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Abstract
In this paper, we present several operator versions of the Hermite-Hadamard inequality for the operator convex function,

which are refinements of some operator convex inequalities presented by Dragomir [S. S. Dragomir, Appl. Math. Comput., 218
(2011), 766–772] and [S. S. Dragomir, RGMIA Research Report Collection, 2016 (2016), 15 pages]. c©2017 All rights reserved.
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1. Introduction

The following classical inequality, which was first discovered by Hermite in 1883 in the journal Math-
esis (see [10]) and independently proved in 1893 by Hadamard in [9], is well-known as the Hermite-
Hadamard inequality in the literature:

f

(
a+ b

2

)
6

1
b− a

∫b
a

f(t)dt 6
f(a) + f(b)

2
, (1.1)

where f is a convex function on an interval [a,b]. Both inequalities hold in the reversed direction if f is
concave.

For any convex function defined on a segment [a,b], one can easily observe that (1.1) is equivalent to
the following double inequality:

f

(
a+ b

2

)
6
∫ 1

0
f[(1 − t)a+ tb]dt 6

f(a) + f(b)

2
.

We note that Hermite-Hadamard inequality, regarded as a refinement of the concept of convexity,
has several applications in nonlinear analysis and the geometry of Banach spaces. Hermite-Hadamard
inequality for convex functions has received renewed attention in recent years and a remarkable variety
of refinements and generalizations have been found (see, for example, [2, 6, 12]).

A real-valued continuous function f on an interval I is said to be operator convex if

f((1 − λ)A+ λB) 6 (1 − λ)f(A) + λf(B),

in the operator order, for all λ ∈ [0, 1] and for self-adjoint operators A and B on a Hilbert space H whose
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spectra are contained in I.
In 2011, Dragomir [4] established the following Hermite-Hadamard type inequality for operator con-

vex function.

Theorem 1.1. Let f : I → R be an operator convex function on the interval I. Then for any self-adjoint operators
A and B with spectra in I we have the inequality

f

(
A+B

2

)
6

1
2

[
f

(
3A+B

4

)
+ f

(
A+ 3B

4

)]
6
∫1

0
f((1 − t)A+ tB)dt 6

1
2

[
f

(
A+B

2

)
+
f(A) + f(B)

2

]
6
f(A) + f(B)

2
.

(1.2)

In 2016, Dragomir [5] gave a refinement of the above Hermite-Hadamard inequality for operator
convex function (1.2) as follows.

Theorem 1.2. Let f : I → R be an operator convex function on the interval I. Then for any self-adjoint operators
A and B with spectra in I and for any λ ∈ [0, 1] we have the inequality

f

(
A+B

2

)
6 (1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ λf

[
(2 − λ)A+ λB

2

]
6
∫1

0
f((1 − t)A+ tB)dt 6

1
2
[f ((1 − λ)A+ λB) + (1 − λ)f(B) + λf(A)] 6

f(A) + f(B)

2
.

(1.3)

For recent related results on Hermite-Hadamard type operator inequality, see [1, 8, 11].
In this paper, we present several operator versions of the Hermite-Hadamard inequality for the oper-

ator convex function, which are refinements of operator convex inequalities (1.2) and (1.3).

2. Main results

For the first and the second inequalities in the Hermite-Hadamard inequality (1.1), Feng and Burqan
constructed the following refinements, respectively.

Lemma 2.1 ([7]). Let f be a real-valued function which is convex on the interval [a,b]. Then

f

(
a+ b

2

)
6

1
b− a

∫b
a

f(t)dt 6
1
4

[
f(a) + 2f

(
a+ b

2

)
+ f(b)

]
6
f(a) + f(b)

2
. (2.1)

Lemma 2.2 ([3]). Let f be a real-valued function which is convex on the interval [a,b]. Then

f

(
a+ b

2

)
6

1
2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
6

1
b− a

∫b
a

f(t)dt 6
f(a) + f(b)

2
. (2.2)

We present a refinement of the above Hermite-Hadamard inequality (2.1) and (2.2) as follows.

Lemma 2.3. Let f be a real-valued function which is convex on the interval [a,b] and let n be a positive integer.
Then

f

(
a+ b

2

)
6

1
2

{
f

[
(2n + 1)a+ (2n − 1)b

2n+1

]
+ f

[
(2n − 1)a+ (2n + 1)b

2n+1

]}
6

1
b− a

∫b
a
f(t)dt 6

1
2(n+ 1)

[
nf(a) + 2f

(
a+ b

2

)
+nf(b)

]
6
f(a) + f(b)

2
.

Proof. Since f is convex on [a,b], we have

f

(
a+ b

2

)
6
f(a) + f(b)

2
.
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Thus

1
2(n+ 1)

[
nf(a) + 2f

(
a+ b

2

)
+nf(b)

]
6

1
2(n+ 1)

[nf(a) + f(a) + f(b) +nf(b)] =
f(a) + f(b)

2
.

This completes the proof of the fourth inequality.
Using Hermite-Hadamard inequality, we have

f

(
a+ b

2

)
= f

[
1
2
· (2

n + 1)a+ (2n − 1)b
2n+1 +

1
2
· (2

n − 1)a+ (2n + 1)b
2n+1

]
6

1
2

{
f

[
(2n + 1)a+ (2n − 1)b

2n+1

]
+ f

[
(2n − 1)a+ (2n + 1)b

2n+1

]}
.

This completes the proof of the first inequality.
To prove the second and the third inequalities, it is only needed to prove the following inequalities by

Lemmas 2.1 and 2.2:

f

[
(2n + 1)a+ (2n − 1)b

2n+1

]
+ f

[
(2n − 1)a+ (2n + 1)b

2n+1

]
6 f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)
(2.3)

and

1
2

[
f(a) + 2f

(
a+ b

2

)
+ f(b)

]
6

1
n+ 1

[
nf(a) + 2f

(
a+ b

2

)
+nf(b)

]
. (2.4)

Next, we prove inequality (2.3) by induction. By Lemma 2.2, we have

f(a) + f(b) > f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)
. (2.5)

So (2.3) holds trivially for the case n = 1. Now suppose the assertion (2.3) holds for the case n = k. By
the induction hypothesis, we have

f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)
> f

[
(2k + 1)a+ (2k − 1)b

2k+1

]
+ f

[
(2k − 1)a+ (2k + 1)b

2k+1

]

> f

3 · (2k+1)a+(2k−1)b
2k+1 +

(2k−1)a+(2k+1)b
2k+1

4

+ f

 (2k+1)a+(2k−1)b
2k+1 + 3 · (2k−1)a+(2k+1)b

2k+1

4

 (by (2.5))

= f

[
(2k+1 + 1)a+ (2k+1 − 1)b

2(k+1)+1

]
+ f

[
(2k+1 − 1)a+ (2k+1 + 1)b

2(k+1)+1

]
.

Hence, (2.3) holds for the case n = k+ 1. Similarly, the inequality (2.4) holds by induction. Given all that,
the proof of Lemma 2.3 is complete.

Remark 2.4. When n = 1, it is easy to see that Lemma 2.1 and Lemma 2.2 are special cases of Lemma 2.3.
By Lemma 2.3, we obtain our first refinement of Hermite-Hadamard inequality for operator convex

function.

Theorem 2.5. Let f : I→ R be an operator convex function on the interval I and let n be a positive integer. Then
for any self-adjoint operators A and B on a Hilbert space H with spectra in I we have the inequality

f

(
A+B

2

)
6

1
2

{
f

[
(2n + 1)A+ (2n − 1)B

2n+1

]
+ f

[
(2n − 1)A+ (2n + 1)B

2n+1

]}
6
∫ 1

0
f((1 − t)A+ tB)dt 6

1
2(n+ 1)

[
nf(A) + 2f

(
A+B

2

)
+nf(B)

]
6
f(A) + f(B)

2
.

(2.6)
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Proof. Let x ∈ H be a unit vector and two self-adjoint operators A and B with spectra in I. Define the
real-valued function ρ(t) = 〈f((1 − t)A+ tB)x, x〉 on the interval [0, 1]. Since f is operator convex, then for
any t1, t2 ∈ [0, 1] and α,β > 0 with α+β = 1 we have

ρ(αt1 +βt2) = 〈f((1 − (αt1 +βt2))A+ (αt1 +βt2)B)x, x〉
= 〈f(α[(1 − t1)A+ t1B] +β[(1 − t2)A+ t2B])x, x〉
6 α〈f((1 − t1)A+ t1B)x, x〉+β〈f((1 − t2)A+ t2B)x, x〉 = αρ(t1) +βρ(t2).

So ρ(t) is a convex function on [0, 1]. Applying Lemma 2.3 to the convex function ρ(t) on [0, 1], we have

ρ

(
1
2

)
6

1
2

[
ρ

(
2n − 1
2n+1

)
+ ρ

(
2n + 1
2n+1

)]
6
∫ 1

0
ρ(t)dt 6

1
2(n+ 1)

[
nρ(0) + 2ρ

(
1
2

)
+nρ(1)

]
6
ρ(0) + ρ(1)

2
.

Hence〈
f

(
A+B

2

)
x, x
〉

6
1
2

〈{
f

[
(2n + 1)A+ (2n − 1)B

2n+1

]
+ f

[
(2n − 1)A+ (2n + 1)B

2n+1

]}
x, x
〉

6
∫ 1

0
〈f((1 − t)A+ tB)x, x〉dt

6
1

2(n+ 1)

〈[
nf(A) + 2f

(
A+B

2

)
+nf(B)

]
x, x
〉

6
1
2
〈[f(A) + f(B)] x, x〉 .

(2.7)

Finally, since by the continuity of the function f we have∫ 1

0
〈f((1 − t)A+ tB)x, x〉dt =

〈∫ 1

0
f((1 − t)A+ tB)dtx, x

〉
(2.8)

for any x ∈ H, ‖x‖ = 1 and any self-adjoint operators A and B with spectra in I. Now (2.7) and (2.8) yield
the whole inequalities (2.6) as desired.

Remark 2.6. Theorem 1.1 is a special case of Theorem 2.5 when n = 1.

Corollary 2.7. Under the assumptions of Theorem 2.5, if n = 2, then

f

(
A+B

2

)
6

1
2

[
f

(
5A+ 3B

8

)
+ f

(
3A+ 5B

8

)]
6
∫ 1

0
f((1 − t)A+ tB)dt 6

1
3

[
f(A) + f

(
A+B

2

)
+ f(B)

]
6
f(A) + f(B)

2
.

The following representation result is useful in the sequel.

Lemma 2.8 ([5]). Let f : I→ C be a continuous function on the interval I and two self-adjoint operators A and B
on a Hilbert space H with spectra in I. Then for any λ ∈ [0, 1] we have the representation∫ 1

0
f((1 − t)A+ tB)dt = (1 − λ)

∫ 1

0
f[(1 − t)((1 − λ)A+ λB) + tB]dt

+ λ

∫ 1

0
f[(1 − t)A+ t((1 − λ)A+ λB)]dt.

(2.9)
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Theorem 2.9. Let f : I→ R be an operator convex function on the interval I and let n be a positive integer. Then
for any self-adjoint operators A and B on a Hilbert space H with spectra in I we have the inequality

f

(
A+B

2

)
6 (1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ λf

[
(2 − λ)A+ λB

2

]
6

1 − λ

2

{
f

[
(2n + 1)(1 − λ)A+ [(2n + 1)λ+ (2n − 1)]B

2n+1

]

+ f

[
(2n − 1)(1 − λ)A+ [(2n − 1)λ+ (2n + 1)]B

2n+1

]}

+
λ

2

{
f

[
[(2n − 1)(1 − λ) + (2n + 1)]A+ (2n − 1)λB

2n+1

]

+ f

[
[(2n + 1)(1 − λ) + (2n − 1)]A+ (2n + 1)λB

2n+1

]}

6
∫1

0
f((1 − t)A+ tB)dt

6
1

2(n+ 1)

{
λnf(A) + (1 − λ)nf(B) +nf[(1 − λ)A+ λB]

+ 2(1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ 2λf

[
(2 − λ)A+ λB

2

]}

6
1
2
{f[(1 − λ)A+ λB] + (1 − λ)f(B) + λf(A)} 6

f(A) + f(B)

2
.

(2.10)

Proof. Using the Hermite-Hadamard inequality (2.6) we have

f

[
(1 − λ)A+ (1 + λ)B

2

]
6

1
2

{
f

[
(2n + 1)(1 − λ)A+ [(2n + 1)λ+ (2n − 1)]B

2n+1

]

+ f

[
(2n − 1)(1 − λ)A+ [(2n − 1)λ+ (2n + 1)]B

2n+1

]}

6
∫1

0
f[(1 − t)((1 − λ)A+ λB) + tB]dt (2.11)

6
1

2(n+ 1)

{
nf[(1 − λ)A+ λB] + 2f

[
(1 − λ)A+ (1 + λ)B

2

]
+nf(B)

}
6
f[(1 − λ)A+ λB] + f(B)

2
.

and

f

[
(2 − λ)A+ λB

2

]
6

1
2

{
f

[
[(2n − 1)(1 − λ) + (2n + 1)]A+ (2n − 1)λB

2n+1

]

+ f

[
[(2n + 1)(1 − λ) + (2n − 1)]A+ (2n + 1)λB

2n+1

]}

6
∫1

0
f[(1 − t)A+ t((1 − λ)A+ λB)]dt

6
1

2(n+ 1)

{
nf(A) + 2f

[
(2 − λ)A+ λB

2

]
+nf[(1 − λ)A+ λB]

}
6
f(A) + f[(1 − λ)A+ λB]

2
.

(2.12)

If we multiply inequality (2.11) by 1− λ and (2.12) by λ, add the obtained inequalities, and use representa-
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tion (2.9), then we have

(1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ λf

[
(2 − λ)A+ λB

2

]
6

1 − λ

2

{
f

[
(2n + 1)(1 − λ)A+ [(2n + 1)λ+ (2n − 1)]B

2n+1

]

+ f

[
(2n − 1)(1 − λ)A+ [(2n − 1)λ+ (2n + 1)]B

2n+1

]}

+
λ

2

{
f

[
[(2n − 1)(1 − λ) + (2n + 1)]A+ (2n − 1)λB

2n+1

]

+ f

[
[(2n + 1)(1 − λ) + (2n − 1)]A+ (2n + 1)λB

2n+1

]}

6
∫ 1

0
f((1 − t)A+ tB)dt

6
1

2(n+ 1)

{
λnf(A) + (1 − λ)nf(B) +nf[(1 − λ)A+ λB]

+ 2(1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ 2λf

[
(2 − λ)A+ λB

2

]}

6 (1 − λ)
f[(1 − λ)A+ λB] + f(B)

2
+ λ

f(A) + f[(1 − λ)A+ λB]

2
,

which proves the inequality in (2.10) except the first and last inequalities. By the operator convexity of f
we have

(1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ λf

[
(2 − λ)A+ λB

2

]
> f

[
(1 − λ)

(1 − λ)A+ (1 + λ)B

2
+ λ

(2 − λ)A+ λB

2

]
= f

(
A+B

2

)
and

1
2
{f[(1 − λ)A+ λB] + (1 − λ)f(B) + λf(A)} 6

1
2
{(1 − λ)f(A) + λf(B) + (1 − λ)f(B) + λf(A)} =

f(A) + f(B)

2
,

which proves the first and last inequalities in (2.10). So Theorem 2.9 is proved.

Corollary 2.10. Under the assumptions of Theorem 2.9, if n = 1, then

f

(
A+B

2

)
6 (1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]
+ λf

[
(2 − λ)A+ λB

2

]
6

1 − λ

2

{
f

[
3(1 − λ)A+ (1 + 3λ)B

4

]
+ f

[
(1 − λ)A+ (3 + λ)B

4

]}

+
λ

2

{
f

[
(4 − λ)A+ λB

4

]
+ f

[
(4 − 3λ)A+ 3λB

4

]}

6
∫ 1

0
f((1 − t)A+ tB)dt
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6
1
4

{
λf(A) + (1 − λ)f(B) + f[(1 − λ)A+ λB] + 2λf

[
(2 − λ)A+ λB

2

]

+ 2(1 − λ)f

[
(1 − λ)A+ (1 + λ)B

2

]}

6
1
2
{f[(1 − λ)A+ λB] + (1 − λ)f(B) + λf(A)} 6

f(A) + f(B)

2
.

Remark 2.11. Theorem 2.9 and Corollary 2.10 are refinements of Theorem 1.2.
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