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Abstract

In this work, we are interested in considering the following nonlocal problem−

(
a− b

∫
Ω

|∇u|2dx
)
∆u = f(x)|u|p−2u, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN (N > 3) is a bounded domain with smooth boundary ∂Ω,a,b > 0, 1 6 p < 2∗, f ∈ L
2∗

2∗−p (Ω) is nonzero and
nonnegative. By using the variational method, some existence and multiplicity results are obtained. c©2017 All rights reserved.
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1. Introduction and main result

In this paper, we consider the following nonlocal problem−

(
a− b

∫
Ω

|∇u|2dx
)
∆u = f(x)|u|p−2u, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN (N > 3) is a bounded domain with smooth boundary ∂Ω, a,b > 0, 1 6 p < 2∗, the weight

function f ∈ L
2∗

2∗−p (Ω) is nonzero and nonnegative. 2∗ = 2N
N−2 is the critical Sobolev exponent for the

embedding of H1
0(Ω) into Lq(Ω) for every q ∈ [1, 2∗], where H1

0(Ω) is a Sobolev space equipped with the

norm ‖u‖ =
(∫
Ω |∇u|2dx

) 1
2 , and |u|q =

(∫
Ω |u|q

) 1
q denotes the norm of Lq(Ω).

When 2 < p < 2∗ and f(x) ≡ 1, problem (1.1) was considered by [5] for the first time. By using the
mountain pass lemma, they obtained the existence of nontrivial solutions for problem (1.1). One of their
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important works is the (PS)c condition with c < a2

4b . Recently, [3] studied problem (1.1) with N = 3 and
1 < p < 2. When f ∈ L∞(Ω) changes sign, they got two positive solutions by the variational method and
Harnack inequality. Compared with [5], they used a different method to prove the (PS)c condition with
c < a2

4b . While 0 < p < 1 and N = 3, problem (1.1) was researched by [2].
Inspired by the works in [2, 3] and [5], we study the existence and multiplicity of positive solutions

for problem (1.1) with N > 3 and 1 6 p < 2∗. Via the variational method and strong maximum principle,
when 1 6 p < 2, we obtain two positive solutions of problem (1.1); while 2 6 p 6 2∗, we get the existence
of positive solutions of problem (1.1). Our results generalize and complete the results of [3] and [5].

The energy functional corresponding to problem (1.1) is given by

I(u) =
a

2
‖u‖2 −

b

4
‖u‖4 −

1
p

∫
Ω

f(x)|u|pdx, ∀u ∈ H1
0(Ω).

In general, a function u is called a weak solution of problem (1.1) if u ∈ H1
0(Ω) and for all ϕ ∈ H1

0(Ω) it
holds

(a− b‖u‖2)

∫
Ω

(∇u,∇ϕ)dx−
∫
Ω

f(x)|u|p−2uϕdx = 0. (1.2)

Let S be the best Sobolev constant, namely

S := inf
u∈D1,2(RN)\{0}

∫
RN

|∇u|2dx(∫
RN

|u|2
∗
dx
) 2

2∗
:= inf
u∈H1

0(Ω)\{0}

∫
Ω |∇u|2dx(∫
Ω |u|2

∗
dx
) 2

2∗
. (1.3)

Now our main result can be described as follows:

Theorem 1.1. Assume that a,b > 0, 1 6 p < 2∗ and f ∈ L
2∗

2∗−p (Ω) is nonzero and nonnegative, then

(1) when 1 6 p < 2, there exists T > 0 such that for any |f| 2∗
2∗−p

< T , (1.1) has at least two positive solutions

u∗,u∗∗ with I(u∗) < 0 and I(u∗∗) > 0;

(2) when p = 2, |f| 2∗
2∗−2

< aS or 2 < p < 2∗, (1.1) has at least one positive mountain-pass solution u∗∗ with
I(u∗∗) > 0.

Remark 1.2. Compared with [3] and [5], we consider (1.1) with p = 1, 2 and obtain the existence of
positive solutions by the strong maximum principle. Particular, compared with [5], we study problem
(1.1) with 1 6 p 6 2 and obtain the existence and multiplicity of positive solutions. Compared with [3],
we generalize the dimension N = 3 to N > 3.

2. Proof of Theorem 1.1

In this part, we will give the proof of Theorem 1.1. Before proving Theorem 1.1, we give the following
lemma.

Lemma 2.1. Assume a,b > 0, 1 6 p < 2∗ and f ∈ L
2∗

2∗−p (Ω) is nonzero and nonnegative, then I satisfies
the (PS)c condition with c < a2

4b .

Proof. Suppose {un} ⊂ H1
0(Ω) is a (PS)c sequence for I, that is,

I(un)→ c, I ′(un)→ 0, as n→∞. (2.1)

By the Hölder inequality and (1.3), one has∫
Ω

f(x)|u|pdx 6 |f| 2∗
2∗−p

|u|
p
2∗ 6 |f| 2∗

2∗−p
S−

p
2 ‖u‖p. (2.2)
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When 1 6 p < 2, it follows from (2.1) and (2.2) that

1 + c+ o(‖un‖) > I(un) −
1
4
〈I ′(un),un〉

=
a

4
‖un‖2 −

4 − p

4p

∫
Ω

f(x)|un|
pdx

>
a

4
‖un‖2 −

(4 − p)|f| 2∗
2∗−p

4pS
p
2

‖un‖p,

which implies that {un} is bounded in H1
0(Ω). When 2 6 p < 2∗, it follows from (2.1) that

1 + c+ o(‖un‖) > I(un) −
1
2
〈I ′(un),un〉

=
b

4
‖un‖4 +

p− 2
2p

∫
Ω

f(x)|un|
pdx

>
b

4
‖un‖4,

which implies that {un} is bounded in H1
0(Ω). Going if necessary to a subsequence, still denoted by {un},

there exists u ∈ H1
0(Ω) such that

un ⇀ u, weakly in H1
0(Ω),

un → u, strongly in Ls(Ω), 1 6 s < 2∗,
un(x)→ u(x), a.e. in Ω,

(2.3)

as n→∞. Moreover, by the Vitali Theorem, one obtains

lim
n→∞

∫
Ω

f(x)|un|
pdx =

∫
Ω

f(x)|u|pdx.

Set wn = un − u, then ‖wn‖ → 0. Otherwise, there exists a subsequence, still denoted by {wn}, such that

lim
n→∞ ‖wn‖ = l > 0.

From (2.1), for every φ ∈ H1
0(Ω), it holds

(a− b‖un‖2)

∫
Ω

(∇un,∇φ)dx−
∫
Ω

f(x)|un|
p−2unφdx = o(1).

Letting n→∞, by using (2.3), we have

(a− bl2 − b‖u‖2)

∫
Ω

(∇u,∇φ)dx−
∫
Ω

f(x)|u|p−2uφdx = 0. (2.4)

Taking φ = u in (2.4), one has

(a− bl2 − b‖u‖2)‖u‖2 −

∫
Ω

f(x)|u|pdx = 0. (2.5)

Note that 〈I ′(un),un〉 → 0 as n→∞, it holds

a‖wn‖2 + a‖u‖2 − b‖wn‖4 − 2b‖wn‖2‖u‖2 − b‖u‖4 −

∫
Ω

f(x)|u|pdx = o(1). (2.6)
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It follows from (2.5) and (2.6) that

a‖wn‖2 − b‖wn‖4 − b‖wn‖2‖u‖2 = o(1). (2.7)

Consequently, one has l2(a− b‖u‖2 − bl2) = 0, that is,

l2 =
a

b
− ‖u‖2. (2.8)

On the one hand, from (2.5) and (2.8), we have

I(u) =
a

2
‖u‖2 −

b

4
‖u‖4 −

1
p

∫
Ω

f(x)|u|pdx

=
a

2
‖u‖2 −

b

4
‖u‖4 −

1
p

(
a‖u‖2 − bl2‖u‖2 − b‖u‖4)

=
a(p− 2)

2p
‖u‖2 +

b(4 − p)

4p
‖u‖4 +

b

p
‖u‖2a− b‖u‖2

b

=
a

2
‖u‖2 −

b

4
‖u‖4.

(2.9)

On the other hand, by (2.1), (2.7) and (2.8), it follows from c < a2

4b that

I(u) = lim
n→∞

[
I(un) −

a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u‖2

]
= lim
n→∞

[
I(un) −

a

2
‖wn‖2 +

b

4
‖wn‖4 +

1
2
(
a‖wn‖2 − b‖wn‖4)]

= c−
b

4
l4

= c−
a2

4b
+
a

2
‖u‖2 −

b

4
‖u‖4

<
a

2
‖u‖2 −

b

4
‖u‖4,

which contradicts (2.9). Hence, l ≡ 0, that is, un → u in H1
0(Ω) as n→∞. Therefore, I satisfies the (PS)c

condition for c < a2

4b . This completes the proof of Lemma 2.1.

Now, we give the following two important propositions.

Proposition 2.2. Assume 1 6 p < 2 and f ∈ L
2∗

2∗−p (Ω) is nonzero and nonnegative. There exists T > 0
such that for any |f| 2∗

2∗−p
< T , (1.1) has at least one positive local minimal solution u∗ with I(u∗) < 0.

Proof. We claim that there exist T ,R, ρ > 0 such that for every |f| 2∗
2∗−p

< T , I satisfies

I(u)|u∈SR > ρ, inf
u∈BR

Iλ(u) < 0,

where BR = {u ∈ H1
0(Ω) : ‖u‖ 6 R} is a closed ball and SR = {u ∈ H1

0(Ω) : ‖u‖ = R}. It follows from (2.2)
that

I(u) =
a

2
‖u‖2 −

b

4
‖u‖4 −

1
p

∫
Ω

f(x)|u|pdx

>
a

2
‖u‖2 −

b

4
‖u‖4 −

|f| 2∗
2∗−p

pS
p
2
‖u‖p

= ‖u‖p
(
a

2
‖u‖2−p −

b

4
‖u‖4−p −

|f| 2∗
2∗−p

pS
p
2

)
.
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For any t > 0, g(t) is defined by

g(t) =
a

2
t2−p −

b

4
t4−p −

|f| 2∗
2∗−p

pS
p
2

,

then

g ′(t) = t1−p
[
a(2 − p)

2
−
b(4 − p)

4
t2
]

.

Consequently, let g ′(t) = 0, we can easily get tmax =
[

2a(2−p)
b(4−p)

] 1
2

such that

max
t>0

g(t) = g(tmax) =
a

4 − p

[
2a(2 − p)

b(4 − p)

] 2−p
2

−
|f| 2∗

2∗−p

pS
p
2

.

Choosing

T =
apS

p
2

4 − p

[
2a(2 − p)

b(4 − p)

] 2−p
2

, R =

[
2a(2 − p)

b(4 − p)

] 1
2

,

then there exists ρ > 0 such that for all |f| 2∗
2∗−p

< T , one has I(u)|u∈SR > ρ. Moreover, fixing u0 ∈ H1
0(Ω)

and u0 6= 0, one gets

lim
t→0+

I(tu0)

tp
= −

1
p

∫
Ω

f(x)|u0|
pdx < 0.

Thus, one has inf
u∈BR

I(u) < 0. Therefor, our claim is true. Without loss of generality, we denote

m = inf
u∈BR

I(u).

For this minimization problem, there exists a minimization sequence {un} such that lim
n→∞ I(un) = m.

Moreover, by [4, Proposition 9], we can take a subsequence from {un}, still denotes by {un}, such that
{un} is a (PS)m sequence of I in H1

0(Ω). Thus, by Lemma 2.1, there exists u∗ ∈ H1
0(Ω) such that un → u∗

in H1
0(Ω) as n → ∞ and I(u∗) = m < 0. Consequently, u∗ is a nonzero solution of problem (1.1). Since

I(u) = I(|u|), we can assume that u∗ > 0 in Ω. From (1.2), choosing ϕ = u∗, we have

(a− b‖u∗‖2)

∫
Ω

|∇u∗|2dx−
∫
Ω

f(x)|u∗|
pdx = 0.

Consequently, one has

(a− b‖u∗‖2)

∫
Ω

|∇u∗|2dx =
∫
Ω

f(x)|u∗|
pdx > 0,

which implies that
a− b‖u∗‖2 > 0. (2.10)

Obviously, we have
−
(
a− b‖u∗‖2)∆u∗ = f(x)up−1

∗ .

Combining with (2.10), we get

−∆u∗ =
f(x)up−1

∗
a− b‖u∗‖2 > 0.

Hence, by the strong maximum principle, one has u∗ > 0, that is, u∗ is a positive local minimal solution
of problem (1.1). Thus, the proof of Proposition 2.2 is completed.

Proposition 2.3. Assume 1 6 p < 2, 2 < p < 2∗ or p = 2, |f| 2∗
2∗−2

< aS, and f ∈ L
2∗

2∗−p (Ω) is nonzero and
nonnegative. Then (1.1) has at least one positive mountain-pass solution u∗∗ with I(u∗∗) > 0.
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Proof. We claim that I satisfies the mountain-pass geometry in H1
0(Ω). Firstly, we should prove that there

exists e ∈ H1
0(Ω) with ‖e‖ > R such that I(e) < 0. In fact, fixing u ∈ H1

0(Ω) and u 6= 0, as t→ +∞, one has

I(tu) =
at2

2
‖u‖2 −

bt4

4
‖u‖4 −

tp

p

∫
Ω

f(x)|u|pdx→ −∞,

which implies that there exists e ∈ H1
0(Ω) with ‖e‖ > R such that I(e) < 0. Secondly, we prove that there

exist R, ρ > 0 such that I(u)|u∈SR > ρ. When 1 6 p < 2, from Proposition 2.2, there exist T ,R, ρ > 0, for
every |f| 2∗

2∗−p
< T such that I(u)|u∈SR > ρ. While p = 2, |f| 2∗

2∗−2
< aS, we can easily obtain this conclusion

by the similar way. When 2 < p < 2∗, obviously, 0 is a local minimizer of I with I(0) = 0. In fact, fixing
u0 ∈ H1

0(Ω) and u0 6= 0, we have

lim
t→0+

I(tu0)

t2 =
a

2
‖u0‖2 > 0,

which implies that there exist R, ρ > 0 such that I(u)|u∈SR > ρ. Hence, our claim is proved to be true.
Taking

c0 = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1],H1
0(Ω)) : γ(0) = 0,γ(1) = e}. We claim that c0 6 a2

4b . In fact,

max
t∈[0,1]

I(te) = max
t∈[0,1]

(
at2

2
‖e‖2 −

bt4

4
‖e‖4 −

tp

p

∫
Ω

f(x)|e|pdx

)
6 max
t∈[0,1]

(
at2

2
‖e‖2 −

bt4

4
‖e‖4

)
6
a2

4b
.

Therefore, by Lemma 2.1, applying the mountain-pass lemma, there exists u∗∗ ∈ H1
0(Ω) such that I(u∗∗) =

c0 > 0, that is, u∗∗ is a nonzero mountain-pass solution of (1.1). Since I(u) = I(|u|), from [1, Theorem 10],
one has u∗∗ > 0 in Ω. Similar to Proposition 2.2, by the strong maximum principle, we can prove that u∗∗
is a positive mountain-pass solution of (1.1). This completes the proof of Proposition 2.3.

According to Proposition 2.2 and Proposition 2.3, we can obtain the proof of Theorem 1.1.
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