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Abstract
The model of fractional differential equation arises from various fields of physics, engineering, and applied mathematics.

In this paper, we focus on the existence and uniqueness of nontrivial solutions for a abstract model of fractional differential
equation with nonlocal Riemann-Stieltjes boundary conditions. Under certain suitable growth conditions, we establish some
sufficient conditions for the existence and uniqueness of nontrivial solutions based on Leray-Schauder nonlinear alternative and
Schauder fixed point theorem. c©2017 All rights reserved.
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1. Introduction

In this paper, we focus on the existence and uniqueness of nontrivial solutions for the following
nonlocal fractional differential equation modelling fluid mechanics in a porous medium

−DtDtDt
αz(t) = f(t, z(t),DtDtDt

γz(t)), 0 < t < 1,

DtDtDt
γz(0) = DtDtDt

γ+1z(0) = 0, DtDtDt
µz(1) =

∫ 1

0
DtDtDt
µz(s)dA(s),

(1.1)

where 2 < α 6 3, and 0 < γ 6 α− 2, γ 6 µ < α− 1, DtDtDtα is the standard Riemann-Liouville derivative,∫1
0 DtDtDtµx(s)dA(s) is a linear functional given by Riemann-Stieltjes integrals, A is a function of bounded

variation and dA is allowed to be a changing-sign measure, and f : [0, 1]×R→ R is continuous.
The model of fractional differential equation has great importance in describing various phenomena

of fluid mechanics, biology, control theory of dynamical systems, viscoelasticity, physics and engineering.
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Recently, Laskin [9–12] initiated to use the fractional Schrödinger equation to model quantum mechan-
ics, where the fractional Schrödinger equation includes a spatial derivative of fractional order. Mckee
and Cuminato [15] introduced a novel variant of product integration to deal with multiple integrable
singularities and showed numerically to exist an unexpected convergence rates through a discrete Abel’s
equation. In [31], Zhang et al. established analytic solutions for a fractional model of turbulent flow in
a porous medium by using the fixed point theorem of the mixed monotone operator. By establishing
a variational structure and using the critical point theory, Zhang et al. [32] investigated the existence of
multiple solutions for a class of fractional advection-dispersion equations arising from a symmetric transi-
tion of the mass flux. In heat transfer, Yang et al. [23] introduced some new general fractional derivatives
involving the kernels of the extended Mittag-Leffler type function to analyze the complex phenomena for
the anomalous diffusion. Recently, some further study on fractional derivatives of constant and without
singular kernel in heat transfer has also been carried out in work of Yang [22] and Yang et al. [24]. For an
extensive collection of work about application of fractional order differential equation, we refer the reader
to Diethelm et al. [5] in viscoplasticity, [3] in fractal mediums, Glockle and Nonnenmacher [6] in protein
dynamics, Mainardi [14] in continuum and statistical mechanics, Azar [1] in control and synchronization
of chaotic systems and so on.

In mathematical frame, many works focused on analytic solutions and numerical solutions for the
fractional model, see our works [2, 13, 18–20, 25–30, 33–36]. Recently, by using cone theoretic techniques,
Goodrich [7] established a general existence theorem for the following fractional boundary value problem{

−DtDtDt
αz(t) = f(t, z(t)), 0 < t < 1, n− 1 < α 6 n,n > 3,

z(i)(0) = 0, 0 6 i 6 n− 2, DtDtDt
αz(1) = 0, 1 6 α 6 n− 2,

when f(t, z) satisfies some growth conditions. And then, Jiang et al. [8] considered a fractional differential
equation

DtDtDt
αz(t) = f(t, z(t)), t ∈ (0, 1)

subject to multi-point boundary conditions

z(0) = 0, DtDtDt
αz(1) =

m−2∑
i=1

aiDtDtDt
αz(ξi),

where 1 < α 6 2, 0 < β < 1, 0 < ξ1 < ξi < . . . < ξm−2 < 1, ai ∈ [0,+∞) with
∑m−2
i=1 aiξ

α−β−1
i < 1, by

using the fixed point index theory and Krein-Rutman theorem, the authors established the existence of
positive solutions for the above fractional order multi-point boundary value problems provided that the
nonlinear function f : [0, 1]×R+ → R+ satisfies Carathéodory condition and certain growth conditions.

Notice that the nonlinearity of the above work does not contain fractional derivatives of unknown
functions and boundary condition is not Riemann-Stieltjes integrals types. Thus the aim of this paper is
to establish the existence and uniqueness of nontrivial solutions for (1.1) when nonlinear term f and the
boundary conditions all contain fractional derivatives of unknown functions and boundary condition is
nonlocal Riemann-Stieltjes integrals. To the best of our knowledge, the fractional order flow model with
Riemann-Stieltjes integral conditions has been seldom considered when f and boundary conditions all
contain fractional derivatives of unknown functions. In this work, by introducing a fractional integral
operator, we reduce the higher order (1.1) to a lower order integro-differential equation, and then by
means of Leray-Schauder nonlinear alternative and Schauder fixed point theorem, we obtain some new
results of existence and uniqueness of nontrivial solutions for (1.1). Some examples are also given to
illustrate the application of the main results.

2. Basic definitions and preliminaries

The main results of this paper is restricted in the sense of Riemann-Liouville fractional calculus, and
for the convenience of readers, here we give the related definitions and properties which are used in the
rest of this paper.
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Definition 2.1 ([16, 17]). The Riemann-Liouville fractional integral of order α > 0 of a function z :
(0,+∞)→ R is given by

Iαz(t) =
1
Γ(α)

∫t
0
(t− s)α−1z(s)ds

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 ([16, 17]). The Riemann-Liouville fractional derivative of order α > 0 of a continuous
function z : (0,+∞)→ R is given by

DtDtDt
αz(t) =

1
Γ(n−α)

(
d

dt

)(n) ∫t
0
(t− s)n−α−1z(s)ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-hand side is
pointwise defined on (0,+∞).

Definition 2.3. A function z is called a solution of (1.1) if z ∈ C[0, 1] and satisfies (1.1). In addition, z is
said to be a nontrivial solution of (1.1) if z is solution of (1.1) and z 6≡ 0 for t ∈ (0, 1).

Proposition 2.4 ([16, 17]).

1. If z,y : (0,+∞)→ R and α > 0, then

DtDtDt
α(z(t) + y(t)) = DtDtDt

αz(t) +DtDtDt
αy(t).

2. If z ∈ L1(0, 1),α > β > 0, then

IαIβz(t) = Iα+βz(t), DtDtDt
βIαz(t) = Iα−βz(t), DtDtDt

βIβz(t) = z(t).

3. If α > 0,β > 0, then

DtDtDt
αtβ−1 =

Γ(β)

Γ(β−α)
tβ−α−1.

4. Let α > 0, and f(x) is integrable, then

IαDtDtDt
αf(t) = f(t) + c1t

α−1 + c2t
α−2 + · · ·+ cntα−n,

where ci ∈ R (i = 1, 2, · · · ,n), n is the smallest integer greater than or equal to α.

Lemma 2.5. Assume 2 < α− γ 6 3, then (1.1) is equivalent to the following integro-differential equation
−DtDtDt

α−γy(t) = f(t, Iγy(t),y(t)),

y(0) = y ′(0) = 0, DtDtDt
µ−γy(1) =

∫ 1

0
DtDtDt
µ−γy(s)dA(s).

(2.1)

Proof. In fact, let z(t) = Iγy(t) and y ∈ C[0, 1], it follows from Proposition 2.4 that

DtDtDt
αz(t) =

dn

dtn
In−αz(t) =

dn

dtn
In−αIγy(t) =

dn

dtn
In−α+γy(t) = DtDtDt

α−γy(t),

DtDtDt
γz(t) = DtDtDt

γIγy(t) = y(t),

DtDtDt
γ+1z(t) = DtDtDt

γ+1Iγy(t) = y ′(t).

(2.2)

Thus by (2.2), one has −DtDtDtα−γy(t) = f(t, Iγy(t),y(t)), and

DtDtDt
γz(0) = y(0) = 0, DtDtDt

γ+1z(0) = y ′(0) = 0, DtDtDt
µ−γy(1) =

∫ 1

0
DtDtDt
µ−γy(s)dA(s),
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which implies that (1.1) is transformed into the integro-differential equation (2.1).
On the other hand, if y ∈ C[0, 1] solves the integro-differential equation (2.1), then y satisfies the

equation (2.1), thus by (2.2), we have

−DtDtDt
αz(t) = −DtDtDt

α−γy(t) = f(t, Iγy(t),y(t)) = f(t, z(t),DtDtDt
γz(t)),

and

DtDtDt
γz(0) = y(0) = 0, DtDtDt

γz(0) = y ′(0) = 0, DtDtDt
µz(1) =

∫ 1

0
DtDtDt
µz(s)dA(s).

Consequently, (1.1) is equivalent to the integro-differential equation (2.1).

Lemma 2.6. Given y ∈ L1(0, 1), then the boundary value problem{
−DtDtDt

α−γy(t) = h(t), 0 < t < 1,
y(0) = y ′(0) = 0, DtDtDt

µ−γy(1) = 0,
(2.3)

has the unique solution

y(t) =

∫ 1

0
G(t, s)h(s)ds,

where G(t, s) is the Green function of the boundary value problem (2.3) and is given by

G(t, s) =


tα−γ−1(1−s)α−µ−1−(t−s)α−γ−1

Γ(α−γ) , 0 6 s 6 t 6 1,
tα−γ−1(1−s)α−µ−1

Γ(α−γ) , 0 6 t 6 s 6 1.
(2.4)

Proof. From Proposition 2.4, (2.1) can be reduced to the following equivalent integral equation

y(t) = −Iα−γh(t) + c1t
α−γ−1 + c2t

α−γ−2 + c3t
α−γ−3, c1, c2, c3 ∈ R. (2.5)

Since y(0) = y ′(0) = 0, it follows from (2.5) that c2 = c2 = 0. Consequently the general solution of (2.1)
satisfies

y(t) = −Iα−γh(t) + c1t
α−γ−1 = −

∫t
0

(t− s)α−γ−1

Γ(α− γ)
h(s)ds+ c1t

α−γ−1. (2.6)

It follows from Proposition 2.4 and (2.6) that

DDDµ−γy(t) = −DDDµ−γIα−γh(t) + c1DDD
µ−γtα−γ−1 = −Iα−µh(t) + c1

Γ(α− γ)

Γ(α− µ)
tα−µ−1

= −

∫t
0

(t− s)α−µ−1

Γ(α− µ)
h(s)ds+ c1

Γ(α− γ)

Γ(α− µ)
tα−µ−1.

(2.7)

So, from (2.7) and DtDtDtµ−γy(1) = 0, we have

DDDµ−γy(1) = −

∫ 1

0

(1 − s)α−µ−1

Γ(α− µ)
h(s)ds+ c1

Γ(α− γ)

Γ(α− µ)
= 0,

i.e.,

c1 =

∫ 1

0

(1 − s)α−µ−1

Γ(α− γ)
h(s)ds.

So, by (2.6), the unique solution of problem (2.1) is

y(t) = −

∫t
0

(t− s)α−γ−1

Γ(α− γ)
h(s)ds+

∫ 1

0

tα−γ−1(1 − s)α−µ−1

Γ(α− γ)
h(s)ds =

∫ 1

0
G(t, s)h(s)ds.

The proof is completed.
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On the other hand, from Proposition 2.4, we know the unique solution of the following boundary
value problem {

DtDtDt
α−γy(t) = 0, 0 < t < 1,

y(0) = y ′(0) = 0, DtDtDt
µ−γy(1) = 1,

is Γ(α−µ)Γ(α−γ)t
α−γ−1. Thus let

C =

∫ 1

0

Γ(α− µ)

Γ(α− γ)
tα−γ−1dA(t), B =

Γ(α− µ)

(1 − C)Γ(α− γ)
,

and define

GA(s) =

∫ 1

0
G(t, s)dA(t).

According to the strategy of [21], we know the Green function of the integro-differential equation (2.1) is

K(t, s) = Btα−γ−1GA(s) +G(t, s). (2.8)

And then, we have the following lemma.

Lemma 2.7. Let h ∈ L1[0, 1], if 2 < α 6 3, and 0 < γ 6 α− 2, γ 6 µ < α. Then the fractional boundary value
problem 

−DtDtDt
α−γy(t) = h(t),

y(0) = y ′(0) = 0, DtDtDt
µ−γy(1) =

∫ 1

0
DtDtDt
µ−γy(s)dA(s).

has unique solution

y(t) =

∫ 1

0
K(t, s)h(s)ds,

where K(t, s) is defined by (2.8).

Lemma 2.8. The Green function defined by (2.8) satisfies:

|K(t, s)| 6 H(s) 6
(1 − s)α−µ−1

Γ(α− γ)
+ E,

where

H(s) =
(1 − s)α−µ−1

Γ(α− γ)
+B|GA(s)|. (2.9)

Proof. By (2.4) and (2.8), we have

|K(t, s)| = Btα−γ−1|GA(s)|+G(t, s) 6
tα−γ−1(1 − s)α−µ−1

Γ(α− γ)
+B|GA(s)| = H(s) 6

(1 − s)α−µ−1

Γ(α− γ)
+ E,

where E = B||GA(s)||.

Define an operator T : C[0, 1]→ C[0, 1] by

(Ty)(t) =

∫ 1

0
K(t, s)f(s, Iγy(s),y(s))ds, (2.10)

By Lemmas 2.7 and 2.5, the fixed point y of operator T is the solution of (2.1), and then z(t) = Iγy(t) is a
solution of (1.1).

Lemma 2.9. The operator T : C[0, 1]→ C[0, 1] is completely continuous.

Proof. Noticing that f : [0, 1]×R2 → R is continuous and K(t, s) is uniformly continuous in [0, 1]× [0, 1],
by the Ascoli-Arzelà theorem, T : C[0, 1]→ C[0, 1] is completely continuous.
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3. Main results

Before begin to state our main result, we first introduce the following lemma.

Lemma 3.1 ([4, Leray-Schauder alternative]). Let E be a real Banach space, and Ω be a bounded open subset of
E, where θ ∈ Ω, T : Ω→ E is a completely continuous operator. Then, either there exists w ∈ ∂Ω, λ > 1 such that
Tw = λw, or there exists a fixed point w∗ ∈ Ω.

Theorem 3.2. Assume f(t, 0, 0) 6≡ 0 for any t ∈ [0, 1], and there exist three nonnegative functions p,q, r ∈ L1[0, 1]
such that

|f(t, z1, z2)| 6 p(t)|z1|+ q(t)|z2|+ r(t), a.e. (t, z1, z2) ∈ [0, 1]×R2, (3.1)

Then (1.1) has at least one nontrivial solution provided that∫ 1

0
H(s)[p(s) + q(s)]ds <

(
1 +

1
Γ(γ+ 1)

)−1

, (3.2)

where H(s) is given by (2.9).

Proof. Firstly, it follows from f(t, 0, . . . , 0) 6≡ 0 that there exists [t1, t2] ∈ [0, 1] such that

min
t∈[t1,t2]

|f(t, 0, 0)| > 0. (3.3)

Since
|f(t, z1, z2)| 6 p(t)|z1|+ q(t)|z2|+ r(t), a.e. (t, z1, z2) ∈ [0, 1]×R2,

one has
r(t) > |f(t, 0, 0)|, a.e. t ∈ [0, 1]. (3.4)

Consequently, by (3.3), (3.4), we get∫ 1

0
H(s)r(s)ds >

∫t1

t2

H(s)f(s, 0, 0)ds > 0.

On the other hand, from (3.2), we know(
1 +

1
Γ(γ+ 1)

) ∫ 1

0
H(s)[p(s) + q(s)]ds < 1.

Thus take a constant

σ =

∫1
0 H(s)r(s)ds

1 −
(

1 + 1
Γ(γ+1)

) ∫1
0 H(s)[p(s) + q(s)]ds

,

then σ > 0.
Now let Ωσ = {y ∈ C[0, 1] : ||x|| < σ}. Suppose that there exist y0 ∈ ∂Ωσ, λ > 1 such that Ty0 = λy0.

Then

λσ = λ||y0|| = ||Ty0|| = max
t∈[0,1]

∣∣∣∣∣
∫ 1

0
K(t, s)f(s, Iγy0(s),y0(s))ds

∣∣∣∣∣
6
∫ 1

0
H(s)|f(s, Iγy0(s),y0(s))|ds.

(3.5)

Since

|Iγy0(t)| =

∣∣∣∣∫t
0

(t− s)γ−1y0(s)

Γ(γ)
ds

∣∣∣∣ 6 ||y0||

Γ(γ+ 1)
,
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by hypothesis (3.1), one has

|f(s, Iγy0(s),y0(s))| 6 p(s)|I
γy0(s)|+ q(s)|y0(s)|+ r(s) 6

||y0||

Γ(γ+ 1)
p(s) + q(s)||y0||+ r(s)

6

(
1 +

1
Γ(γ+ 1)

)
[p(s) + q(s)]||y0||+ r(s).

(3.6)

It follows from (3.5) and (3.6) that

λσ 6

(
1 +

1
Γ(γ+ 1)

) ∫ 1

0
H(s)[p(s) + q(s)]ds||y0||+

∫ 1

0
H(s)r(s)ds

= σ

(
1 +

1
Γ(γ+ 1)

) ∫ 1

0
H(s)[p(s) + q(s)]ds+

∫ 1

0
H(s)r(s)ds.

That is,

λ 6

(
1 +

1
Γ(γ+ 1)

) ∫ 1

0
H(s)[p(s) + q(s)]ds+

∫1
0 H(s)r(s)ds

σ
= 1,

which contradicts with λ > 1. By Lemma 3.1, T has a fixed point y∗ ∈ Ω, since f(t, 0, 0) 6≡ 0, by Lemma
2.7, the solution y∗ of (2.1) is nontrivial, furthermore, (1.1) has at least a nontrivial solution z∗ = Iγy∗.
This completes the proof.

Corollary 3.3. Assume that (3.1) holds and f(t, 0, 0) 6≡ 0 for any t ∈ [0, 1]. Then (1.1) has at least one nontrivial
solution if one of the following conditions is satisfied.

(1) There exists a constant p > 1 such that

∫ 1

0
[p(s) + q(s)]p ds <

[
1

Γ(α− γ)

(
p(α− µ− 1)

p− 1
+ 1
)p−1

p

+ E

]−p(
1 +

1
Γ(γ+ 1)

)−p

. (3.7)

(2) There exists a constant λ > −1 such that

p(s) + q(s) <

[
Γ(α− µ)Γ(λ+ 1)

Γ(α+ λ− µ− 1)Γ(α− γ)
+

E

λ+ 1

]−1(
1 +

1
Γ(γ+ 1)

)−1

sλ. (3.8)

(3) There exists a constant λ > −1 such that

p(s) + q(s) <
(λ+ 1)(α+ λ− µ)Γ(α− γ)

λ+ E+ 1

(
1 +

1
Γ(γ+ 1)

)−1

(1 − s)λ. (3.9)

(4) pi(s)(i = 1, 2, · · · ,n) satisfy

p(s) + q(s) < (α− µ)

(
M+

n−2∑
i=0

M

Γ(γ− µi)

)−1

. (3.10)

Proof. Take

R =

∫ 1

0
H(s)[p(s) + q(s)]ds.

According to the proof of Theorem 3.2, we only need to show

R <

(
1 +

1
Γ(γ+ 1)

)−1

.
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(1) If (3.7) is valid, let 1
p + 1

q = 1, and by means of Hölder inequality, we have

R 6
1

Γ(α− γ)

(∫ 1

0
[p(s) + q(s)]p ds

) 1
p
(∫ 1

0
(1 − s)q(α−µ−1)ds

) 1
q

+ E

(∫ 1

0
[p(s) + q(s)]p ds

) 1
p

=
1

Γ(α− γ)

[
p(α− µ− 1)

p− 1
+ 1
]−p−1

p

(∫ 1

0
[p(s) + q(s)]p ds

) 1
p

+ E

(∫ 1

0
[p(s) + q(s)]p ds

) 1
p

<

(
1 +

1
Γ(γ+ 1)

)−1

.

(2) In this case, it follows from (3.8) that

R <

[
Γ(α− µ)Γ(λ+ 1)

Γ(α+ λ− µ− 1)Γ(α− γ)
+

E

λ+ 1

]−1(
1 +

1
Γ(γ+ 1)

)−1 ∫ 1

0

[
1

Γ(α− γ)
(1 − s)α−µ−1 + E

]
sλds

=

(
1 +

1
Γ(γ+ 1)

)−1

.

(3) If (3.9) holds, we get

R <
(λ+ 1)(α+ λ− µ)Γ(α− γ)

λ+ E+ 1

(
1 +

1
Γ(γ+ 1)

)−1 ∫ 1

0

[
1

Γ(α− γ)
(1 − s)α−µ−1 + E

]
(1 − s)λds

=

(
1 +

1
Γ(γ+ 1)

)−1

.

(4) In this case, from (3.10), we have

R <
(α− µ)Γ(α− γ)

1 + E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1 ∫ 1

0

[
1

Γ(α− γ)
(1 − s)α−µ−1 + E

]
ds =

(
1 +

1
Γ(γ+ 1)

)−1

.

The proof of Corollary 3.3 is completed.

Corollary 3.4. Suppose f(t, 0, 0) 6≡ 0 for any t ∈ [0, 1] and

0 6 lim sup
|z1|+|z2|→+∞ max

t∈[0,1]

|f(t, z1, z2)|

|z1|+ |z2|
<

(α− µ)Γ(α− γ)

2 + 2E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1

. (3.11)

Then (1.1) has at least one nontrivial solution.

Proof. Take ε > 0 such that

(α− µ)Γ(α− γ)

2 + 2E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1

− ε > 0,

it follows from (3.11) that there exists a sufficiently large constant R0 > 0 such that

|f(t, z1, z2)| 6

(
(α− µ)Γ(α− γ)

2 + 2E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1

− ε

)
(|z1|+ |z2|), t ∈ [0, 1], |z1|+ |z2| > R0.

Let
 h = max

t∈[0,1],|z1|+|z2|6R0

|f(t, z1, z2)|,
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then for any (t, z1, z2) ∈ [0, 1]×R2, we have

|f(t, z1, z2)| 6  h+

(
(α− µ)Γ(α− γ)

2 + 2E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1

− ε

)
(|z1|+ |z2|).

Take

p(s) + q(s) = 2

(
(α− µ)Γ(α− γ)

2 + 2E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1

− ε

)
, r(s) =  h,

then

R <

(
1 +

1
Γ(γ+ 1)

)−1

.

In fact,

R =

∫ 1

0
H(s)[p(s) + q(s)]ds

6 2

(
(α− µ)Γ(α− γ)

2 + 2E(α− µ)Γ(α− γ)

(
1 +

1
Γ(γ+ 1)

)−1

− ε

) ∫ 1

0

[
1

Γ(α− γ)
(1 − s)α−µ−1 + E

]
ds

<

(
1 +

1
Γ(γ+ 1)

)−1

.

Hence it follows from Theorem 3.2 that (1.1) has at least one nontrivial solution.

In what follows, we study the case where nonlinear term is controlled by power functions, the main
tool is the following Schauder fixed point theorem.

Lemma 3.5 ([4, Schauder fixed point theorem]). Let T be a continuous and compact mapping of a Banach space
E into itself, such that the set

{z ∈ E : z = λTz for some 0 6 λ 6 1}

is bounded. Then T has a fixed point.

Theorem 3.6. Assume f(t, 0, 0) 6≡ 0 for any t ∈ [0, 1], and there exist three nonnegative functions p,q, r ∈ L1[0, 1]
and nonnegative constants ε1 6= 1, ε2 6= 1 such that

|f(t, z1, z2)| 6 p(t)|z1|
ε1 + q(t)|z2|

ε2 + r(t), a.e. (t, z1, z2) ∈ [0, 1]×R2. (3.12)

Then (1.1) has at least one nontrivial solution.

Proof. According to Lemma 2.9, T : C[0, 1]→ C[0, 1] is completely continuous operator. Take

a =

(
1 +

1
Γε1(γ+ 1)

) ∫ 1

0
H(s)[p(s) + q(s)]ds, b =

∫ 1

0
H(s)q(s)ds.

Choose
σ > max

{
3b, (3a)

1
1−ε1 , (3a)

1
1−ε2

}
(3.13)

and define a closed ball Ωσ = {y ∈ C[0, 1] : ||y|| 6 σ}. For every y ∈ Ωσ, one has

|Ty(t)| 6
∫ 1

0
K(t, s) |f(s, Iγy(s),y(s))|ds 6

∫ 1

0
H(s)|f(s, Iγy0(s),y0(s))|ds. (3.14)



X. Zhang, L. Liu, Y. Wu, Y. Cui, J. Nonlinear Sci. Appl., 10 (2017), 6042–6055 6051

It follows from (3.12) that

|f(s, Iγy(s),y(s))| 6 p(s)|Iγy(s)|ε1 + q(s)|y(s)|ε2 + r(s)

6
||y||ε1p(s)

Γε1(γ+ 1)
+ ||y||ε2q(s) + r(s)

6

(
||y||ε2 +

||y||ε1

Γε1(γ+ 1)

)
[p(s) + q(s)] + r(s)

6

(
1 +

1
Γε1(γ+ 1)

)
(||y||ε1 + ||y||ε2)[p(s) + q(s)] + r(s).

(3.15)

In view of (3.13)-(3.15), we obtain the following estimate:

|Ty(t)| 6

(
1 +

1
Γε1(γ+ 1)

) ∫ 1

0
H(s)(||y||ε1 + ||y||ε2)[p(s) + q(s)]ds+

∫ 1

0
H(s)r(s)ds

= a(||y||ε1 + ||y||ε2) + b 6 aσε1 + aσε2 + b 6
σ

3
+
σ

3
+
σ

3
= σ,

which implies that ||Ty|| 6 σ. Thus we have T : Ωσ → Ωσ and

{y ∈ Ωσ : y = λTy for some 0 6 λ 6 1}

is bounded. According to the Schauder fixed point theorem, T has a fixed point y∗ ∈ Ω, since f(t, 0, 0) 6≡ 0,
by Lemma 2.7, the solution y∗ of the (2.1) is nontrivial, furthermore, (1.1) has at least a nontrivial solution
z∗ = Iγy∗. The proof of Theorem 3.6 is completed.

Remark 3.7. Theorems 3.2 and 3.6 cover all cases ε1, ε2 ∈ [0,∞), especially, if ε1 = ε2 = 0, σ in (3.13) can
be chosen as the following way

σ > max {3b, 3a} .

Corollary 3.8. Assume f(t, 0, 0) 6≡ 0 for any t ∈ [0, 1], and there exist two nonnegative constants ε1 6= 1, ε2 6= 1
such that

lim
|z1|+|z2|→∞

|f(t, z1, z2)|

|z1|ε1 + |z2|ε2
<∞ (3.16)

uniformly holds for t ∈ [0, 1]. Then (1.1) has at least one nontrivial solution.

Proof. In fact, by (3.16), there exists N > 0 such that for |z1|+ |z2| > N and t ∈ [0, 1],

|f(t, z1, z2)| 6M(|z1|
ε1 + |z2|

ε2).

On the other hand, it follows from the continuity of f that there existsM0 > 0 such that for any |z1|+ |z2| 6
N and t ∈ [0, 1],

|f(t, z1, z2)| 6M0.

Thus, we have
|f(t, z1, z2)| 6M(|z1|

ε1 + |z2|
ε2) +M0, (t, z1, z2) ∈ [0, 1]×R2.

According to Theorem 3.6, the conclusion of Corollary 3.8 holds.

Now we focus on the uniqueness of the nontrivial solution for (1.1), we have the following theorem.

Theorem 3.9. Suppose f(t, 0, 0) 6≡ 0 for any t ∈ [0, 1] and there exist nonnegative functions p,q ∈ L1[0, 1] such
that

|f(t, z1, z2) − f(t,w1,w2)| 6 p(t)|z1 −w1|+ q(t)|z2 −w2|, a.e. (t, z1, z2), (t,w1,w2) ∈ [0, 1]×R2.

Then (1.1) has a unique nontrivial solution if∫ 1

0
H(s)[p(s) + q(s)]ds <

(
1 +

1
Γ(γ+ 1)

)−1

.
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Proof. Firstly let w1 = w2 ≡ 0, we have

|f(t, z1, z2)| 6 p(t)|z1|+ q(t)|z2|+ |f(t, 0, 0)|.

It follows from Theorem 3.2, that there exists a nontrivial solution for (1.1).
But in this case, we prefer to obtain uniqueness of nontrivial solution for (1.1). To do this, we only

need to prove the operator T given in (2.10) is a contraction. Similar to (3.6), we have

|f(s, Iγu(s),u(s)) − f(s, Iγv(s), v(s))| 6
(

1 +
1

Γ(γ+ 1)

)
[p(s) + q(s)]||u− v||.

And then

||Tu− Tv|| 6
∫ 1

0
H(s)|f(s, Iγu(s),u(s)) − f(s, Iγv(s), v(s))|ds

6

(
1 +

1
Γ(γ+ 1)

) ∫ 1

0
H(s)[p(s) + q(s)]ds||u− v|| = m||u− v||,

which implies that T is indeed a contraction since m < 1. By the Banach fixed point theorem, (1.1) has a
unique nontrivial solution.

4. Numerical examples

Example 4.1. Consider the existence of nontrivial solutions for the nonlinear fractional differential equa-
tion 

−DDD
5
2 z(t) ==

(1 − t) sin z(t)

3
√

1 + |(1 − t)DDD
1
2 z(t)|

−
DDD

1
2 z(t)

7 + |DDD
1
2 z(t)|t3 + | cos z(t)|

+ t
1
3 + et, t ∈ (0, 1),

DtDtDt
1
2 z(0) = DtDtDt

3
2 z(0) = 0, DtDtDt

4
3 z(1) =

∫ 1

0
DtDtDt

4
3 z(s)dA(s),

(4.1)

where A is a function of bounded variation

A(t) =


0, t ∈

[
0, 1

2

)
,

3
2 , t ∈

[ 1
2 , 3

4

)
,

1, t ∈
[ 3

4 , 1
]

.
(4.2)

Then (4.1) has at least one nontrivial solution.

Proof. From (4.2), by simple computation, (4.1) is equivalent to a 4-point boundary value problem with
coefficients of both signs

−DDD
5
2 z(t) =

(1 − t) sin z(t)

3
√

1 + |(1 − t)DDD
1
2 z(t)|

−
DDD

1
2 z(t)

7 + |DDD
1
2 z(t)|t3 + | cos z(t)|

+ t
1
3 + et, t ∈ (0, 1),

DtDtDt
1
2 z(0) = DtDtDt

3
2 z(0) = 0, DtDtDt

4
3 z(1) =

3
2
DtDtDt

4
3 z

(
1
2

)
−

1
2
DtDtDt

4
3 z

(
3
4

)
.

(4.3)

Thus we only need to study the 4-point boundary value problem (4.3).
Let α = 5

2 ,γ = 1
2 ,µ = 4

3 , and set

f(t, z1, z2) =
(1 − t) sin z1

3
√

1 + |z2|
−

(1 − t)z2

7 + |z3|t3 + |z1|
+ t

1
3 + et, p(t) =

1 − t

3
, q(t) =

1 − t

7
, r(t) = t

1
3 + et.

Then
|f(t, z1, z2)| 6 p(t)|z1|+ q(t)|z2|+ r(t),
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and (
1 +

1
Γ(γ+ 1)

)−1

=

(
1
Γ( 3

2)
+ 1

)−1

≈ 0.4698. (4.4)

On the other hand, we have

G(t, s) =

{
t(1 − s)

1
6 − (t− s) =: G1(t, s), 0 6 s 6 t 6 1,

t(1 − s)
1
6 =: G2(t, s), 0 6 t 6 s 6 1.

C =

∫ 1

0

Γ(α− µ)

Γ(α− γ)
tα−γ−1dA(t) =

Γ( 7
6)

Γ(2)

∫ 1

0
tdA(t) =

3Γ( 7
6)

8Γ(2)
≈ 0.3479,

B =
Γ(α− µ)

(1 − C)Γ(α− γ)
=

Γ( 7
6)

(1 − 0.3479)Γ(2)
≈ 1.4226,

thus we have

H(s) =
(1 − s)α−µ−1

Γ(α− γ)
+B|GA(s)| = (1 − s)

1
6 + 1.4226|GA(s)|, (4.5)

where

GA(s) =


3
2G1

(1
2 , s
)
− 1

2G1
(3

4 , s
)
= 3

8(1 − s)
1
6 + s− 3

8 , 0 6 s < 1
2 ,

3
2G2

(1
2 , s
)
− 1

2G1
(3

4 , s
)
== 3

8(1 − s)
1
6 − 1

2s+
3
8 , 1

2 6 s < 3
4 ,

3
2G2

(1
2 , s
)
− 1

2G2
(3

4 , s
)
== 3

8(1 − s)
1
6 , 3

4 6 s 6 1.

It follows from (4.4) and (4.5) that∫ 1

0
H(s)(p(s) + q(s))ds =

1
10

∫ 1

0
(1 − s)

5
6ds+ 0.14226

∫ 1

0
|GA(s)|(1 − s)ds

=
6

110
+ 0.14226

[(
9
44

(
1 −

(
1
2

) 11
6
)
+

1
12

−
3
64

)

+

(
9
44

((
1
2

) 11
6

−

(
1
4

) 11
6
)
−

11
384

+
9

256

)
+

9
44

(
1
4

) 11
6
]

≈ 0.08973 < 0.4698,

(4.6)

which implies that the condition (3.2) in Theorem 3.2 is satisfied, and from Theorem 3.2 the nonlinear
fractional differential equation (4.1) has a nontrivial solution.

Example 4.2. Consider the uniqueness of nontrivial solutions of the nonlinear fractional differential equa-
tion (4.1) with nonlinear term

f(t, z(t),DtDtDt
γz(t)) =

(1 − t) sin z(t)
3

−
cos
(
DDD

1
2 z(t) − tDDD

1
2 z(t)

)
7

+ et,

then the above equation has a unique nontrivial solution.

Proof. In fact, let

f(t, z1, z2) =
(1 − t) sin z1

3
−

cos(z2 − tz2)

7
+ et,

then
|f(t, z1, z2) − f(t,w1,w2)| 6

1 − t

3
|z1 −w1|+

1 − t

7
|z2 −w2|, t ∈ [0, 1],

where
p(t) =

1 − t

3
, q(t) =

1 − t

7
.

Thus combining (4.4) and (4.6), Theorem 3.9 guarantees that the above boundary value problem has a
unique nontrivial solution.
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