction T . An explicit form of the characteristic function
Θ is given by

ΘT (z)h = V∗(−T + zDT∗(I− zT
∗)−1DT )V

∗h, h ∈ E,

where
V : DT ↔ E, V∗ : DT∗ ↔ E∗,

DT = DTH and DT∗ = DT∗H. If one chooses E = DT and E∗ = DT∗ , then ΘT is reduced to

ΘT (z) = −T + zDT∗(I− zT
∗)−1DT

which is the well-known characteristic function of Nagy and Foiaş.
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Solomyak used this coordinate free approach to obtain the characteristic function of a completely
non-self-adjoint (simple) maximal dissipative operator [26]. In fact, using boundary spaces of the dissipa-
tive operator, Solomyak constructed isometric isomorphism such that the characteristic function of the
maximal dissipative operator A and its Cayley transform T is connected by

SA(λ) = ΘT

(
λ− i

λ+ i

)
, and SA(λ) = P∗(A

∗ − λI)−1(A− λI)P−1,

where P and P∗ are natural projections. Solomyak achieved to introduce a self-adjoint dilation of the
maximal dissipative operator with the aid of free parameters. Moreover, using the characteristic function
of the maximal dissipative operator, Solomyak described directly the generalized eigenfunctions of the self-
adjoint dilation. We use this construction in Sections 3 and 4.

In this paper, using the connection of the characteristic functions of a maximal dissipative operator
and its Cayley transform we investigate the complete spectral analysis of a maximal dissipative difference
operator. Namely, passing to the Cayley transform of the maximal dissipative difference operator we
obtain a contraction defined on a Hilbert space. Moreover, we obtain that this contraction is a completely
non-unitary contraction (c.n.u.) belonging to the class C0. The spectral properties of the c.n.u. contractions
of the class C0 has been investigated by Nagy and Foiaş [16, 17]. It is known that for every contraction
T ∈ C0 there exists a minimal function mT which is an inner function belonging to the class H∞ (Hp is
the Hardy class). The minimal function mT gives some information about the spectral properties of a
contraction T . Indeed, the spectrum of the contraction T ∈ C0 and the zeros of the minimal function mT
in the open disc D and of the complement, in the unit circle C, of the union of the arcs of C on which
mT is analytic, coincide with each other. Furthermore, in the interior of the unit circle C, the points of the
spectrum are eigenvalues of T . As a characteristic value of T , λ has finite index, equal to its multiplicity as
a zero of mT . Finally, completeness of the root functions of T associated with the points of the spectrum of
T in D can be obtained as proving that the minimal function mT is a Blaschke product. On the other side,
there is a nice connection between the minimal function mT and the characteristic function ΘT . Therefore,
this connection allows us to investigate the complete spectral analysis of a contractive operator and hence
of a dissipative operator. We should note that we will also use the resolvent operator of the dissipative
difference operator.

In the literature there are some methods to investigate the spectral properties of a dissipative operator
acting on a Hilbert space. For example, Livšic’s theorem, Lidskiı̆’s theorem, Krein’s theorem and Pavlov’s
method are used for such operators [12, 21]. In particular, Pavlov’s method is based on the fact that there
is a connection between a continuous semigroup of contractions {Z(t)}t>0 and its cogenerator Z. Therefore
every model of Z generates a model of {Z(t)}t>0 . In this paper, we do not use this connection. In fact,
we obtain the characteristic function of the dissipative operator directly and hence we are able to pass to
the characteristic function of the contractive operator. Then we investigate the spectral analysis of both of
them.

It is known that Sz.-Nagy-Foiaş characteristic function theory is a special case of unitary colligation
theory. To be more precise, we should note that a contraction with its defect operators can be embedded
into a unitary colligation [5, 8]. Arlinskiı̆ et al. studied the relation of c.n.u. contractions with rank-one
defects and corresponding unitary colligations [5]. Hence using the results obtained in [5] we introduce
some theorems about the Cayley transform of the dissipative difference operator.

Jacobi matrices are useful to understand the characterization of self-adjoint, non-self-adjoint, and
unitary operators acting on separable Hilbert spaces. Indeed, multiplication operators on the Hilbert
spaces L2(R) or L2(C) associated with the probability measure m on the real line R or on the unit circle
C, respectively, is unitary equivalent to the self-adjoint or unitary operators with a simple spectrum
acting on some Hilbert spaces [2]. Tri-diagonal Jacobi matrix representation of self-adjoint operators with
simple spectrum was introduced by Stone [1]. The non-self-adjoint version of Stone’s theorem has been
introduced by Arlinskiı̆ and Tsekanovskiı̆ [6]. Moreover, the canonical matrix representation of unitary
operators with simple spectrum has been introduced by Cantero et al. [9] with the help of five-diagonal
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unitary matrices called CMV matrices. Arlinskiı̆ et al. [5] obtained a connection between truncated
CMV matrix and Sz.-Nagy-Foiaş characteristic function. Therefore, we introduce truncated CMV matrix
associated with the Cayley transform.

This paper is organized as follows. In Section 2, we introduce the difference dissipative operator and
its inverse operator. Using compactness property with a finite-rank imaginary component we obtain some
spectral results. In Section 3, we construct a contractive operator which is c.n.u. of the class C0. Using
the characteristic function of the maximal dissipative difference operator we introduce some results. In
Section 4, we establish self-adjoint dilation of the maximal dissipative difference operator and incoming
and outgoing eigenfunctions of the dilation, directly. In Section 5, we introduce several properties of the
contraction Cayley transform of the maximal dissipative difference operator. Indeed, multiplicity of the
Cayley transform and its adjoint operator, the characteristic function of the unitary colligation with basic
operator and truncated CMV matrix which is unitary equivalent to the Cayley transform are obtained.

Throughout the paper the notations C andDwill be used to denote the unit circle C = {µ ∈ C : |µ| = 1}
and unit disc D = {µ ∈ C : |µ| < 1}.

2. Infinite difference equations

We denote by `2(Z), where Z := {· · · ,−2,−1, 0, 1, 2, · · · } , the Hilbert space consisting of all sequences
y = {yn}

∞
−∞ such that ∞∑

n=−∞ |yn|
2 <∞

with the inner product

(y,χ) =
∞∑

n=−∞ynχn.

We consider the following second order difference equations

Jy = {(Jy)n}
∞
−∞ := an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ Z, (2.1)

where y = {yn}
∞
−∞ and λ is the complex parameter.

Let M be a subspace of `2(Z) consisting of all sequences y = {yn}
∞
−∞ ∈ `2(Z) such that Jy ∈ `2(Z). We

define the operator L on M as Ly = Jy, y ∈M.
Consider the subspace M′0 of `2(Z) consisting of all sequences y = {yn}

∞
−∞ ∈ `2(Z) such that y has

only a finite number of nonzero components. The operator L′0 the restriction of L to M′0 is symmetric.
Therefore it admits closure. We denote the closure of L′0 by L0. The operator L0 is a closed, symmetric
operator with equal deficiency indices (r, r), where r = 0, 1, 2. Moreover, it is obtained that L∗0 = L [23].

For arbitrary two sequences y = {yn}
∞
−∞, χ = {χn}

∞
−∞ ∈M, the Green’s formula is obtained as

∞∑
n=−∞ {(Ly)nχn − yn(Lχ)n} = [y,χ](∞) − [y,χ](−∞), (2.2)

where
[y,χ](n) = an(yn+1χn − ynχn+1), n ∈ Z. (2.3)

In fact, to obtain the equality (2.2), it is sufficient to consider the finite sum and then pass to the infinity as
well as negative infinity. (2.2) particularly implies for arbitrary two sequences y = {yn}

∞
−∞, χ = {χn}

∞
−∞ ∈

M that the values [y,χ](±∞) and [y,χ](±∞) exist and are finite. The latter one follows from the fact that
an and bn are real numbers.

Equation (2.3) can be regarded as the Wronskian of the solutions y and χ of (2.1) as W[y,χ](n) =
[y,χ](n).
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We consider the solutions u and z such that u = {un}
∞
−∞ , z = {zn}

∞
−∞ of Jy = 0 satisfying

[u, z] ≡ 1, n ∈ Z. (2.4)

In this paper, we assume that the deficiency indices of L0 are (2, 2). In other words, we assume that L0 is
in Weyl-Hamburger limit-circle case. Therefore, u and z also belong to M.

Using (2.4) it is obtained for arbitrary two functions y,χ ∈M that

[y,χ](n) = [y,u](n)[χ, z](n) − [y, z](n)[χ,u](n), n ∈ Z. (2.5)

M0 can be described with the aid of real solutions u and z. Indeed, M0 consists of those functions
y ∈M such that

[y,u](∞) = [y, z](∞) = [y,u](−∞) = [y, z](−∞) = 0.

For y ∈M, we consider the following boundary value problem

Jy = λy, [y,u](−∞) − l[y, z](−∞) = 0, [y,u](∞) − h[y, z](∞) = 0, (2.6)

where l is a real number, h is a complex number such that h = Reh+ iImh with Imh > 0.
We define the operator J on MJ as Jy = Jy, where MJ is the domain of J consisting of all functions

y ∈M satisfying [y,u](−∞)− l[y, z](−∞) = 0, [y,u](∞)−h[y, z](∞) = 0, Imh > 0. Therefore the equation

Jy = λy, y ∈MJ,

coincides with the problem (2.6).
The adjoint operator J∗ of J is defined by J∗y = Jy, y ∈MJ∗ , whereMJ∗ is the domain of J∗ consisting

of all functions y ∈M satisfying [y,u](−∞) − l[y, z](−∞) = 0, [y,u](∞) − h[y, z](∞) = 0, Imh > 0.
We shall remind that an operator T in a Hilbert space H with the domain D(T) is said to be dissipative

if
Im(Ty,y) > 0, y ∈ D(T).

Theorem 2.1. J is dissipative in `2(Z).

Proof. For arbitrary function y = {yn}
∞
−∞ ∈MJ we obtain with a direct calculation that

(Jy,y) − (y, Jy) = [y,y](∞) − [y,y](−∞). (2.7)

Moreover using (2.5) one gets

[y,y](∞) = [y,u](∞)[y, z](∞) − [y, z](∞)[y,u](∞). (2.8)

Since y ∈MJ we have from (2.8) that

[y,y](∞) = 2iImh |[y, z](∞)|2 , [y,y](−∞) = 0. (2.9)

Equations (2.7) and (2.9) give
Im (Jy,y) = Imh |[y, z](∞)|2 . (2.10)

Therefore (2.10) completes the proof.

Definition 2.2. A dissipative operator A is called maximal dissipative if it does not have a proper dissi-
pative extension.

Maximal dissipative extensions given for a minimal symmetric operator with equal deficiency indices
can be obtained by Gorbachuks’ extension theorem [13]. The proof of the next theorem can be obtained
from [3, p. 111].
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Theorem 2.3. J is maximal dissipative in `2(Z).

Definition 2.4. A non-self-adjoint operator A acting on a Hilbert space H is called simple if there is no
invariant subspace of H on which A has self-adjoint part there.

Theorem 2.5. J is a simple dissipative operator in `2(Z).

Proof. Consider that J has a self-adjoint part Js with domain MJs on a nontrivial subspace of `2(Z). Then
for y ∈MJs we have

0 = (Jsy,y) − (y, Jsy) = 2iImh |[y, z](∞)|2 . (2.11)

Therefore from (2.11) we obtain [y, z](∞) = 0. Substituting this in (2.6) we get that [y,u](∞) = 0. Let
y = Q(λ) and Q̃(λ) be the solutions of (2.1) such that

[Q, Q̃] = 1. (2.12)

Then using (2.12) and (2.5) we obtain

1 = [Q, Q̃](∞) = [Q,u](∞)[Q̃, z](∞) − [Q, z](∞)[Q̃,u](∞) = 0.

This contradiction completes the proof.

Corollary 2.6. All eigenvalues of J lie in the open upper half-plane. In particular, zero is not an eigenvalue of J.

Let P(λ) be the solution of (2.1) satisfying the conditions

[P(λ),u](−∞) = l, [P(λ), z](−∞) = 1.

Consider the function
ωh(λ) = [P(λ),u](∞) − h[P(λ), z](∞).

The zeros of ωh coincide with the eigenvalues of J. Since ωh is an entire function [14], all eigenvalues of
J form a discrete subset of C with a possible limit point at infinity. However, more detailed analysis will
be obtained with the aid of the resolvent operator and the characteristic function of J.

Now we shall find the inverse operator of J. For this purpose let us consider the functions w = u− lz
and v = u− hz, where w = {wn}

∞
−∞ , v = {vn}

∞
−∞ , wn = un − lzn, and vn = un − hzn, n ∈ Z. Taking

G = {Gnm}
∞
n,m=−∞ , Gnm =

{
wnvm, −∞ < n 6 m <∞,
wmvn, −∞ < m 6 n <∞,

one obtains the inverse operator R of J as

(G,a) = (Ra)n =

∞∑
m=−∞Gnmam, a = {an}

∞
−∞ ∈ `2(Z).

Since L0 has the deficiency indices (2, 2), R acts on the Hilbert space `2(Z), i.e., R : `2(Z) → `2(Z).
Moreover, R is a Hilbert-Schmidt operator, because the inequality

∞∑
n=−∞

∞∑
m=−∞ |Gnm|

2 <∞
holds. R can be written as R = R1 + iR2, i.e., the sum of real and imaginary parts. It is known that R1 is
a self-adjoint Hilbert-Shmidt operator and R2 is a finite-rank self-adjoint operator [27]. Therefore from [6]
and [15] we obtain the following results.
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Theorem 2.7.

(i) Eigenvalues of R are countable;
(ii) zero is the only possible limit point of the eigenvalues;

(iii) zero must belong to the spectrum of R, however, may not be an eigenvalue of R;
(iv) the non-real spectrum of R consists of eigenvalues of finite algebraic multiplicities and limit points of non-real

spectrum belong to the spectrum of the real part R1.

Therefore from Theorem 2.7 we obtain the following theorem.

Theorem 2.8.

(i) Eigenvalues of J are countable;
(ii) infinity is the only possible limit point of the eigenvalues of J;

(iii) infinity must belong to the spectrum of J, however, may not be an eigenvalue of J.

The problem of completeness of root (eigen and associated) functions of J will be investigated by the characteristic
function of J.

3. Characteristic functions

In this section we will construct the characteristic function of the maximal dissipative operator J.
Then we will pass to the characteristic function of the Cayley transform of it. For this purpose, following
Solomyak [26] we will use coordinate-free approach. But before the construction of the contraction we
shall remind the well-known results on dissipative operators and associated contractions [16, 17, 26].

Lemma 3.1.

(i) Assume the operator L0 is dissipative. Then the operator T0 = K(L0) = (L0 − iI)(L0 + iI)
−1 is a contraction

from (L0 + iI)D(L0) onto (L0 − iI)D(L0) and L0 = i(I+ T0)(I− T0)
−1. For each contraction T0 such that

1 /∈ σp(T0) (the point spectrum of the operator), operator L0 = K−1(T0),D(L0) = (I− T0)D(T0), is dissipative.
(ii) Each dissipative operator L0 has a maximal dissipative extension L. A maximal dissipative operator is closed.

(iii) A maximal dissipative operator is maximal dissipative if and only if T = K(L) is a contraction such that
D(T) = H and 1 /∈ σp(T).

(iv) If L is a maximal dissipative operator, L = K−1(T), then −L∗ is also maximal dissipative, L∗ = −K−1(T∗).
(v) If L is a maximal dissipative operator, then σ(T) ⊂ C+,

∥∥(L− λI)−1
∥∥ 6 |Imλ|−1 , λ ∈ C−.

Note that in Lemma 3.1, the linear operators are considered in a separable Hilbert space H, not nec-
essarily bounded, D(·) denotes the domain of the corresponding operator, C+ and C− denote the upper
and lower half-plane, respectively, and σ(·) is the spectrum of the corresponding operator.

Now we shall consider the Cayley transform T of the dissipative operator J as follows

T = (J− i1)(J+ i1)−1,

where 1 is the identity operator in the Hilbert space `2(Z). Because J is maximal dissipative, domain of T
is the whole Hilbert space `2(Z). One immediately gets that

‖T‖ < 1. (3.1)

Indeed, letting (J+ i1)−1f = y, f = {fn}
∞
−∞ , we have

‖(J− i1)y‖2 < ‖(J+ i1)y‖2 ⇔ 2Im (Jy,y) > 0.

It is obtained
J = i(1 + T)(1 − T)−1.
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Note that 1 is not an eigenvalue of T. However this does not imply that J is a bounded operator (see [17,
p. 143, p. 171]).

We also have
‖T∗‖ < 1. (3.2)

Let DT = (1 − T∗T)1/2 and DT∗ = (1 − TT∗)1/2 be the defect operators of T acting on `2(Z), DT =

DT`2(Z) and DT∗ = DT∗`2(Z) be the defect spaces and dT = dimDT and dT∗ = dimDT∗ be the defect
indices of T. The relations TDT = DT∗T, T∗DT∗ = DTT

∗ hold.

Definition 3.2. A contraction C on a Hilbert space H is called c.n.u. if it has no non-zero reducing
subspace C which C | C is a unitary operator.

(3.1) implies the following theorem.

Theorem 3.3. T is c.n.u. contraction in `2(Z).

Definition 3.4 ([16–19]). The classes C0. and C.0 of contractions are defined as

T ∈ C0. if Tnf→ 0 for all f, T ∈ C.0 if T∗nf→ 0 for all f.

Asymptotic classifications of C0. and C.0 are given as

C0. =
{
T : ‖T‖ 6 1, lim

n
‖Tnf‖ = 0 for every f

}
, C.0 =

{
T : ‖T‖ 6 1, lim

n
‖T∗nf‖ = 0 for every f

}
.

C00 is defined as C00 = C0. ∩C.0.

Theorem 3.5. T ∈ C00.

Proof. It is known that the following inequality holds

‖Tnf‖ 6 ‖T‖n ‖f‖ . (3.3)

Therefore using (3.1) in (3.3) and letting n→∞ we obtain that T ∈ C.0. On the other side, we have

‖T∗ny‖ 6 ‖T∗‖n ‖f‖ . (3.4)

Therefore (3.2) and (3.4) imply for n→∞ that T ∈ C.0. Consequently the proof is completed.

To obtain the characteristic function of the contraction T, now we shall construct the characteristic
function of the dissipative operator J. Therefore we shall use Solomyak’s method [26].

Definition 3.6. Let A be a maximal dissipative operator with the domain D(A) . The subspace

GA = {y ∈ D(A)∩D(A∗) : Ay = A∗y}

is called the Hermitian part of domain of A.

For a maximal dissipative operator A and its Hermitian domain GA, let us consider the natural projec-
tion P as P : D(A) → D(A)/GA, where D(A)/GA is the quotient space. On the quotient space following
inner product is defined

〈Py,Pχ〉 = i

2
((y,Aχ) − (Ay,χ)) , y,χ ∈ D(A).

The completion of the quotient space D(A)/GA is denoted by F(A) with respect to the corresponding
norm. In a similar manner it is defined F∗(A) := F(−A∗). Similarly, the projection P∗ is defined as
P∗ : D(A∗)→ D(A∗)/GA. Then we have

‖Py‖2
F = Im(Ay,y), ‖P∗y‖2

F∗
= −Im(A∗y,y).
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F(A) and F∗(A) are called the boundary spaces of the operator A.
Note that in the case that if one has all dissipative extensions of a symmetric operator A, then GA is

dense in the Hilbert space. For y ∈ D(A)∩D(A∗), one has Ay = A∗y, i.e., D(A)∩D(A∗) = GA [26].
There exist isometric isomorphisms ρ : F(J)→ DT and ρ∗ : F∗(J)→ DT∗ [26] such that

ρP(1 − T) = DT , ρ∗P∗(1 − T∗) = DT∗ .

A c.n.u. contraction T is defined to within a unitary equivalence of the characteristic function ΘT :
E → E∗, where E and E∗ are auxiliary Hilbert spaces, isomorphic to DT and DT∗ , respectively. Fixing
arbitrary isometric isomorphisims Ω : E→ DT and Ω∗ : E∗ → DT∗ it is obtained

ΘT(µ) = Ω
∗
∗ (−T + µDT∗(1 − µT∗)DT)Ω

and
ΘT(µ)Ω

∗DT = Ω∗∗DT∗(1 − µT∗)−1(µ1 − T).

The characteristic function SA of the completely non-self-adjoint maximal dissipative operator A is
defined on the sense set D(A)/GA as SA : F(A)→ F∗(A) by the equality [26]

SA(λ) = P∗(A
∗ − λI)−1(A− λI)P−1. (3.5)

Now we are ready to obtain the characteristic function of J.

Theorem 3.7. The characteristic function SJ(λ) of the dissipative operator J is as follows

SJ(λ) =
ωh(λ)

ωh(λ)
.

Proof. Since J is a dissipative extension of the symmetric operator L0, we have GJ =MJ ∩MJ∗ . Moreover,
F(J) =MJ/GJ and F∗(J) =MJ∗/GJ.

Let P and P∗ denote the natural projections such that P : MJ → F(J) and P∗ : MJ∗ → F∗(J). From
(2.10) we have for y = {yn}

∞
−∞ ∈ F(J) that

‖Py‖2
F = Imh |[y, z](∞)|2 .

With a similar calculation for χ = {χn}
∞
−∞ ∈ F∗(J) that

‖P∗χ‖2
F∗

= Imh |[χ, z](∞)|2 .

We set E = E∗ = C and we define the isometric isomorphisms Ψ,Ψ∗ :

Ψ : E→ F(J),
a→ Ψ(a) = Py, (3.6)

y ∈MJ, and
Ψ∗ : E∗ → F∗(J),

a→ Ψ∗(a) = P∗χ, (3.7)

χ ∈MJ∗ , such that
[y, z](∞) =

a√
Imh

, [χ, z](∞) =
a√
Imh

.

Taking A = J in (3.5) we get that the characteristic function of J is as the following form

SJ(λ) = Ψ
∗
∗P∗(J

∗ − λ1)−1(J− λ1)P−1Ψ. (3.8)
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Using (3.6) we obtain from (3.8) that
SJ(λ)a = Ψ∗∗P∗χ, (3.9)

where
χ = (J∗ − λ1)−1(J− λ1)y, (3.10)

y ∈MJ with [y, z](∞) = a/
√
Imh. Finally, using (3.7) we obtain Ψ∗∗P∗χ = [χ, z](∞)

√
Imh. In other words,

we obtain from (3.9) that

SJ(λ)a =
[χ, z](∞)

[y, z](∞)
a. (3.11)

Equation (3.10) particularly implies that

(J∗ − λ1)χ = (J− λ1)y,

where χ ∈MJ∗ and y ∈MJ. Therefore χ− y can be represented as a solution of Jψ = λψ with ψ ∈ `2(Z)
satisfying [ψ,u](−∞) − l[ψ, z](−∞) = 0. Consequently, χ − y is a multiple of the solution P = P(λ) :
χ− y = cP. Since [y,u](∞) − h[y, z](∞) = 0 and [χ,u](∞) − h[χ, z](∞) = 0 we obtain from the equation

[P(λ),u](∞) =
[P(λ),u](∞)

[P(λ), z](∞)
[P(λ), z](∞)

that {
[P(λ),u](∞) − h[P(λ), z](∞)

}
[χ, z](∞) = {[P(λ),u](∞) − h[P(λ), z](∞)} [y, z](∞). (3.12)

Substituting (3.12) in (3.11) we find

SJ(λ)a =
[P(λ),u](∞) − h[P(λ), z](∞)

[P(λ),u](∞) − h[P(λ), z](∞)
a.

Therefore the proof is completed.

Since there is a connection between the characteristic functions of J and T with the rule

SJ(λ) = ΘT

(
λ− i

λ+ i

)
, SJ : E→ E∗, Imλ > 0,

we obtain the following theorem.

Theorem 3.8. The characteristic function of T is

ΘT(µ) =
ωh(λ)

ωh(λ)
, µ =

λ− i

λ+ i
, Imλ > 0.

To investigate the spectral properties of the c.n.u. contraction T, we shall obtain that T belongs to the
class C0. Therefore following lemma is useful. Note the the idea belongs to Nikolskiı̆ [19].

Lemma 3.9. dT = dT∗ = 1.

Proof. For y = {yn}
∞
−∞ ∈ MJ, let us consider the equation (J+ i1)y = f, where f = {fn}

∞
−∞ . Following

[19], we obtain
D2

Tf = (J+ i1)y− (J∗ + i1)χ, (3.13)

where
χ = (J∗ − i1)−1(J− i1)y.

Consequently, one gets
J(y− χ) = i(y− χ).
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Note that χ = {χn}
∞
−∞ ∈ MJ∗ . Therefore, y− χ is a multiple of P = P(λ) : y− χ = cP. Using this in (3.13)

we obtain
D2

Tf = (J+ i1)(y− χ) = 2icP(i).

This implies that DT is spanned by P(i), i.e., dT = 1.
Now let y = {yn}

∞
−∞ ∈MJ∗ and (J∗ − i1)y = f, where f = {fn}

∞
−∞ . Then

D2
T∗f = (J∗ − i1)y− (J− i1)χ, (3.14)

where
χ = (J+ i1)−1(J∗ + i1)y.

Therefore
J(y− χ) = i(χ− y).

Hence (3.14) gives
D2

T∗f = (J− i1)(y− χ) = 2idP(−i).

This implies that DT∗ is spanned by P(−i), i.e., dT∗ = 1. The proof is completed.

The characteristic function of the adjoint operator T∗ can be obtained with the aid of the characteristic
function of T. Indeed, the following equality is known

ΘT∗(µ) = Θ
∗
T(µ), µ ∈ D.

Therefore we have the following corollary.

Corollary 3.10. The characteristic function of T∗ is

ΘT∗(µ) =
ωh

(
−i 1+µ

1−µ

)
ωh

(
−i 1+µ

1−µ

) , µ =
λ− i

λ+ i
, Imλ > 0.

Using Theorem 3.5 and Lemma 3.9, we have the following theorem.

Theorem 3.11. The c.n.u. contraction T belongs to the class C0. Moreover, the characteristic function ΘT(µ) of T
coincides with the minimal function mT(µ) of T.

Remark 3.12. 1 is not an eigenvalue of T. On the other side, the spectrum of T coincides with those µ
belong to the disc D for which the operator ΘT(µ) is not boundedly invertible, together with those µ ∈ C
not lying on any of the open arcs of C on which ΘT(µ) is a unitary operator-valued analytic function of
µ and point spectrum of T coincides with those µ ∈ D for which ΘT(µ) is not invertible at all. Since the
zeros of ωh(λ), Imλ > 0, are eigenvalues of J, λ = i(1 + µ)/(1 − µ) for λ = is, lims→∞(is) =: λ∞ can not
be a zero of ωh(λ) or equivalently an eigenvalue of J.
Remark 3.13. Since T ∈ C.0, ΘT(µ) is an inner function.

Theorem 3.14. ΘT(µ) is a Blaschke product in the disc µ ∈ D or equivalently in the open upper half-plane
Imλ > 0.

Proof. Remarks 3.12 and 3.13 imply that ΘT(λ), Imλ > 0, has the representation

ΘT(λ) = B(λ) exp(iλb), b > 0, (3.15)

where B(λ) is a Blashke product. Therefore

|ΘT(λ)| 6 exp(−bImλ). (3.16)

Letting λs = is and s→∞ we obtain from (3.16) that ωh(λ∞) = 0, that is, λ∞ = lims→∞ is is a zero of ωh
or equivalently is an eigenvalue of J. However, as was pointed out in Remark 3.12 that this is not possible.
Therefore there is not a singular factor in the factorization (3.15) and this completes the proof.
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According to the well-known theorem of Nagy and Foiaş [16] we obtain the following result.

Theorem 3.15. Root functions of T associated with the points of the spectrum of T in D span the Hilbert space
`2(Z).

Definition 3.16. Let all root functions of the operator A span the Hilbert space H. Such an operator is
called complete operator. If every A-invariant subspace is generated by root vectors of A belonging to the
subspace then it is said A admits spectral synthesis.

Since every complete operator in C0 admits spectral synthesis [18, 19], we obtain the following.

Theorem 3.17. T admits spectral synthesis.

Since the root functions of T span `2(Z) then those of J must span `2(Z) [7, p. 42] . Therefore, we have
the following.

Theorem 3.18. Root functions of J associated with the point spectrum of J in the open upper half-plane Imλ > 0
span the Hilbert space `2(Z).

Root functions of J and eigen and associated functions of J coincide. Moreover, the eigenvalue problem
of J coincides with the eigenvalue problem of the problem (2.6). Therefore we have the following corollary.

Corollary 3.19.

(i) Eigenvalues of (2.6) are countable in the open upper half-plane;
(ii) infinity is the only possible limit point of the eigenvalues of (2.6);

(iii) infinity must belong to the spectrum of (2.6), however, may not be an eigenvalue of (2.6);
(iv) the system of all eigen and associated functions of the problem (2.6) span the Hilbert space `2(Z).

4. Selfadjoint dilation

4.1. Selfadjoint dilation
Let A be a maximal dissipative operator in a Hilbert space H and L be a self-adjoint operator in

another Hilbert space H. If one of the followings holds,

(i) (A− λI)−1 = PH(L− λI)−1 | H, λ ∈ C;
(ii) (A+ iI)−n = PH(L+iI)

−n | H, n > 0;
(iii) exp(iAt) = PH exp(iLt) | H, t > 0;
(iv) the operator (L− iI)(L+ iI)−1 is a unitary dilation of (A− iI)(A+ iI)−1,

then L is called a self-adjoint dilation of A [26].
If A is a maximal dissipative operator in H with finite deficiency indices and GA is dense in H, then

the self-adjoint dilation of A can be given as the following theorem [26].

Theorem 4.1. Let A be a maximal dissipative operator with domain D(A) and finite deficiency indices such that
GA is dense in H. Then its self-adjoint dilation has the form

A 〈υ−, f,υ+〉 =
〈
iυ′−, Ãf, iυ′+

〉
,

where the domain D(A) consists of those vector-functions 〈υ−, f,υ+〉 such that

υ− ∈W1
2(R−,E∗),υ+ ∈W1

2(R+,E∗)

and
f−

i√
2
(Ψ∗υ−(0)) ∈ D(A), f+

i√
2
(Ψυ+(0)) ∈ D(A∗).

Here E and E∗ are auxiliary Hilbert spaces which are isomorphic to DT and DT∗ , respectively, R− = (−∞, 0],
R+ = [0,∞), and

Ãf := (A | GA)
∗ =

{
A, on D(A),
A∗, on D(A∗).
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Then we have the following theorem.

Theorem 4.2. The self-adjoint dilation J of the operator J acts on the direct sum Hilbert space L2(R−)⊕ `2(Z)⊕
L2(R+) and has the following form

J 〈υ−, f,υ+〉 =
〈
iυ′−, Jf, iυ′+

〉
,

where υ− ∈W1
2(R−), υ+ ∈W1

2(R+) such that

[f,u](∞) − h[f, z](∞) =
√

2Imhυ−(0), [f,u](∞) − h[f, z](∞) =
√

2Imhυ+(0).

Proof. Let us consider the sums η− := f − i
2 (Ψ∗υ−(0)) ∈ MJ and η+ := f + i

2 (Ψυ+(0)) ∈ MJ∗ . Let
y = {yn}

∞
−∞ ∈ MJ with [y, z](∞) = υ+(0)/

√
Imh and χ = {χn}

∞
−∞ ∈ MJ∗ with [χ, z](∞) = υ−(0)/

√
Imh.

Since η− ∈MJ one has

[f,u](∞) −
i√
2
[χ,u](∞) = h[f, z](∞) −

i√
2
h[χ, z](∞)

and hence
[f,u](∞) − h[f, z](∞) =

√
2Imhυ−(0).

In a similar manner, η+ ∈MJ∗ implies

[f,u](∞) +
i√
2
[y,u](∞) = h[f, z](∞) +

i√
2
h[y, z](∞)

and consequently we get
[f,u](∞) − h[f, z](∞) =

√
2Imhυ+(0).

Therefore the proof is completed.

4.2. Functional embeddings
Let A be a maximal dissipative operator in a Hilbert space H and A be its minimal self-adjoint dilation

in the space
H = G∗ ⊕H⊕G,

where G is the incoming subspace and G∗ is the outgoing subspace such that

exp(iAt)G ⊂ G, t > 0; exp(iAt)G∗ ⊂ G∗, t < 0.

Consider the following isometries

πR : L2(R,E)→ H, dimE = dim F(A),

and
πR
∗ : L2(R,E∗)→ H, dimE∗ = dim F∗(A),

such that (A+ iI)−1πR = πR(Z+ iI)−1, (A+ iI)−1πR
∗ = πR

∗ (Z+ iI)−1, πRH2(C+,E) = G, πR
∗H

2(C−,E∗) =
G∗, and A | G = Z. πR and πR

∗ are called functional embeddings. If T = (A− iI)(A+ iI)−1, then

πR : π ◦W−1, πR
∗ : π∗ ◦W−1,

where π, π∗ are functional models of T ,

(Wf)(x) =
1√
π

1
x+ i

f

(
x− i

x+ i

)
and W is an isometric isomorphism of L2(D,E) onto L2(R,E) for any space E.



E. Uğurlu, D. Baleanu, J. Nonlinear Sci. Appl., 10 (2017), 5999–6019 6012

The operator S = (πR
∗ )
∗πR acts from L2(R,E) into L2(R,E∗), maps H2(C+,E) into H2(C+,E∗), and

commutes with multiplication (z + i)−1. Consequently, S is a multiplication by a function SA ∈ H∞,
SA : E→ E∗. SA is called the characteristic function of A. Moreover

SA(λ) = ΘT

(
λ− i

λ+ i

)
,

where ΘT is the characteristic function of T .
Hence generalized eigenfunctions of the dilation can be described by the characteristic function of the

maximal dissipative operator A. In fact, incoming eigenfunctions are of the form〈
S(λ) exp(−iλξ)d,

i√
2

(
(A∗ − λI)−1(A− λI) − I

)
P−1Ψd, exp(−iλζ)d

〉
, (4.1)

and outgoing eigenfunctions are of the form〈
exp(−iλξ)e,−

i√
2

(
(A− λI)−1(A∗ − λI) − I

)
P−1
∗ Ψ∗e,S

∗(λ) exp(−iλζ)e
〉

, (4.2)

where ξ ∈ R−, ζ ∈ R+, d ∈ E, e ∈ E∗, and λ ∈ R.
Hence we have the following theorem.

Theorem 4.3. The incoming eigenfunction of the dilation J is〈
ωh(λ)

ωh(λ)
exp(−iλξ),

√
2Imh

(
[P(λ),u](∞) − h[P(λ), z](∞)

)−1
P(λ), exp(−iλζ)

〉
(4.3)

and outgoing eigenfunction of J is〈
exp(−iλξ),

√
2Imh

(
[P(λ),u](∞) − h[P(λ), z](∞)

)−1
P(λ),

ωh(λ)

ωh(λ)
exp(−iλζ)

〉
, (4.4)

where ξ ∈ R−, ζ ∈ R+, and λ ∈ R.

Proof. Consider the equation

((J∗ − λ1)−1(J− λ1) − 1)P−1Ψa = cP(λ),

where χ− y = cP(λ), χ ∈MJ∗ , and y ∈MJ. Then we have

c[P(λ), z](∞) = [χ, z](∞) − [y, z](∞) =
2iImh[P(λ), z](∞)

[P(λ),u](∞) − h[P(λ), z](∞)

d√
Imh

.

Therefore we get

c = c(λ) =
2i
√
Imh

[P(λ),u](∞) − h[P(λ), z](∞)
d. (4.5)

Substituting (4.5) into (4.1) we obtain (4.3).
Similarly consider the equation

((J− λ1)−1(J∗ − λ1) − 1)P−1
∗ Ψ∗e = cP(λ),

where y− χ = cP(λ), χ ∈MJ∗ , and y ∈MJ. Hence we have

c = c(λ) =
2i
√
Imh

[P(λ),u](∞) − h[P(λ), z](∞)
d. (4.6)

Substituting (4.6) into (4.2) we obtain (4.4). The proof is completed.
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5. Other properties of T

5.1. Multiplicity of T
Let us consider the linear mappings A : X→ X, B : U→ X, C = X→ Y and D : U→ Y, where X, Y and

U are Banach spaces and following linear dynamic system [19, 20]

x′(t) = Ax(t) +Bu(t), t > 0, (5.1)
y(t) = Cx(t) +Du(t), t > 0, (5.2)

with x(0) = x0, t > 0. Here x(t) ∈ X and u(t) ∈ U. The operators A,B are called the generator operator and
control operator, respectively, while C and D are called observation operators. X is called state space and x(t)
is the state of the system at time t. Finally, u is the input function, y is the output function, and x0 is the
initial state.

It is meant by controlling the system (5.1)-(5.2) to act on the system with the help of the function u
in such a way that starting from a given initial state x0 the system attains a time τ > 0 the final state
x1 = x(τ), τ > 0. The system (5.1) is called approximately controllable if for every x0, x1 ∈ X and arbitrary
ε > 0 there exist τ ∈ [0,∞) and u ∈ L2(0, τ) such that

‖x(τ) − x1‖ < ε, x(0) = x0.

Let the system (5.1) be controllable. This is referred as the system (A,B). Let S(·) be a semigroup
associated with A. The system (A,B) is approximately controllable on [0,∞) if and only if

span {S(t)BU : t > 0} = X. (5.3)

If the generator A is bounded, then (5.3) is satisfied if and only if

span {AnBU : n > 0} = X.

Therefore, it is important to find the least possible dimension of the control subspace dimBU such that
(A,B) is approximately controllable, i.e.,

min {dimBU : (A,B) is approximately controllable} .

For an arbitrary bounded operator T : X→ X the multiplicity of the spectrum is defined by

µT = min {dimC : span (TnC : n > 0) = X} .

T is called multiplicity-free if µT = 1.
One can infer that T is unitary equivalent to the model operator Z : HΘ → HΘ, where

HΘ =
(
H2 ⊕ closΛL2)	 (Θ⊕Λ)H2,

L2 = L2(C), H2 is the Hardy space, Λ = (1 − |Θ|2)1/2, Zf = PΘzf, f ∈ HΘ, PΘ = ΘP−Θ, and P− is the
projection of L2 into H2

− (the Hardy space in the lower half plane).
A c.n.u. contraction T with a scalar characteristic function may help one to compute the multiplicity

of T . This method was constructed in [19]. Since Θ 6= 0, we obtain the following theorem ([19, p. 247]).

Theorem 5.1. µT = 1.

In general, the adjoint of a multiplicity-free operator is not generally multiplicity-free. However, since
T ∈ C0 we can find the multiplicity of T∗. Before this, we shall give some definitions.
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Definition 5.2. Let V be an isometry on the Hilbert space H. A subspace L of H is called a wandering
space for V if VpL ⊥ VqL for every pair of integers p,q > 0, p 6= q. An isometry V on H is called a
unilateral shift if there exists in H a subspace L which is wandering for V and such that

H =

∞⊕
0

VnL.

The dimension of H	 VL is called the multiplicity of the unilateral shift V .

Let S denote the unilateral shift of multiplicity one acting on H2.

Definition 5.3. For each inner function ϕ ∈ H∞, the Jordan block S(ϕ) is the operator defined on H(ϕ) =
H2 	ϕH2 by S(ϕ) = PH(ϕ)S | H(ϕ) or equivalently, S(ϕ)∗ = S∗ | H(ϕ).

Definition 5.4. By an affinity from H1 to H2 it is meant a linear, one-to-one, and bicontinuous transfor-
mation X from H1 onto H2. Thus bounded operators, say S1 on H1 and S2 on H2, are said to be similar if
there exists an affinity X from H1 to H2 such that XS1 = S2X (and consequently X−1S2 = S1X).

Definition 5.5. By a quasi-affinity from H1 to H2 it is meant a linear, one-to-one, and continuous transfor-
mation X from H1 onto a dense linear manifold in H2 if S1 and S2 are bounded operators, S1 on H1 and
S2 on H2, it is said that S1 is a quasi-affine transform of S2 if there exists a quasi-affinity X from H1 to H2
such that XS1 = S2X. The operators S1 and S2 are called quasi-similar if they are quasi-affine transforms
of one another.

Definition 5.6. Let L be a bounded operator in H, and let L be a subspace of H. L is said to be hyperin-
variant for L if it is invariant for every bounded operator which commutes with L.

Then we may introduce the following results [17, Chap. X, Sect. 4] .

Theorem 5.7.

(i) T∗ is multiplicity-free, i.e., µT∗ = 1;

(ii) T is quasi-similar to the Jordan block S
(
ωh
ωh

)
;

(iii) T | C is multiplicity-free, i.e., µT|C = 1, where C is a invariant subspace of T;
(iv) C is hyperinvariant, where C is a invariant subspace of T.

5.2. Unitary colligation
Unitary colligation theory is more general than Sz.-Nagy-Foiaş characteristic function theory [8] and

in recent years this theory has been developed by many authors (see [4] and references therein). Now
we shall give some information about the unitary colligation theory. A set ∆ = (H,F,S; T , F,G,S), where
H,F,S are seperable Hilbert spaces, is called a unitary colligation if the following block form

U =

(
T F

G S

)
is a unitary mapping such that

U =

(
T F

G S

)
: H⊕ F→ H⊕S. (5.4)

The spaces H,S, and F are called, respectively, the inner, left-outer, and right-outer spaces and U is called
the connecting operator. By P1 and P2 we denote the orthogonal projections of H ⊕S onto H and S,
respectively. The operators

T = P1 [U | H] , F = P1 [U | F] , G = P2 [U | H] , S = P2 [U | F]



E. Uğurlu, D. Baleanu, J. Nonlinear Sci. Appl., 10 (2017), 5999–6019 6015

are called the components of ∆. The components T , F,G, and S are called the basic, right-channeled, left-
channeled, and duplicating operators, respectively and following relations hold:

T∗T +G∗G = IH, F∗F+ S∗S = IF, T∗F+G∗S = 0,
T∗T + F∗F = IH, GG∗ + SS∗ = IS, TG∗ + FS∗ = 0.

If one takes F = DT∗ , G = DT , S = −T∗, F = DT∗ , S = DT then U also provides a unitary colligation.
The connecting operator U given in (5.4) can be given with a slightly different form:

U =

(
S G

F T

)
: F⊕H→ S⊕H. (5.5)

Consequently following block form gives a unitary colligation:

U =

(
−T∗ DT
DT∗ T

)
: DT∗ ⊕H→ DT ⊕H.

Let H(c) and H(o) be the subspaces of H as follows [5]

H(c) = span {TnFF,n = 0, 1, . . .} , H(o) = span {T∗nG∗S,n = 0, 1, . . .} .

The subspaces H(c) and H(o) are called the controllable and the observable subspaces, respectively. Let(
H(c)

)⊥
:= H	H(c),

(
H(o)

)⊥
:= H	H(o).

A unitary colligation is called prime if H(c) +H(o) = H. A unitary colligation ∆ = (F,S,H;S,G, F, T)
associated with (5.5) is prime if and only if T is c.n.u. contraction. The characteristic function Θ∆(ζ) is
defined by

Θ∆(ζ) = S+ ζG(IH − ζT)−1F, ζ ∈ D.

Following theorem describes all unitary colligations with basic operator T .

Theorem 5.8 ([5, p. 163]). Let T be a contraction with dT , dT∗ <∞ acting on Hilbert spaceH. Suppose that M and
N are two Hilbert spaces such that dimN = dT and dimM = dT∗ . Then all unitary colligations with the basic op-
erator T and left-outer and right-outer subspaces M and N take the form ∆ = (M,N,H;−KT∗M,KDT ,DT∗M, T)
such that (

−KT∗M KDT
DT∗M T

)
: M⊕H→ N⊕H,

where K : DT → N and M : M→ DT∗ are unitary operators. The characteristic function of ∆ is

Θ∆(ζ) = KΘT∗(ζ)M, ζ ∈ D.

Now consider the unitary colligation ∆0 = (DT∗ ,DT , `2(Z);−T∗,DT ,DT∗ ,T). The characteristic func-
tion of ∆0 is

Θ∆0(ζ) =
[
−T∗ + ζDT(1 − ζT)−1DT∗

]
| DT∗ .

Clearly Θ∆0(ζ) is the characteristic function of T∗. Hence we have

Θ∆0(µ) =
ωh

(
−i 1+µ

1−µ

)
ωh

(
−i 1+µ

1−µ

) , µ =
λ− i

λ+ i
, Imλ > 0.

Because dT = dT∗ = 1, one may set the following isometric operators K : DT → C and M : C → DT∗ .
Now we consider the controllable and observable subspaces in H as follows

H(c) = span {TnDT∗MC,n = 0, 1, . . .} , H(o) = span
{
T∗n (KDT)

∗
C,n = 0, 1, . . .

}
.

Let
(
H(c)

)⊥
= `2(Z)	H(c),

(
H(o)

)⊥
= `2(Z)	H(o). Then using the results of [5] we give the following.
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Theorem 5.9. T = (J− i1)(J+ i1)−1 can be included into the unitary colligation ∆0 = (C, C, `2(Z);−KT∗M,
KDT ,DT∗M,T) as

U0 =

(
−KT∗M KDT

DT∗M T

)
: C⊕ `2(Z)→ C⊕ `2(Z).

Let
−→
1 =

(1
0

)
∈ C ⊕ `2(Z). Then

(
H(c)

)⊥
= (C ⊕ `2(Z)) 	 span

{
Un0
−→
1 ,n = 0, 1, . . .

}
,
(
H(o)

)⊥
= (C ⊕

`2(Z))	 span
{
U∗n0
−→
1 ,n = 0, 1, . . .

}
, and

(i) ∆0 is prime;

(ii)
−→
1 is the cyclic vector for U0 : span

{
Un0
−→
1 , n ∈ Z

}
= C⊕ `2(Z).

All other unitary colligations with basic operator T and left- and right-outer spaces C are of the form ∆̃0 =
(C, C, `2(Z);−d1d2T

∗,d1DT ,d2DT∗ ,T) with

Ũ0 =

(
−d1d2KT

∗M d1KDT

d2DT∗M T

)
: C⊕ `2(Z)→ C⊕ `2(Z),

where |d1| = |d2| = 1.

In the unit discD, if a holomorphic function F has the properties ReF > 0 and F(0) = 1, then F is called
the Carathéodory function. For example,

(F(U)e, e) =
∫
C

F(ζ)dm(ζ)

is a Carathéodory function, where U is a unitary operator with a cyclic vector acting on a Hilbert space
and m is a nontrivial probability measure on the unit circle C (that is, not supported on a finite set) [5].

Since dT = dT∗ = 1, we have the following theorem.

Theorem 5.10. Let

U0 =

(
−KT∗M KDT

DT∗M T

)
: C⊕ `2(Z)→ C⊕ `2(Z),

be the prime unitary colligation with the characteristic function Θ∆0 . Let

F(µ) =
(
(U0 + µI) (U0 − µI)

−1−→1 ,
−→
1
)

C⊕`2(N)
, µ ∈ D,

where

I =

[
1 0
0 1

]
: C⊕ `2(Z)→ C⊕ `2(Z),

is the operator in C⊕ `2(Z) such that 1 is the scalar in C and 1 is the identity operator in `2(Z). Then

F(ζ) =
1 + µΘ∆0(µ)

1 − µΘ∆0(µ)
, µ ∈ D.

5.3. Truncated CMV matrix
Cantero et al. introduced five-diagonal matrix representation of a unitary operator with a single

spectrum. Now we shall introduce this matrix representation and associated results. Note that one can
find several papers including such a matrix representation [9–11, 24, 25].

Let m be a probability measure m on the unite circle. The function F(z) defines a Carathéodory
function:

F(z) = F(z,m) :=

∫
C

ζ+ z

ζ− z
dm(ζ) = 1 + 2

∞∑
n=1

βnz
n, βn =

∫
C

ζ−ndm.
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F is analytic function in the disc D and ReF > 0, F(0) = 1. One defines the Schur function as follows

f(z) = f(z,m) :=
1
z

F(z) − 1
F(z) + 1

, F(z) =
1 + zf(z)

1 − zf(z)
.

f(z) is an analytic function in the unit disc D with supD |f(z)| 6 1 [5]. There is a connection between
probability measures, Carathéodory function and Schur function. Under this correspondence m is trivial
if and only if the associated Schur function is a finite Blaschke product. Let f = f0 be a Schur function
and not a finite Blaschke product. Then we let

fn+1(z) =
fn(z) − γn

z (1 − γnfn(z))
, γn = fn(0).

{fn} is an infinite sequence of Schur functions and neither of its terms is a finite Blaschke product. The
numbers {γn} are called the Schur parameters

Sf = {γ0,γ1, . . .} .

If a Schur function f is not a finite Blaschke product, the connection between the nontangental limit
values f(ζ) and its Schur parameters {γn} is given by

∞∏
n=0

(
1 − |γn|

2
)
= exp


∫
C

ln
(

1 − |f(ζ)|2
)
dm

 .

Consequently, ∞∑
n=0

|γn|
2 =∞⇔ ln

(
1 − |f(ζ)|2

)
/∈ L1(C).

Then we have the following.

Theorem 5.11. There exists a probability measurem on C such that T = (J− i1)(J+ i1)−1 is unitary equivalent
to the following operator

Th(µ) = PK (µh(µ)) , h ∈ K := L2(C,dm)	C,

where PK is the orthogonal projection in L2(C,dm) onto K. The Schur function associated withm is the character-
istic function ΘT(µ) of T :

f(µ) = ΘT(µ) =
ωh(λ)

ωh(λ)
, µ =

λ− i

λ+ i
, Imλ > 0.

If m is a nontrivial measure on C, the monic orthogonal polynomials Φn(z,m) are uniquely deter-
mined by

Φn(z) =

n∏
j=1

(z− zn,j),
∫
C

ζ−jΦn(ζ)dm = 0, j = 0, 1, . . . ,n− 1. (5.6)

Therefore on the Hilbert space L2(C,dm), (Φn,Φm) = 0, n 6= m. Orthonormal polynomials φn are of the
form φn = Φn/ ‖Φn‖ .

(5.6) and the fact that the space of polynomials of degree at most n have dimension n+ 1 imply

deg(P) 6 n, P ⊥ ζj, j = 0, 1, . . . ,n− 1⇒ P = cΦ∗n.

Therefore Φn+1(z) − zΦn(z) is of degree n and orthogonal to zj, j = 1, 2, . . . ,n, and

Φn+1(z) = zΦn(z) −αn(m)Φ∗n(z), (5.7)
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where αn(m) are complex numbers called Verblunsky coefficient. (5.7) is known as Szegö recurrences.
For z = 0, (5.7) implies

αn(m) = αn = −Φn+1(0).

The inverse Szegö recurrences is

zΦn(z) = ρ
−2
n (Φn+1(z) +αnΦ

∗
n(z)) ,

where
ρj :=

√
1 −

∣∣αj∣∣2, 0 < ρj 6 1,
∣∣αj∣∣2 + ρ2

j = 1. (5.8)

Then the norm ‖Φn‖ in L2(C,dm) may be determined as

‖Φn‖ =
n−1∏
j=0

ρj, n = 1, 2, . . . .

The CMV basis {χn} is obtained by orthonormalizing the sequence 1, ζ, ζ−1, ζ2, ζ−2, . . . , and the matrix

C = C(m) = ‖cn,m‖∞n,m=0 = ‖(ζχm,χn)‖ , m,n ∈ Z+

is five-diagonal. The elements of {χn} may be expressed as follows:

χ2n(z) = z
−nφ∗2n(z), χ2n+1(z) = z

−nφ∗2n+1(z), n ∈ Z+.

Therefore one can find the matrix elements in terms of α’s and ρ’s as

C = C ({αn}) =



α0 α1ρ0 ρ1ρ0 0 0 · · ·
ρ0 −α1α0 −ρ1α0 0 0 · · ·
0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
0 ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·
0 0 0 α4ρ3 −α4α3 · · ·
· · · · · · · · · · · · · · · · · ·

 .

Here α’s are the Verblunsky coefficients and ρ’s are as given in (5.8). C ({αn}) is the matrix representation
of the unitary operator of multiplication by ζ in L2(C,dm).

Finally we let the following matrix which is obtained from C by deleting the first row and the first
column:

T = T ({αn}) =


−α1α0 −ρ1α0 0 0 · · ·
α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·

0 0 α4ρ3 −α4α3 · · ·
· · · · · · · · · · · · · · ·

 .

Since dT = dT∗ = 1, following theorem follows immediately from the result of [5].

Theorem 5.12. T = (J− i1)(J+ i1)−1 is unitary equivalent to the operator acting on `2(Z) determined by the
truncated CMV matrix T = T ({αn}) , where {αn} are the Schur parameters of the characteristic function ΘT of T.
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linear spaces (Russian), Central. Ékonom. Mat. Inst. Akad. Nauk SSSR, Moscow, (1976), 3–69. 1

[22] D. Sarason, On spectral sets having connected complement, Acta Sci. Math. (Szeged), 26 (1965), 289–299. 1
[23] Y.-M. Shi, H.-Q. Sun, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Algebra

Appl., 434 (2011), 903–930. 2
[24] B. Simon, Analogs of the m-function in the theory of orthogonal polynomials on the unit circle, J. Comput. Appl. Math.,

171 (2004), 411–424. 5.3
[25] B. Simon, CMV matrices: five years after, J. Comput. Appl. Math., 208 (2007), 120–154. 5.3
[26] B. M. Solomyak, A functional model for dissipative operators, A coordinate-free approach. (Russian); translated from

Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 178 (1989), Issled. Lineı̆n. Oper. Teorii Funktsiı̆.,
18, 57–91, 184–185, J. Soviet Math., 61 (1992), 1981–2002. 1, 3, 3, 3, 4.1

[27] Z. Wang, H.-Y. Wu, Dissipative non-self-adjoint Sturm-Liouville operators and completeness of their eigenfunctions, J.
Math. Anal. Appl., 394 (2012), 1–12. 2


	Introduction
	Infinite difference equations
	Characteristic functions
	Selfadjoint dilation
	Selfadjoint dilation
	Functional embeddings

	Other properties of 
	Multiplicity of 
	Unitary colligation
	Truncated CMV matrix


