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Abstract
We investigate the threshold dynamics problem of a delayed Susceptible-Infected-Recovered (SIR) model with general

nonlinear incidence and multiple parallel infectious stages. Biologically, the model contains the following aspects:

(i) once infection occurs, a fraction of the infected individuals is detected and treated, while the rest of the infected remains
undetected and untreated;

(ii) distributed delays governed by a general nonlinear incidence function are included into the model due to the complexity
of disease transmissions.

Mathematically, under some suitable assumptions on nonlinear incidence rate, we prove that the reproduction number <0 can be
used to govern the the global dynamics of the model. The proofs of global attractivity of disease-free equilibrium (which means
the extinction of disease) and endemic equilibrium (which means the persistence of the disease) are achieved by constructing
suitable Lyapunov functionals. c©2017 All rights reserved.
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1. Introduction

In the study of infectious diseases dynamics, mathematical models have been contributing to under-
stand the mechanism of disease transmission and develop preventive measures to control infection spread.
A number of mathematical models have been proposed by many researchers (see, [8–13, 15, 17, 18] and the
references therein). The most basic and classic model in this field is the SIR-type epidemic model, which
is governed by a system of three-dimensional ordinary differential equations (ODEs). The host population
is divided into three disjoint classes such as suceceptibles, infectives and recovereds. Denote by S(t), I(t)
and R(t) the population sizes of susceptible, infective, and recovered classes, at time t, respectively.

Based on SIR-type epidemic model, many studies have shown that suitable extensions could be a
more appropriate way of modeling specific disease from biological significance and mathematical per-
spective. These extensions have been enriching our knowledge on the disease spread and control in many
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circumstances. Further, it is realized that more and more mathematical theory and methods have been
improved to be effective tools in performing the analysis to the proposed models. Biologically, time delay
and nonlinear incidence rate are two major extensions in epidemiological aspects.

• When formulated the spread of an infectious disease transmitted by a vector (for example, mosquit-
oes) after a specified duration (the time during which the infectious agents develop in the vector), a
discrete delay τ was usually incorporated to account for the progression of a disease from latent to
infective to occur, as is not the case for ODEs [2]. Moreover, according to some distribution of the
vectors’ latency periods, one can formulate a model with a distributed delay (see, e.g., [18]). Both of
these extensions lead to a system of delay differential equations (DDEs) formulation.

• During the disease transmission dynamics, nonlinearity in the incidence rates has been observed
and studied by many authors. Usually, the standard bilinear incidence rate is suggested to be modi-
fied into a nonlinear incidence rate (see, e.g., [9, 10, 15]). Changing the form of the incidence function
can potentially affect and change the dynamical behaviour of the system of ODEs and DDEs. There
are several different nonlinear transmission functions, we refer to the following examples and refer-
ences therein: saturating incidence βS I

1+cI (see, e.g., [1, 18]); standard incidence βSIN (see, e.g. [7]);
separable incidence form F(S)G(I) for discrete delay (see, e.g. [8]). In [8], the authors studied an SIR
model, where the delay is included in G(I), modelling vector transmission, and also an SEIR system
where the delay appears in both F(S) and G(I), modelling a fixed duration of latency. This incidence
rate, F(S)G(I), has been studied by Korobeinikov and Maini [11].

In a recent work, McCluskey [15] further extended and studied the Volterra-type Lyapunov functions
to DDEs, resolving the global stability of the following SIR DDEs with more general incidence functions.

dS(t)
dt

= λ− µSS(t) −β

∫h
0
k(τ)F(S(t), I(t− τ))dτ,

dI(t)
dt

= β

∫h
0
k(τ)F(S(t), I(t− τ))dτ− (µI + γ)I(t),

dR(t)
dt

= γI(t) − µRR(t),

(1.1)

where λ is the recruitment rate of the population. µS, µI and µR are the death rates of susceptible
individuals, infectious individuals and recovered individuals, respectively. 1/γ represents the average
time spent in class I before recovery (or removal). Thus, the total exit rate for the infected is µI + γ. It is
assumed that µI+γ > µS from biological reasons. Following method of [6], the vectors can be decoupled
by including a distributed delay τ in the incidence rate for a maximum delay h > 0 due to the fact that
transmission of the disease through vectors may undergo fast dynamics.

β

∫h
0
k(τ)F(S(t), I(t− τ))dτ,

represents the incidence rate at time t (where k is a Lebesgue integrable function). It is assumed that∫h
0 k(τ)dτ = 1 for suitable β. Under some suitable assumptions on nonlinear incidence function F, Mc-

Cluskey [15] obtained the standard threshold dynamics in the sense that: the disease-free equilibrium
is globally asymptotically stable for basic reproduction number being less than one and the endemic
equilibrium is globally asymptotically stable for basic reproduction number exceeding one.

However, for many infectious diseases, and in particular for the diseases with a prolonged infectious
period, some infectious individuals can be properly detected and treated, isolated or removed, whereas
others remain undetected and untreated. Korobeinikov [10] studied this issue to consider whether length
of the infectious periods and the levels of contagiousness for these detected and undetected hosts can
significantly affect the system dynamics. In a subsequent work, Wang and Liu [17] extended the results of
Korobeinikov [10] into the following model by adding a distributed delay to SIR model with n alternative
infectious pathways and n noninteracting infective subclasses Ii, i = 1, 2, · · · ,n. The model studied in
[17] takes the following form:



H. Zhang, C. M. Li, H. Q. Sun, J. Nonlinear Sci. Appl., 10 (2017), 6071–6083 6073

dS(t)
dt

= λ− µS(t) −

n∑
j=1

βj

∫h
0
kj(τj)S(t)Ij(t− τj)dτj,

dIi(t)
dt

= pi

n∑
j=1

βj

∫h
0
kj(τj)S(t)Ij(t− τj)dτj − δiIi(t),

dRi(t)
dt

=

n∑
j=1

rjIj(t) − σiRi(t), i = 1, 2, · · · ,n.

(1.2)

The parameters of model (1.2) are biologically explained as in Table 1.

Table 1: Parameters and their biological meaning in model (1.2). All these constants are assumed to be positive.
Parameter Interpretation
pi ∈ (0, 1) the probability for an infected individual entering

to the i-th infective compartment;
µ natural death rate of the susceptible individuals;
ri recovery rate of infected individuals;
δi the rate of the infectious individuals of the i-th compartment

leave this compartment;
σi the remove rate of the recovered individuals.

Motivated by these works, we consider a delayed SIR epidemic model with general nonlinear incidence
and multiple parallel infectious stages. In this paper, we extend model in (1.1) from a framework to
one with multiple parallel infectious stages and in (1.2) to one with general nonlinear incidence. Both
extensions allow for an event that intrinsic growth rate of susceptible individuals takes a general function.
The main focus of this article is to investigate how multiple parallel infectious stages and general nonlinear
incidence affect disease’s dynamics through studying the global dynamics of our model. We define the
basic reproductive number <0 and show that it can completely determine the global dynamics of model.
Under some suitable assumptions on nonlinear incidence rate and general growth rate, the existence and
uniqueness of an endemic equilibrium are ensured. The approach used here to consider the effect of a
wide class of nonlinear incidence rates and distributed delays is based on exploring Lyapunov functional
techniques, which was used by Goh for ODEs models in ecology [4] and was known to be an effective
tool to resolve the global analysis of many other epidemic models including [12, 13, 15].

The rest of this article is organized as follows: In Section 2, a delayed SIR model of infectious disease
with general nonlinear incidence and multiple parallel infectious stages is described. The preliminary
results, including the definition of basic reproduction number, the existence of endemic equilibrium and
well-posedness of model are presented in Section 3. Section 4 is devoted to the stability analysis of
equilibria through constructing Lyapunov functionals, where we prove that the sharp threshold properties
of the model rely only on the basic reproduction number <0. In Section 5, we provide a discussion of our
results and future problem related to this topic to consider.

2. The model and preliminaries

Based on the models given in (1.1) and (1.2), we suppose that the dynamics of the disease transmission
is governed by the following system of DDEs:

dS(t)
dt

= N(S(t)) −

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj,

dIi(t)
dt

= pi

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj − δiIi(t),

dRi(t)
dt

=

n∑
j=1

rjIj(t) − σiRi(t), i = 1, 2, · · · ,n.

(2.1)



H. Zhang, C. M. Li, H. Q. Sun, J. Nonlinear Sci. Appl., 10 (2017), 6071–6083 6074

In view of the methods in [10] and [17], the vector classes can be omitted from the equations by incorpo-
rated a distributed delay τj in the incidence term up to a maximum delay h > 0. The incidence at time t
is βj

∫h
0 kj(τj)F(S(t), Ij(t− τj))dτj (here kj(·) is a Lebesgue integrable function). One can choose βj such

that
∫h

0 kj(τj)dτj = 1.
The variables and the other parameters are defined the same as in (1.2). Since Ri(t) does not appear

in the equations for S(t) and Ii(t), it is sufficient to consider only the first two equations (2.1):
dS(t)

dt
= N(S(t)) −

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj,

dIi(t)
dt

= pi

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj − δiIi(t), i = 1, 2, · · · ,n.

(2.2)

The initial condition for system (2.2) is

S(0) ∈ R+, Ii(θ) = φi(θ), for θ ∈ [−h, 0], (2.3)

where φi ∈ C = C([−h, 0], R+), the space of continuous functions from [−h, 0] to R+, equipped with the
sup-norm, ‖ φ ‖= sup

θ∈[−h,0]
φ(θ).

The standard theory of functional differential equations [6] implies that the solutions of system (2.2)
with initial condition (2.3) exist and are differentiable for all t > 0. Moreover, the phase space X =
R+ ×C× · · · ×C is positively invariant.

On the basis of biological considerations, we make the following basic assumptions for the intrinsic
growth rate of susceptible individuals N(S(t)).

(A1) N(·) are C1 non-increasing function on [0,∞) with N(0) > 0, and there is a unique positive solution
ξ = S0 for the equation N(ξ) = 0. N(S(t)) > 0 for 0 6 S(t) < S0, and N(S(t)) < 0 for S(t) > S0, that
is

[N(S(t)) −N(S0)](S(t) − S0) < 0, for S(t) 6= S0.

It is well-known that the class of N(S(t)) satisfying (A1) includes the situation, N(S(t)) = λ−dS(t), which
has been widely used in the literature of population dynamics.

Lemma 2.1. For initial conditions in (2.3) with S(0) ∈ R+ and φi(θ) ∈ C, the solutions of system (2.2) are
nonnegative and ultimately uniformly bounded in X.

Proof. First, we prove that S(t) > 0 for all t > 0. Assume for the contrary, let t1 > 0 be such that S(t1) < 0.
Set t2 = inf{0 < t < t1 : S(t) < 0}. Then S(t2) = 0. From the first equation of system (2.2), we have
dS(t)

dt |t=t2= N(0) > 0. Hence S(t) < 0 for t ∈ (t2 − ε, t2), for sufficiently small ε > 0. This contradicts
S(t) > 0 for t ∈ (0, t2]. It follows that S(t) > 0 for t > 0.

Next, we will show that Ii(t) > 0 for all t > 0, i = 1, 2, · · · ,n. It is easy to see that disease is initially
presented when the initial condition Ii(θ0) > 0 for some θ0 ∈ [−h; 0], by the continuity of initial condition,
Ii(t) is positive on some interval about θ0. It follows that either Ii(t) is positive for some t ∈ [0, θ0 + h] or
dIi(θ0+h)

dt > 0, then there exists t3 > 0 such that Ii(t3) > 0 for t ∈ [t3, t3 + h]. From the second equation of
(2.2), we have dIi(t)

dt > −δiIi(t), for t > t3. Thus we have

Ii(t) > Ii(t3)e
−δi(t−t3) > 0, for t > t3.

Assumption (A1) and the first equation of (2.2) imply that lim supt→∞ S(t) 6 S0. For each i, adding
the two equations of (2.2) gives

dS(t)
dt

+
dIi(t)

dt
= N(S) − (1 − pi)

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj − δiIi(t)
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6 m− δiIi(t)

6 2m− d(S(t) + Ii(t)),

where
pi ∈ (0, 1), m = sup

S∈[0,S0]

N(S) and d = min{δi,
m

S0
}.

Hence,

lim sup
t→∞ (S(t) + Ii(t)) 6

2m
d

.

Therefore, S(t) and Ii(t) are ultimately uniformly bounded in X.

Lemma 2.1 implies that omega limit sets of system (2.2) are contained in the following bounded
feasible region:

Γ =

{
(S(t), Ii(t)) ∈ X : 0 < S(t) 6 S0, 0 < S(t) + Ii(t) 6

2m
d

, i = 1, 2, · · · ,n
}

.

It can be verified that the region Γ is positively invariant with respect to model (2.2) and the model is
well-posed. Our results in this paper will be stated for system (2.2) in Γ .

3. Equilibria and <0

Under the assumption (A1), system (2.2) has the disease-free equilibrium E0 = (S0, 0, · · · , 0) on the
boundary of Γ . The partial derivatives of F are denoted by F1 and F2 in what follows.

The basic reproduction number for the model (2.2) is

<0 =

n∑
i=1

βipi
δi

F2(E0),

which is defined as the expected number of new infections caused by a single newly infected individual
in an entirely susceptible population during its entire infectious period [3].

An equilibrium E∗ = (S∗, I∗1 , I∗2 , · · · , I∗n) in the interior Γ is called an endemic equilibrium. Note that
the equilibria of system (2.2) are the same as the equilibria of the corresponding ODEs system. Thus
S∗, I∗i > 0 satisfies the following algebraic equations:

0 = N(S∗) −

n∑
j=1

βjF(S
∗, I∗j ),

0 =

n∑
j=1

βjF(S
∗, I∗j ) −

δi
pi
I∗i .

(3.1)

Adding the two equations, we have N(S∗) − δi
pi
I∗i = 0, and so I∗i =

piN(S∗)
δi

. Let

H(S∗) =

n∑
j=1

βjF(S
∗,
pjN(S∗)

δj
) −N(S∗).

Then dIi(t)
dt = 0 whenever H(S∗) = 0. Thus, any zero of H(·) in the interval (0,S0) corresponds to an

equilibrium with S∗, I∗i > 0, that is, an endemic equilibrium. It follows from F(0, Ii) = F(S, 0) = 0 that
H(0) = −N(0) < 0 and H(S0) = 0. The function H(·) is continuous. It follows that a sufficient condition
for H(·) obtaining a zero solution in (0,S0) is that H(·) is increasing at S0. Thus, an endemic equilibrium
exists if the following condition is fulfilled

0 <
dH
dS

∣∣∣
(S=S0)

=

n∑
j=1

βjF1(E0) +

n∑
j=1

βjF2(E0)
pj

δj

dN(S)

dS

∣∣∣
(S=S0)

−
dN(S)

dS

∣∣∣
(S=S0)

. (3.2)

Since F(S, 0) = 0 for all S, it follows that F1(E0) = 0 and so (3.2) is equivalent to <0 > 1. Hence we are in a
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position to state the following result.

Lemma 3.1. If <0 > 1, then system (2.2) admits an endemic equilibrium E∗ = (S∗, I∗1 , I∗2 , · · · , I∗n).

4. Stability analysis of (2.1) by Lyapunov functional techniques

It is commonly realized that the rigorous proofs of the global dynamics depending on the basic re-
production number <0 are nontrivial for many disease models [16]. In particular, due to the complexity
and high dimension of disease models, the global stability of the endemic equilibrium is known as a
challenging mathematical problem.

For models where the sharp threshold property holds, and knowledge of disease data are available,
sensitivity analysis of <0 can be used to evaluate the effects of control strategies.

In what follows, we state our main results concerning the global properties of the disease-free equi-
librium E0 and the endemic equilibrium E∗ of (2.2). <0 is the key threshold parameter characterizing the
global dynamics of (2.2), through constructing suitable the Lyapunov functionals.

4.1. Global attractivity of disease-free equilibrium for <0 6 1
Theorem 4.1. Assume that the intrinsic growth rate of susceptible individualsN(S(t)), and the nonlinear incidence
rate F(S(t), Ii(t)) satisfy the following conditions:

(A2) (N(S0) −N(S(t)))
[
F2(S(t), 0) − F2(S0, 0)

]
> 0 for all S(t) ∈ (0,S0] with equality only if S(t) = S0.

(A3) F(S(t), Ii(t)) 6 Ii(t)F2(S(t), 0) for all S(t), Ii(t) ∈ Γ .

If <0 6 1, the disease-free equilibrium of system (2.2), E0 = (S0, 0, · · · , 0) is globally attracting in X.

Proof. Let

G(x) = x− S0 −

∫x
S0

F2(S0, 0)
F2(σ, 0)

dσ, (4.1)

then dG(x)
dx = 1 −

F2(S0,0)
F2(x,0) . It follows from (A2) that its sign changes from non-positive to non-negative as

x increases through S0. Thus, G(x) has global minimum value at S0 with G(S0) = 0, that is, G(x) > 0 for
all x > 0.

Define Kj(τj) =
∫h
τj
kj(s)ds. Then it follows from the support of kj having positive measure near h that

Kj(τj) > 0 for 0 6 τj < h. Hence it is easy to see that Kj(h) = 0. We construct the Lyapunov functional
for E0 as follows,

LDFE(t) = G(S(t)) +

n∑
i=1

aiIi(t) + F2(S0, 0)U+(t), (4.2)

where 
U+(t) =

n∑
j=1

βj

∫h
0
Kj(τj)Ij(t− τj)dτj,

ai =
βi
δi
F2(S0, 0), i = 1, 2, · · · ,n.

It follows from (4.1) and Ii(t) > 0 that U+(t) > 0 with equality if and only if Ii(t) is identically zero on
the interval [t− h, t].

Direct calculating and using integration by parts yield

dU+(t)

dt
= −

n∑
j=1

βj

∫h
0
Kj(τj)

d
dτj

Ij(t− τj)dτj



H. Zhang, C. M. Li, H. Q. Sun, J. Nonlinear Sci. Appl., 10 (2017), 6071–6083 6077

= −

n∑
j=1

βjKj(τj)Ij(t− τj)

∣∣∣∣h
τj=0

+

n∑
j=1

∫h
0
βjIj(t− τj)dKj(τj)

=

n∑
j=1

βj

∫h
0
kj(τj)Ij(t)dτj −

n∑
j=1

∫h
0
βjIj(t− τj)kj(τj)dτj

=

n∑
j=1

βj

∫h
0
kj(τj)

[
Ij(t) − I(t− τj)

]
dτj,

which will be used in estimating Lyapunov functional LDFE(t). By (4.2), we obtain the time derivative of
LDFE(t) along the solutions of system (2.2) as follows

dLDFE(t)
dt

∣∣∣∣
(2.2)

=

[
1 −

F2(S0, 0)
F2(S(t), 0)

]
N(S(t)) −

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj

+
F2(S0, 0)
F2(S(t), 0)

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj

+

n∑
i=1

aipi

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj −

n∑
i=1

aiδiIi(t)

+ F2(S0, 0)
n∑
j=1

βj

∫h
0
kj(τj)

[
Ij(t) − I(t− τj)

]
dτj

=

[
N(S(t)) −N(S0)

] [
1 −

F2(S0, 0)
F2(S(t), 0)

]
−

n∑
i=1

aiδiIi(t)

+

[
n∑
i=1

aipi − 1

]
n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj

+ F2(S0, 0)
n∑
j=1

βj

∫h
0
kj(τj)

[
F(S(t), Ij(t− τj))

F2(S(t), 0)
+ Ij(t) − Ij(t− τj)

]
dτj.

Recall that

<0 =

n∑
i=1

βipi
δi

F2(S0, 0) =
n∑
i=1

aipi.

Rearranging dLDFE(t)
dt

∣∣
(2.2) yields

dLDFE(t)
dt

∣∣
(2.2) = −

[
N(S0) −N(S(t))

] [
1 −

F2(S0, 0)
F2(S(t), 0)

]
−

n∑
i=1

βiIi(t)F2(S0, 0)

+
(
<0 − 1

) n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj +

n∑
i=1

βiIi(t)F2(S0, 0)

+ F2(S0, 0)
n∑
j=1

βj

∫h
0
kj(τj)

[
F(S(t), Ij(t− τj))

F2(S(t), 0)
− Ij(t− τj)

]
dτj

= −

[
N(S0) −N(S(t))

] [
1 −

F2(S0, 0)
F2(S(t), 0)

]
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+
(
<0 − 1

) n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj

+ F2(S0, 0)
n∑
j=1

βj

∫h
0
kj(τj)

[
F(S(t), Ij(t− τj))

F2(S(t), 0)
− Ij(t− τj)

]
dτj.

Then, it follows from assumptions (A2) and (A3) that
−

[
N(S0) −N(S(t))

] [
1 −

F2(S0, 0)
F2(S(t), 0)

]
6 0,

F2(S0, 0)
n∑
j=1

βj

∫h
0
kj(τj)

[
F(S(t), Ij(t− τj))

F2(S(t), 0)
− Ij(t− τj)

]
dτj 6 0.

Denote A0 =
{

dLDFE(t)
dt

∣∣
(2.2) = 0

}
and let M0 be the largest invariant set in A0. If dLDFE(t)

dt

∣∣
(2.2) 6 0, one

can apply Lyapunov-LaSalle Theorem [6, Theorem 5.3.1] to system (2.2) and immediately arrives at the
following result: every omega limit set is contained in M0.

In fact, when <0 < 1, from assumptions (A2) and (A3), we immediately have the following result,

dLDFE(t)
dt

∣∣∣∣
(2.2)

6
(
<0 − 1

) n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj 6 0,

with equality only if S(t) = S0 or Ii(t) = 0, for i = 1, 2, · · · ,n. So M0 contains only the singleton {E0}.
Thus E0 is globally attracting.

When <0 = 1, from assumptions (A4) and (A5), we immediately have the following result,

dLDFE(t)
dt

∣∣∣∣
(2.2)

= −

[
N(S0) −N(S(t))

] [
1 −

F2(S0, 0)
F2(S(t), 0)

]
+ F2(S0, 0)

n∑
j=1

βj

∫h
0
kj(τj)

[
F(S(t), Ij(t− τj))

F2(S(t), 0)
− Ij(t− τj)

]
dτj.

Hence, 
dLDFE(t)

dt

∣∣∣∣
(2.2)

6 −

[
N(S0) −N(S(t))

] [
1 −

F2(S0, 0)
F2(S(t), 0)

]
, or

dLDFE(t)
dt

∣∣∣∣
(2.2)

6 F2(S0, 0)
n∑
j=1

βj

∫h
0
kj(τj)

[
F(S(t), Ij(t− τj))

F2(S(t), 0)
− Ij(t− τj)

]
dτj.

Both of the cases, we can verify that M0 consists of only the singleton {E0}. Thus E0 is globally attracting.
Then if <0 6 1, the disease-free equilibrium of system (2.2), E0 = (S0, 0, · · · , 0), is globally attracting in X.
This completes the proof.

4.2. Global attractivity of endemic equilibrium for <0 > 1
In this subsection, as a precondition, we assume that <0 > 1, guaranteeing the existence of an en-

demic equilibrium E∗ = (S∗, I∗1 , I∗2 , · · · , I∗n) (see Lemma 3.1). We obtain the global dynamics of endemic
equilibrium for <0 > 1, provided that certain assumptions on N(S(t)), and F are satisfied.

Theorem 4.2. Assume that <0 > 1 and endemic equilibrium E∗ exists. Suppose functions N(S(t)), F(S(t), Ii(t))
satisfy the following conditions:

(A4) sgn(F(S(t), I∗i ) − F(S
∗, I∗i ))=sgn(N(S(t)) −N(S∗)) for all S(t) > 0.

(A5)
F(S(t),Ii(t))
F(S(t),I∗i )

is in the closed interval with endpoints at 1 and I(t)I∗ for all S(t), Ii(t) > 0.
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Then the endemic equilibrium E∗ is globally attracting in X.

Proof. From Lemma 3.1, an endemic equilibrium E∗ exists if <0 > 1. In what follows we prove that E∗ is
globally attracting. Consider the Volterra function

g(z) = z− 1 − ln z > 0, z ∈ R+.

Thus g(z) > 0 for all z > 0, and has global minimum with g(z) = 0 if and only if z = 1.
Let bi =

βiF(S
∗,I∗i )

δiI
∗
i

and define a Lyapunov functional for E∗ of system (2.2),

LEE(t) = LS(t) + LI(t) + V+(t),

where 

LS(t) = S(t) − S
∗ −

∫S(t)
S∗

F(S∗, I∗j )
F(σ, I∗j )

dσ,

LI(t) =

n∑
i=1

biI
∗
ig

(
Ii(t)

I∗i

)
,

V+(t) =

n∑
i=1

∫h
0
βiKi(τi)F(S

∗, I∗i )g
(
Ii(t− τi)

I∗i

)
dτi.

We begin by differentiating the function dV+(t)
dt , which will be used later to obtain dLEE(t)

dt . Using integra-
tion by parts, we have

dV+(t)

dt

∣∣∣∣
(2.2)

= −

n∑
i=1

βi

∫h
0
Ki(τi)F(S

∗, I∗i )dg
(
Ii(t− τi)

I∗i

)

= −

n∑
i=1

βiKi(τi)F(S
∗, I∗i )g

(
Ii(t− τi)

I∗i

)∣∣∣∣h
τi=0

+

n∑
i=1

βi

∫h
0
F(S∗, I∗i )g

(
Ii(t− τi)

I∗i

)
dKi(τi)

=

n∑
i=1

βi

∫h
0
ki(τi)F(S

∗, I∗i )
[
g

(
Ii(t)

I∗i

)
− g

(
Ii(t− τi)

I∗i

)]
dτi.

Calculating the time derivative of LEE(t) along the solutions of (2.2) gives

dLEE(t)
dt

∣∣∣∣
(2.2)

= −

[
N(S∗) −N(S(t))

] [
1 −

F(S∗, I∗j )
F(S(t), I∗j )

]

−

n∑
i=1

βi

∫h
0
ki(τi)F(S(t), Ij(t− τj))dτj +N(S∗)

[
1 −

F(S∗, I∗j )
F(S(t), I∗j )

]

+
F(S∗, I∗j )
F(S(t), I∗j )

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj

+

n∑
i=1

bipi

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj −

n∑
i=1

bipiδiIi(t)

−

n∑
i=1

bipi
I∗i
Ii

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), Ij(t− τj))dτj +

n∑
i=1

bipiδiI
∗
i
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+

n∑
i=1

βi

∫h
0
ki(τi)F(S

∗, I∗i )
[
g

(
Ii(t)

I∗i

)
− g

(
Ii(t− τi)

I∗i

)]
dτi.

From (3.1),
∑n
i=1 bipi = 1 and bipiβjF(S∗, I∗i ) = bjpjβiF(S

∗, I∗i ), we have

dLEE(t)
dt

∣∣∣∣
(2.2)

= −

[
N(S∗) −N(S(t))

] [
1 −

F(S∗, I∗j )
F(S(t), I∗j )

]
+

n∑
j=1

βjF(S
∗, I∗i )

−
F(S∗, I∗j )
f(S(t), I∗j )

n∑
j=1

βjF(S
∗, I∗i )

−

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), I(t− τj))dτj

+
F(S∗, I∗j )
F(S(t), I∗j )

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), I(t− τj))dτj

+

n∑
j=1

bipi

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), I(t− τj))dτj −

n∑
i=1

βi
Ii
I∗i
F(S∗, I∗i )

−

n∑
j=1

bipi
Ii
I∗i

n∑
j=1

βj

∫h
0
kj(τj)F(S(t), I(t− τj))dτj +

n∑
i=1

βiF(S
∗, I∗i )

+

n∑
i=1

βi

∫h
0
ki(τi)F(S

∗, I∗i )
[
g

(
Ii(t)

I∗i

)
− g

(
Ii(t− τi)

I∗i

)]
dτi

= −

[
N(S∗) −N(S(t))

] [
1 −

F(S∗, I∗j )
F(S(t), I∗j )

]

+

n∑
j=1

bipi

n∑
j=1

βj

∫h
0
kj(τj)F(S

∗, I∗j )M(τj)dτj,

where

M(τj) = 2 −
F(S∗, I∗j )
F(S(t), I∗j )

+
F(S(t), Ij(t− τj))

F(S(t), I∗j )
−
I∗iF(S(t), Ij(t− τj))

IiF(S∗, I∗j )

−
Ij(t− τj)

I∗j
+ ln

Ij(t− τj)

I∗j
− ln

Ij(t)

I∗j

= − g

(
F(S∗, I∗j )
F(S(t), I∗j )

)
− g

(
I∗iF(S(t), Ij(t− τj))

IiF(S∗, I∗j )

)
− g

(
Ij(t− τj)

I∗j

)
+ g

(
F(S(t), Ij(t− τj))

F(S(t), I∗j )

)
+ ln

IiI
∗
j

I∗i Ij
.

Note that

n∑
i=1

bipi

n∑
j=1

βjF(S
∗, I∗j ) ln

IiI
∗
j

I∗i Ij
=

n∑
i=2

bipi

i−1∑
j=1

βjF(S
∗, I∗j ) ln

IiI
∗
j

I∗i Ij
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+

n−1∑
i=1

bipi

n∑
j=1+1

βjF(S
∗, I∗j ) ln

IiI
∗
j

I∗i Ij

=

n∑
i=2

bipi

i−1∑
j=1

βjF(S
∗, I∗j ) ln

IiI
∗
j

I∗i Ij

+

n∑
i=2

bipi

i−1∑
j=1

βjF(S
∗, I∗j ) ln

I∗i Ij
IiI
∗
j

= 0.

Similar to the arguments in [15] and due to the fact that function g(·) is monotone on each side of 1 and
is minimized at 1, assumption (A5) implies

g

(
F(S(t), Ij(t− τj))

F(S(t), I∗j )

)
6 g

(
Ij(t− τj)

I∗j

)
.

Since g(·) > 0, we have M(τj) 6 0. Then, under the assumption (A4), we can conclude that

dLEE(t)
dt

∣∣
(2.2) 6 0.

Lyapunov-LaSalle Theorem [5, Theorem 5.3.1] implies that solutions of system (2.2) tend to ℵ, the largest
invariant subset of

{
dLEE(t)

dt

∣∣
(2.2) = 0

}
. Thus dLEE(t)

dt

∣∣
(2.2) = 0 if and only if S = S∗ and

kj(τj)

(
I∗iF(S(t), Ij(t− τj))

IiF(S∗, I∗j )

)
,

for almost every τj ∈ [0,h]. That is kj(τj) = 0 or F(S∗, Ij(t− τj)) = F(S∗, I∗j )
Ii
I∗i

holds almost everywhere. It

follows from S = S∗ lies in ℵ that dS(t)
dt = 0 at each point in ℵ. That is,

0 = N(S∗) −

n∑
j=1

βj

∫h
0
kj(τj)F(S

∗, Ij(t− τj))dτj

= N(S∗) −
Ii
I∗i

n∑
j=1

βj

∫h
0
kj(τj)F(S

∗, I∗j )dτj,

which requires Ii to be constant, and in turn gives Ii = I∗i for all t. Thus, each element of ℵ satisfies
S(t) = S∗ and Ii = I∗i for all t. We are now in a position to conclude that lim

t→∞(S(t), Ii(t)) = (S∗, I∗i ) = E
∗.

This completes the proof of globally attractivity of the endemic equilibrium E∗ if <0 > 1.

Remark 4.3. Let N(S(t)) = λ− dS(t) and F(S(t), Ij(t)) = S(t)Ij(t). Then system (2.2) will reduce to the
model studied in [17]. The assumptions on N(S(t)) and F(S(t), Ij(t)) = S(t)Ij(t), (A1)-(A5), are satisfied
automatically. The disease-free equilibrium E0 and endemic equilibrium E∗ become E1

0 = (λd , 0, · · · , 0)

and E∗1 = (S∗1, I∗11 , · · · , I∗1n ), where S∗1 = 1∑n
j=1

βjpj
δj

, and I∗1i =
(λ−dS∗1)pi

δi
. <0 of system (2.2) becomes

<1
0 =
∑n
i=1

βipi
δi

λ
d .

Therefore, applying Theorems 4.1, and 4.2 to above reduced system, we immediately have the follow-
ing result.

Corollary 4.4 (See [17, Theorem 3.1]). Consider system (2.2) with the case of N(S(t)) = λ − dS(t) and
F(S(t), Ij(t)) = S(t)Ij(t).

(i) If <1
0 6 1, then E1

0 = (λd , 0, · · · , 0) is globally attracting.

(ii) If <1
0 > 1, then E∗1 = (S∗1, I∗11 , · · · , I∗1n ) is globally attracting whenever it exists.
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5. Summary and discussion

In this paper, under some suitable assumptions, the system (2.2) exhibits sharp threshold properties
of the disease-free equilibrium for <0 6 1, and the endemic equilibrium for <0 > 1. Our approach
(Lyapunov functional techniques) has similarities to that used in Huang et al. [8], Korobeinikov [9–
11], McCluskey [12–15], Wang and Liu [17]. Compared to [15, 17], our constructing method explicitly
demonstrates how to find the Lyapunov functionals for the DDEs system of interest.

For biological motivations, we not only extend the model (1.1) to one with multiple parallel infectious
stages and model (1.2) to one with general nonlinear incidence rate but also obtain the global properties
for (2.2) with distributed time delays governed by a more general class of nonlinear incidence rate.

The sharp threshold properties are obtained by assuming growth rate and nonlinear incidence rate
enjoy the nice properties, which is characterized by assumptions (A1)-(A5). Mathematically, assumption
(A1) ensures the existence of endemic equilibrium when <0 > 1. The global attractivity of the disease-
free equilibrium requires the technical assumptions (A2)-(A3). Results on the global properties of the
endemic equilibrium for <0 > 1 require additional assumptions on F, (A4)-(A5). The results obtained in
this paper is just global attractivity, but not global asymptotic stability. The reason for this lies in that
the local asymptotic stability of the equilibria of system (2.2) have not been proved. Lyapunov-LaSalle
Theorem [6, Theorem 5.3.1] only give the information that the omega limit set are contained in the largest
invariance set of

{dLDFE(t)
dt

∣∣
(2.2) = 0

}
or
{dLEE(t)

dt

∣∣
(2.2) = 0

}
. More detail information on the local behaviors

of equilibria of system (2.2) may need extra assumptions on the form of N(·) and F. These will be left as
our future consideration.
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