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Abstract
The purpose of this paper is to present a fixed point theory for multivalued H+-contractions from the following per-

spectives: existence/uniqueness of the fixed and strict fixed points, data dependence of the fixed point set, sequence of mul-
tivalued operators and fixed points, Ulam-Hyers stability of a multivalued fixed point equation, well-posedness of the fixed
point problem, limit shadowing property for a multivalued operator, set-to-set operatorial equations and fractal operator theory.
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1. Introduction

Let (X,d) be a metric space and P(X) be the set of all subsets of X. We denote

P(X) := {Y ∈ P(X) | Y 6= ∅},
Pcl(X) := {Y ∈ P(X) | Y is closed },
Pb,cl(X) := {Y ∈ P(X) | Y is bounded and closed },
Pcp(X) := {Y ∈ P(X) | Y is compact }.

By B(x, r) and respectively B̃(x, r) we will denote the open and respectively the closed ball centered at
x ∈ X with radius r > 0.

The following (generalized) functionals are used in the main sections of the paper.

1. The gap functional generated by d:

Dd : P(X)× P(X)→ R+ ∪ {∞}, Dd(A,B) = inf{d(a,b) | a ∈ A,b ∈ B}.

2. The diameter generalized functional:

δ : P(X)× P(X)→ R+ ∪ {∞}, δ(A,B) = sup{d(a,b)|a ∈ A,b ∈ B}.
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3. The excess generalized functional:

ρd : P(X)× P(X)→ R+ ∪ {∞}, ρd(A,B) = sup{Dd(a,B)|a ∈ A}.
4. The Hausdorff-Pompeiu generalized functional:

Hd : P(X)× P(X)→ R+ ∪ {∞}, Hd(A,B) = max{ρd(A,B), ρd(B,A)}.

5. The Pompeiu generalized functional:

H+
d : P(X)× P(X)→ R+ ∪ {∞}, H+

d (A,B) :=
1
2
{ρd(A,B) + ρd(B,A)}.

We will avoid the subscript d when we work with just one metric d on X.
Let (X,d) be a metric space. If T : X→ P(X) is a multivalued operator, then x ∈ X is called fixed point

for T if and only if x ∈ T(x). We denote by FT the fixed point set of T and by (SF)T the set of all strict
fixed points of T , i.e., elements x ∈ X such that T(x) = {x}.

Concerning the Pompeiu functional H+ defined above, we have several properties.

Lemma 1.1 ([13]). The following conclusions take place:

(a) H+ is a metric on Pb,cl(X);

(b) H+ is a generalized metric (in the sense that it can take also infinite values) on Pcl(X).

Using the Pompeiu type functional H+, the following notion was introduced in [13], see also [12].

Definition 1.2 ([13]). Let (X,d) be a metric space. A multivalued mapping T : X → Pb,cl(X) is called
H+-contraction with constant α, if

1. there exists a fixed real number α, 0 < α < 1 such that for every x,y ∈ X

H+(T(x), T(y)) 6 αd(x,y);

2. for every x ∈ X, y ∈ T(x) and for every ε > 0 there exists z in T(y) such that

d(y, z) 6 H+(T(x), T(y)) + ε.

Remark 1.3. Let (X,d) be a metric space. A multivalued mapping T : X→ Pcl(X) is called (H+,α)-Lipschitz
if α > 0 and

H+(T(x), T(y)) 6 αd(x,y), ∀x,y ∈ X.

If 0 < α < 1, then T is called a multivalued (H+,α)-contraction.
The purpose of this paper is to study different properties of the Pompeiu functional H+ and of the

multivalued operators satisfying a Lipschitz condition with respect to H+. The connections with some
continuity notions for multivalued operators are also given. The second purpose of this paper is to
extend the results given in [13], by presenting several properties of the fixed point set of multivalued
H+-contractions. Several other fixed point results and applications of it will be also given.

2. Properties of the Pompeiu type functional

Concerning the functional H+ defined above, we have some nice properties.

Lemma 2.1 ([13]). We have the following relations:

1
2
H(A,B) 6 H+(A,B) 6 H(A,B),

(i.e., H and H+ are strong equivalent metrics).

Proposition 2.2 ([13]). Let (X, || · ||) be a normed linear space. For any λ (real or complex), A,B ∈ Pb,cl(X)

1. H+(λA, λB) = |λ|H+(A,B);
2. H+(A+ a,B+ a) = H+(A,B).



I. Coroian, J. Nonlinear Sci. Appl., 10 (2017), 6084–6101 6086

Theorem 2.3 ([13]). If a,b ∈ X and A,B ∈ Pb,cl(X), then the following relations hold:

1. d(a,b) = H+({a}, {b});
2. A ⊂ S(B, r1),B ⊂ S(A, r2)⇒ H+(A,B) 6 r where r = r1+r2

2 .

Theorem 2.4 ([13]). If the metric space (X,d) is complete, then (Pcp(X),H+), (Pb,cl(X),H+) and (Pcl(X),H+)
are complete too.

The following concept was introduced by Nadler jr. as follows.

Definition 2.5. Let (X,d) be a metric space. A mapping T : X → Pcl(X) is called a multivalued α-
contraction if α ∈ (0, 1) and

H(T(x), T(y)) 6 αd(x,y), ∀x,y ∈ X.

Notice that any multivalued α-contraction is an (H+,α)-contraction, but the reverse implication does
not hold.

We will now introduce a similar concept. For this purpose, we recall now the concept of (strong)
comparison function.

Definition 2.6. A mapping ϕ : R+ → R+ is said to be a comparison function if it is increasing and
ϕk(t)→ 0, as k→ +∞.

As a consequence, we also have ϕ(t) < t, for each t > 0, ϕ(0) = 0 and ϕ is continuous in 0.

Definition 2.7. A mapping ϕ : R+ → R+ is said to be a strong comparison function if it is a comparison

function and
∞∑
k=0

ϕk(t) <∞, for any t > 0.

With respect to the Pompeiu type functional H+, we define the following concept.

Definition 2.8. Let (X,d) be a metric space. Then, the multivalued operator T : X → Pb,cl(X) is called a
ϕ-contraction w.r.t. H+, if

1. ϕ : R+ → R+ is a strong comparison function;
2. for all x,y ∈ X, we have that

H+(T(x), T(y)) 6 ϕ(d(x,y)).

In particular, if ϕ : R+ → R+ is defined by ϕ(t) := kt (for some k ∈ [0, 1[), then ϕ is a strong
comparison function and the multivalued operator T is an (H+,k)-contraction.

We recall now some useful concepts in the theory of multivalued operators.

Definition 2.9 (see, for example, [1, 14]). Let (X,d) be a metric space and T : X → Pb,cl(X). Then, T is
called upper semi-continuous (briefly u.s.c.) in x ∈ X, if for any open subset U of X with F(x) ⊂ U, there
exists η > 0 such that T(B(x;η)) ⊂ U. T is u.s.c. on X if it is u.s.c. in each x ∈ X.

Definition 2.10 ([1, 14]). Let (X,d) be a metric space and T : X → Pb,cl(X). Then T is called lower semi-
continuous (briefly l.s.c.) in x ∈ X, if for all (xn)n∈N∗ ⊂ X such that lim

n→∞ xn = x and for all y ∈ T(x),
there exists a sequence (yn)n∈N∗ ⊂ X such that yn ∈ T(xn), for all n ∈N∗ and lim

n→∞yn = y. T is l.s.c. on
X if it is l.s.c. in each x ∈ X.

Definition 2.11 ([1, 14]). Let (X,d) be a metric space. T : X→ Pb,cl(x) is called H-upper semi-continuous
in x0 ∈ X (H-u.s.c.) respectively H-lower semi-continuous (H-l.s.c.), if for each sequence (xn)n∈N ⊂ X

such that
lim
n→∞ xn = x0,

we have
lim
n→∞ ρ(T(xn), T(x0)) = 0, respectively lim

n→∞ ρ(T(x0), T(xn)) = 0.



I. Coroian, J. Nonlinear Sci. Appl., 10 (2017), 6084–6101 6087

It is well-known that if T is u.s.c. in x ∈ X, then T is H-u.s.c. in x ∈ X, while if T is H-l.s.c. in x ∈ X
implies that T is l.s.c. in x ∈ X.

Definition 2.12 ([1, 14]). Let (X,d) be a metric space and T : X → P(X). Then T is said to be with closed
graph, if for each x ∈ X and for all (xn)n∈N∗ ⊂ X such that

lim
n→∞ xn = x,

and for all (yn)n∈N∗ ⊂ X with yn ∈ T(xn), for all n ∈N∗ and

lim
n→∞yn = y,

we have y ∈ T(x).

Some properties of a multivalued (H+,α)-Lipschitz operators are given now.

Theorem 2.13. Let (X,d) be a metric space and T : X→ Pb,cl(X) be (H+,α)-Lipschitz. Then

1. T has closed graph in X×X;
2. T is H− l.s.c. on X;
3. T is H− u.s.c. on X;
4. If, additionally T has compact values, then T is l.s.c.

Proof.

(1) Let (xn,yn) ⊂ X× X such that (xn,yn)
d→ (x,y), when n → ∞ and yn ∈ T(xn), for all n ∈ N. It

follows that
D(y, T(x)) 6 d(y,yn) +D(yn, T(x))

6 d(y,yn) +H(T(xn), T(x))
6 d(y,yn) + 2H+(T(xn), T(x))
6 d(y,yn) + 2kd(xn, x), n ∈N.

Let us consider n→∞ and we obtain

D(y, T(x)) 6 0⇒ y ∈ T(x) = T(x).

(2) Let x ∈ X such that xn → x. We have

ρ(T(x), T(xn)) 6 H(T(x), T(xn))
6 2 ·H+(T(x), T(xn))
6 2k · d(x, xn)→ 0.

In conclusion, T is H-l.s.c. on X.

(3) Using the relation
ρ(T(xn), T(x)) 6 H(T(xn), T(x))

6 2 ·H+(T(xn), T(x))
6 2k · d(x, xn)→ 0,

we obtain that T is H-u.s.c. on X.

(4) The conclusion follows by the fact that any H-l.s.c. multivalued operator with compact values is l.s.c.
(see [11]).

Lemma 2.14. Let (X,d) be a metric space and T : X→ Pcp(X) such that

H+(T(x), T(y)) < d(x,y), ∀x,y ∈ X, x 6= y.

Then T is u.s.c. on X.
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Proof. Let Z ⊂ Y be a closed set. We will prove that T−(Z) is closed in X. Let x ∈ T−(Z) \ T−(Z) and
(xn)n∈N ⊂ X such that xn → x, when n → ∞, xn 6= x, for all n ∈ N and xn ∈ T−(Z), for all n ∈ N. It
follows T(xn)∩H 6= ∅, for all n ∈N. Let (yn)n∈N ∈ T(xn)∩Z, n ∈N. Then

D(yn, T(x)) 6 Hd(T(xn), T(x)) 6 2H+(T(xn), T(x)) < 2d(xn, x).

If n→∞ we get that

lim
n→∞D(yn, T(x)) = 0.

But
D(yn, T(x)) = inf

y∈T
d(yn,y) = d(yn, x

′
n), (using the compactness of the set T(x)).

When n→∞ we have d(yn, x
′
n)→ 0. Because (x

′
n)n∈N ⊂ T(x), we obtain that there exists a subsequence

(x
′
nk

)k∈N which converges to an element x ∈ T(x). Then

d(ynk , x) 6 d(ynk , x
′
nk

) + d(x
′
nk

, x) when k→∞.

Hence, y
′
nk
→ x ∈ T(x), n→∞.

Because (y
′
nk

)k∈N ⊂ Z and Z is closed, we obtain that x ∈ Z. So T(x)∩Z 6= ∅, which implies x ∈ T−(Z),
a contradiction. In conclusion, T−(Z) = T−(Z) and hence T−(Z) is closed in X.

3. MWP operators and multivalued α-contractions w.r.t. H+

The following concepts appeared in [15].

Definition 3.1. Let (X,d) be a metric space. Then, T : X → P(X) is called a multivalued weakly Picard
operator (briefly MWP operator) if for each x ∈ X and each y ∈ T(x) there exists a sequence (xn)n∈N in X
such that:

1. x0 = x, x1 = y;
2. xn+1 ∈ T(xn), for all n ∈N;
3. the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Definition 3.2. Let (X,d) be a metric space and T : X → P(X) be an MWP operator. Then we define the
multivalued operator T∞ : Graph(T) → P(FT ) by the formula T∞(x,y) = {z ∈ FT | there exists a sequence
of successive approximations of T starting from (x,y) that converges to z}.
Definition 3.3. Let (X,d) be a metric space and T : X → P(X) an MWP operator. Then T is said to be a
c-multivalued weakly Picard operator (briefly c-MWP operator) if and only if there exists a selection t∞
of T∞ such that

d(x, t∞(x,y)) 6 cd(x,y), ∀(x,y) ∈ Graph(T).

We recall now the notion of multivalued Picard operator.

Definition 3.4. Let (X,d) be a complete metric space and T : X → P(X). By definition, T is called a
multivalued Picard operator (briefly MP operator) if and only if

1. (SF)T = FT = {x∗};
2. Tn(x) H→ {x∗} as n→∞, for each x ∈ X.

Recall that, by definition, for (An)n∈N ∈ Pcl(X), we will write An
H→ A∗ as n → ∞ if and only if

H(An,A∗)→ 0 as n→∞. Notice also that

An
H→ A∗ ∈ Pcl(X) as n→∞ if and only if An

H+

→ A∗ ∈ Pcl(X) as n→∞.
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The purpose of this section is to study some properties of the fixed point set of H+-contraction with
constant α from the MWP operator theory point of view.

We will start by presenting some auxiliary results.

Lemma 3.5 (see, for example, [14]). Let (X,d) be a metric space and A,B ∈ Pcl(X). Suppose that there exists
η > 0 such that for each a ∈ A there exists b ∈ B such that d(a,b) 6 η and for each b ∈ B there exists a ∈ A
such that d(a,b) 6 η. Then H(A,B) 6 η.

Lemma 3.6 ([14]). Let (X,d) be a metric space, A,B ∈ P(X) and q > 1. Then, for every a ∈ A there exists b ∈ B
such that d(a,b) 6 qH(A,B).

Lemma 3.7 ([11]). Let (X,d) be a metric space and A,B ∈ Pcp(X). Then for every a ∈ A there exists b ∈ B such
that d(a,b) 6 H(A,B).

Lemma 3.8 ([16]). Let (X,d) be a metric space. If A,B ∈ P(X) and ε > 0 then for every a ∈ A there exists b ∈ B
such that

d(a,b) 6 H(A,B) + ε.

Lemma 3.9. Let (X,d) be a metric space, A,B ∈ Pcl(X) and ε > 0. If H+(A,B) < ε, then

1. for all a ∈ A there exists b ∈ B such that d(a,b) < ε; or
2. for all b ∈ B there exists a ∈ A such that d(a,b) < ε.

Proof. Suppose, by reductio ad absurdum, that

(i) there exists a0 ∈ A, for all b ∈ B such that d(a0,b) > ε;

(ii) there exists b0 ∈ B, for all a ∈ A such that d(a,b0) > ε.

Then, taking infb∈B in (i) and infa∈A in (ii), we obtain D(a0,B) > ε. Since ρ(A,B) > D(a0,B), we get

ρ(A,B) > ε.

On the other hand, we also have D(b0,A) > ε. Since ρ(B,A) > D(b0,A), we get

ρ(B,A) > ε.

Adding the above relations and then dividing by 2, we obtain H+(A,B) > ε, which is a contradiction
with H+(A,B) < ε.

Lemma 3.10 (Cauchy, see [17]). Let (an)n∈N and (bn)n∈N be two sequences of non-negative real numbers, such
that

+∞∑
k=0

ak < +∞, and lim
n→+∞bn = 0.

Then,

lim
n→∞

n∑
k=0

an−kbk = 0.

Theorem 3.11. Let (X,d) be a complete metric space and T : X → Pcl(X) be a multivalued H+-contraction with
constant α. Then we have

(i) FT 6= ∅.

(ii) T is a
1

1 −α
-MWP operator.
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(iii) Let S : X→ Pcl(X) be an H+-contraction with constant α and η > 0 such that H+(S(x), T(x)) 6 η, for each

x ∈ X. Then H+(FS, FT ) 6
2 · η

1 −α
.

(iv) Let Tn : X → Pcl(X),n ∈ N be a sequence of multivalued H+-contraction with constant α such that

Tn(x)
H+

→ T(x) as n→∞, uniformly with respect to x ∈ X. Then, FTn
H+

→ FT as n→∞.

If, additionally T(x) ∈ Pcp(X) for each x ∈ X, then we also have

(v) (Ulam-Hyers stability of the inclusion x ∈ T(x)) Let ε > 0 and x ∈ X be such that D(x, T(x)) 6 ε. Then

there exists x∗ ∈ FT such that d(x, x∗) 6
ε

1 −α
.

(vi) The fractal operator T̂ : Pcp(X)→ Pcp(X), T̂(Y) :=
⋃
x∈Y

T(x) is a 2α-contraction.

(vii) If, additionally, α ∈ [0, 1
2 [, then FT̂ = {A∗T } and Tn(x) H

+

→ A∗T as n → ∞, for each x ∈ X. Moreover,
FT ⊂ A∗T , FT is compact and

A∗T =
⋃
n∈N∗

Tn(x) , ∀x ∈ FT .

Proof.

(i) Let ε > 0 be given. Let x0 ∈ X be arbitrary. Fix an element x1 ∈ T(x0). From the definition of
H+-contraction with constant α it follows that we can choose x2 ∈ T(x1) such that

d(x1, x2) 6 H
+(T(x0), T(x1)) + ε.

In general, if xn is chosen, then we choose xn+1 ∈ T(xn) such that

d(xn, xn+1) 6 H
+(T(xn−1), T(xn)) + ε.

Suppose H+(T(xn−1), T(xn)) > 0 for each n ∈N∗ (if not, i.e., if there is k ∈N∗ such that

H+(T(xk−1), T(xk)) = 0,

then xk ∈ T(xk−1) = T(xk) is a fixed point for T and we are done). Let 1 < q < 1
α and set

εn := (q− 1)H+(T(xn−1), T(xn)).

Then, from the above relation it follows that

d(xn, xn+1) 6 qH
+(T(xn−1), T(xn)).

Thus, if we set β := qα < 1, we have

d(xn, xn+1) 6 qH
+(T(xn−1), T(xn)) 6 qαd(xn−1, xn) = βd(xn−1, xn),

for all n ∈N. Repeating the same argument n-times we get a sequence of successive approximations for
T starting from (x0, x1) ∈ Graph(T) such that, for each n ∈N, we have

d(xn, xn+1) 6 β
nd(x0, x1).

Then,

d(xn, xn+p) 6 βn
1 −βp

1 −β
d(x0, x1), ∀n ∈N∗, p ∈N∗. (3.1)

This implies that the sequence (xn)n∈N is Cauchy and hence convergent in (X,d) to some x∗ ∈ X. Notice
that, by the contraction condition, we immediately get that Graph(T) is closed in X×X. Hence x∗ ∈ FT .
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(ii) By (3.1), letting p→∞, we get that

d(xn, x∗) 6 βn
1

1 −β
d(x0, x1), ∀n ∈N∗.

For n = 1 we get

d(x1, x∗) 6
β

1 −β
d(x0, x1).

Then

d(x0, x∗) 6 d(x0, x1) + d(x1, x∗) 6
1

1 −β
d(x0, x1) =

1
1 − qα

d(x0, x1).

Letting q↘ 1 we get that for each (x0, x1) ∈ Graph(T), there exists x∗ := t∞(x0, x1) ∈ FT such that

d(x0, t∞(x0, x1)) 6
1

1 −α
d(x0, x1),

proving that T is a
1

1 −α
-multivalued weakly Picard operator.

(iii) Let x0 ∈ S(x0) and q > 1. Then, by Lemma 3.6, there exists x1 ∈ T(x0) such that

d(x0, x1) 6 qH(S(x0), T(x0)) 6 2qH+(S(x0), T(x0)) 6 2qη.

Then, by (ii) and the above relation, we have proved that for each x0 ∈ FS there exists t∞(x0, x1) ∈ FT such
that

d(x0, t∞(x0, x1)) 6
1

1 −α
d(x0, x1) 6

1
1 −α

2qη.

Now Lemma 3.5 tells us that

ρ(FS, FT ) 6
2qη

1 −α
. (3.2)

By a similar procedure we can prove that for each y0 ∈ T(y0) there exists y1 ∈ S(y0) such that

d(y0,y1) 6 qH(T(y0),S(y0)) 6 2qH+(T(y0),S(y0)) 6 2qη.

Thus, we have proved that for each y0 ∈ FT there exists s∞(y0,y1) ∈ FS such that

d(y0, s∞(y0,y1)) 6
1

1 −α
2qη.

Again, Lemma 3.5 gives that

ρ(FS, FT ) 6
2qη

1 −α
. (3.3)

Adding (3.2) and (3.3), and then dividing by 2, we get

H+(FS, FT ) 6
2qη

1 −α
, ∀q > 1.

Letting q↘ 1, we get the conclusion.

(iv) Let ε > 0 be given and choose Nε ∈N such that for n > Nε we have

sup
x∈X

H+(Tn(x), T(x)) < ε, n > Nε.

Then, from (iii), we have

H+(FTn , FT ) <
2ε

1 −α
, for all n > Nε.

Thus, FTn
H+

→ FT as n→∞.
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(v) Let ε > 0 and x ∈ X be such that D(x, T(x)) 6 ε. Then, since T(x) is compact, there exists y ∈ T(x)
such that d(x,y) 6 ε. By the proof of (i), we have that

d(x, t∞(x,y)) 6
1

1 −α
d(x,y).

Since x∗ := t∞(x,y) ∈ FT , we get the conclusion d(x, x∗) 6
ε

1 −α
.

(vi) By the contraction condition with respect to H+, one obtains (see Theorem 2.13) that the operator T is
H-u.s.c. Since T(x) is compact, for each x ∈ X, we obtain that T is upper semicontinuous. Thus T is u.s.c.

We will prove now that
H+(T(A), T(B)) 6 2αH+(A,B).

For this purpose, let u ∈ T(A). Then there exists a ∈ A such that u ∈ T(a). From Lemma 3.7 there exists
b ∈ T(B) such that

d(a,b) 6 Hd(A,B).

Since
D(u, T(B)) 6 D(u, T(b)) 6 ρ(T(a), T(b)),

taking supu∈T(A), we get
ρ(T(A), T(B)) 6 ρ(T(a), T(b)).

Interchanging the roles of A and B, we get

ρ(T(B), T(A)) 6 ρ(T(b), T(a)).

Adding the above relations and then dividing by 2, we get

H+(T(A), T(B)) 6 H+(T(a), T(b)).

Thus,
H(T(A), T(B)) 6 2H+(T(A), T(B)) 6 2αd(a,b) 6 2αH(A,B), ∀A,B ∈ Pcp(X).

(vii) By (vi) it follows that T̂ is a self-contraction (with constant 2α < 1) on the complete metric space
(Pcp(X),H). By the contraction principle, we obtain that

FT̂ = {A∗T } and T̂n(A) H→ A∗T , as n→∞, for each A ∈ Pcp(X).

As a consequence of Lemma 2.1, we also get that T̂n(A) H
+

→ A∗T as n → ∞, for each A ∈ Pcp(X). In

particular, if A := {x}, we get that Tn(x) = T̂n(x)
H+

→ A∗T as n → +∞, for each x ∈ X. Let x ∈ FT be
arbitrary. Then x ∈ T(x) ⊂ T 2(x) ⊂ · · · ⊂ Tn(x) ⊂ · · · . Hence x ∈ Tn(x), for each n ∈ N∗. Moreover,

lim
n→+∞ Tn(x) =

⋃
n∈N∗

Tn(x). By (vi), we immediately get that A∗T =
⋃
n∈N∗

Tn(x). Hence

FT ⊂
⋃
n∈N∗

Tn(x) = A∗T .

Since FT is closed subset of the compact A∗T , it follows that FT is compact, too.

Some new conclusions with respect to the fixed point and the strict fixed point sets are given in our
next result.

Theorem 3.12. Let (X,d) be a complete metric space and T : X → Pcl(X) be a multivalued (H+,α)-contraction
with (SF)T 6= ∅. Then, the following assertions hold:
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(i) (SF)T = {x∗}.

If additionally, α ∈ [0, 1
2 [, then

(ii) FT = (SF)T = (SFTn) = {x∗}, for n ∈N∗.

(iii) Tn(x) H
+

→ {x∗} as n→∞, for each x ∈ X.

(iv) Let S : X→ Pcl(X) be a multivalued operator such that FS 6= ∅ and suppose there exists η > 0 such that

H+(S(x), T(x)) 6 η, ∀x ∈ X.

Then

H+(FS, FT ) 6
2η

1 − 2α
.

(v) (Well-posedness of the fixed point problem w.r.t. to H+) If (xn)n∈N is a sequence in X such that

H+(xn, T(xn))→ 0 as n→∞,

then xn
d→ x∗ as n→∞.

(vi) (Limit shadowing property of the multivalued operator) If (yn)n∈N is a sequence in X such that

D(yn+1, T(yn))→ 0 as n→∞,

then there exists a sequence (xn)n∈N ⊂ X of successive approximations for T , such that d(xn,yn) → 0 as
n→∞.

Proof.

(i) Let x∗ ∈ (SF)T . Notice first that (SF)T = {x∗}. Indeed, if z ∈ (SF)T with z 6= x∗, then 0 < d(x∗, z) =
H+(T(x∗), T(z)) 6 αd(x∗, z), which is a contradiction. Thus (SF)T = {x∗}.

(ii) Suppose that y ∈ FT . Then,

d(y, x∗) = D(y, T(x∗))
6 ρ(T(y), T(x∗))
6 H(T(y), T(x∗))
6 2H+(T(y), T(x∗))
6 2αd(y, x∗).

Hence, y = x∗ and FT ⊂ (SF)T . Since (SF)T ⊂ FT , we get that (SF)T = FT .
Notice now that x∗ ∈ (SF)Tn , for each n ∈N∗. Consider y ∈ (SF)Tn , for arbitrary n ∈N∗. Then

d(x∗,y) = H(Tn(x∗), Tn(y))

6 2αH(Tn−1(x∗), Tn−1(y))

6 (2α)2H(Tn−2(x∗), Tn−2(y))

...
6 (2α)nd(x∗,y).

Thus, y = x∗ and hence (SF)nT = {x∗}.
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(iii) Let x ∈ X be arbitrarily chosen. Then we have

H+(Tn(x), x∗) = H+(Tn(x), Tn(x∗))
6 H(Tn(x), Tn(x∗))

6 (2α)H(Tn−1(x), Tn−1(x∗))

...
6 (2α)nd(x, x∗)→ 0 as n→∞.

(iv) Let y ∈ FS. Then
d(y, x∗) 6 H(S(y), x∗)

6 2H+(S(y), x∗)
6 2(H+(S(y), T(y)) +H+(T(y), x∗))
6 2(η+αd(y, x∗)).

Thus, d(y, x∗) 6
2η

1 − 2α
. The conclusion follows by the relations

H+(FS, FT ) 6 sup
y∈FS

d(y, x∗) 6
2η

1 − 2α
.

(v) Let (xn)n∈N be a sequence in X such that H+(xn, T(xn))→ 0 as n→∞. Then,

d(xn, x∗) 6 D(xn, T(xn)) +Hd(T(xn), T(x∗))
6 Hd(xn, T(xn)) + 2H+(T(xn), T(x∗))
6 2H+(xn, T(xn)) + 2kd(xn, x∗).

Then

d(xn, x∗) 6
2

1 − 2k
H+(xn, T(xn))→ 0 as n→∞.

(vi) Let (yn)n∈N be a sequence in X such that

D(yn+1, T(yn))→ 0 as n→∞.

Then, there exists un ∈ T(yn),n ∈N such that

d(yn+1,un)→ 0 as n→∞.

We shall prove that d(yn, x∗)→ 0 as n→∞.
We successively have

d(x∗,yn+1) 6 H(x
∗, T(yn)) +D(yn+1, T(yn))

6 2H+(x∗, T(yn)) +D(yn+1, T(yn))
6 2αd(x∗,yn) +D(yn+1, T(yn))
6 2α[2αd(x∗,yn−1) +D(yn, T(yn−1))] +D(yn+1, T(yn))

...

6 (2α)n+1d(x∗,y0) + (2α)nD(y, T(y0)) + · · ·+D(yn+1, T(yn)).

By Lemma 3.10, the right hand side tends to 0 as n→∞. Thus, d(x∗,yn+1)→ 0 as n→∞.
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On the other hand, by the fact that T is an MWP operator, we know that there exists a sequence
(xn)n∈N of successive approximations for T starting from arbitrary (x0, x1) ∈ Graph(T) which converges
to a fixed point x∗ ∈ X of the operator T . Since the fixed point is unique, we get that d(xn, x∗) → 0 as
n→∞. Hence, for such a sequence (xn)n ∈N, we have

d(yn, xn) 6 d(yn, x∗) + d(x∗, xn)→ 0, as n→∞.

Remark 3.13. Similar results can be given for the case of multivalued ϕ-contraction w.r.t. H+. The results
of this type can be viewed as generalizations of some theorems given in [7].

We now give an application of the above results to the continuous dependence of the solution set for a
Cauchy problem associated to a differential inclusion, with respect to the initial condition. The existence
of a solution to the initial value problem {

ẋ(t) ∈ T(t, x(t)),
x(0) = b, (3.4)

was proved by Filippov [3] and Castaing [2] under certain conditions on T .
In [10], Markin proved a stability theorem on the set of solutions to (3.4) using the L2 norm, while Lim

[9] proved a stability result in terms of the Hausdorff-Pompeiu functional. We will prove now a similar
theorem using the sup norm and the Pompeiu functional generated by it.

We recall first the concept of solution.

Definition 3.14. Let D = [0,a]×Rn and T : D → P(Rn) be a continuous operator. Then, a mapping
x : [0,a] → Rn is said to be a solution of the differential inclusion (3.4), if x is an absolutely continuous
mapping and x ′(t) ∈ T(t, x(t)), a.e. on [0,a].

Let B be an origin-centered closed ball in Rn and Pcl,cv(B) endowed with the H+ metric generated by
the Euclidean norm || · || of Rn. Let C[0,a] be the set of the continuous maps of [0,a] into Rn with the sup
norm || · ||C.

Assume that T is a continuous map of [0,a]×B into Pcl,cv(B) satisfying, for some k > 0, the condition

H+(T(t,u), T(t, v)) 6 k||u− v||C, ∀t ∈ [0,a], u, v ∈ B.

For b ∈ B, we will denote S(b) the set of solutions of (3.4) on [0,a]. S(b) is nonempty and compact, by [3]
and [2].

Theorem 3.15. If the following conditions hold:

1. T : [0,a]×B→ Pcl,cv(B) is continuous;
2. there exists k > 0 such that

H+(T(t,u), T(t, v)) 6 k||u− v||C, ∀t ∈ [0,a], ∀u, v ∈ B ⊆ Rn;

3. 2ka < 1,

then S(b) is continuous from B into the family of nonempty compact subsets of C[0,a] equipped with the H+ metric.

Proof. Suppose bn → b0. For x ∈ C[0,a], define

F(b, x) = {y ∈ [0,a] : y(t) = b+
∫t

0
z(s)ds, z(s) ∈ T(s, x(s))}.

Let Fn(x) = F(bn, x), n = 0, 1, 2, · · · . Since F0(x) = bn − b0 + Fn(x) it is obvious that Fn(x) converges
uniformly to F0(x). Fn(x) is compact convex for each x and n. Given any pair x1, x2 ∈ C[0,a] and
y1 ∈ F(b, x1), let

y1(t) = b+

∫t
0
r1(s)ds, r1(s) ∈ T(s, x1(s)).
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Define r2(s) to be the point in T(s, x2(s)) nearest to r1(s), i.e., r2 ∈ T(s, x2(s)) and

||r1(s) − r2(s)|| = min{||r1(s) − z|| |z ∈ T(s, x2(s))}.

It follows from the measurability of r1(s) and the continuity of T(s, x2(s)) and the nearest point projection
that r2(s) is measurable.

Setting

y2(t) = b+

∫t
0
r2(s)ds, r2(s) ∈ T(s, x2(s)),

we have
||y2 − y1|| 6

∫a
0
||r1(s) − r2(s)||ds

=

∫a
0

min{||r1(s) − z||, z ∈ T(s, x2(s))}

=

∫a
0
D||·||

(
r1(s), T(s, x2(s))

)
ds

6
∫a

0
Hd

(
T(s, x1(s)), T(s, x2(s))

)
ds

6
∫a

0
2H+

(
T(s, x1(s)), T(s, x2(s))

)
ds 6 2k

∫a
0
||x1(s) − x2(s)||ds

6 2ka||x1 − x2||C.

Thus Fn are λ-contraction with λ = 2ka < 1.
By (iv) of Theorem 3.11, F(Tn)

H+

→ F(T0) i.e., S(bn)
H+

→ S(b0).

More generally, we have the following result.

Theorem 3.16. For each n = 0, 1, 2, · · · , let Tn be a continuous map of [0,a]× B into C(B) satisfying, for some
k > 0, the condition

H+(Tn(t,u), Tn(t, v)) 6 k||u− v||C, ∀t ∈ [0,a], ∀u, v ∈ B.

Assume that Tn → T0 uniformly on [0,a]×B. For each b ∈ B and n = 0, 1, 2, · · · . Let Sn(b) be the set of solutions
of {

ẋ(t) ∈ Tn(t, x(t)),
x(0) = b.

If 2ka < 1 and bn → b0 in B, then Sn(bn)→ S0(b0).

Proof. Let bn → b0. For xn ∈ C[0,a], define

F(b, xn) = {yn ∈ [0,a] : yn(t) = b+
∫t

0
zn(s)ds, zn(s) ∈ Tn(s, x(s))}.

Let Fn(xn) = F(bn, xn), n = 0, 1, 2, · · · . Since F0(x) = bn − b0 + Fn(x) it is obvious that Fn(x) converges
uniformly to F0(x). Fn(x) is compact convex for each xn and n.

Given any pair x(1)
n , x(2)

n ∈ C[0,a] and y(1)
n ∈ F(b, x(1)

n ), let

y
(1)
n (t) = b+

∫t
0
r
(1)
n (s), r(1)

n (s) ∈ Tn(s, x(1)
n (s))ds.

Define r(2)
n (s) to be the point in Tn(s, x

(2)
n (s)) nearest to r(1)

n (s), i.e., r(2)
n ∈ Tn(s, x(2)

n (s)) and

||r
(1)
n (s) − r

(2)
n (s)|| = min{||r(1)

n (s) − zn|| |zn ∈ Tn(s, x(2)
n (s))}.

It follows from the measurability of r(1)
n (s) and the continuity of Tn(s, x2

n(s)) and the nearest point pro-
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jection that r(2)
n (s) is measurable.

Setting

y
(2)
n (t) = b+

∫t
0
r
(2)
n (s)ds, r

(2)
n (s) ∈ Tn(s, x(2)

n (s)),

we have
||y

(2)
n − y

(1)
n || 6 2ka||x(1)

n − x
(2)
n ||C.

Thus Fn are λ-contraction with λ = 2ka < 1.
By (iv) of Theorem 3.11, we have F(Tn)

H+

→ F(T0), i.e., Sn(bn)
H+

→ Sn(b0).

Next, an application to Ulam-Hyers stability of the inclusion x ∈ T(x) ((v) of Theorem 3.11) is given.
The notion of Ulam-Hyers stability for a differential inclusion is defined as follows.

Definition 3.17. Let
x ′ ∈ T(t, x(t)), t ∈ [0,a], (3.5)

and T : [0,a]×Rn → Pcl,cv(R
n) be a continuous operator. We say that (3.5) is Ulam-Hyers stable if for

any ε > 0, any y ∈ C[0,a] and any ε-solution of (3.5) (which means that

D
(
y(t),y(0) +

∫t
0
T(s,y(s))ds

)
6 ε, t ∈ [0,a]),

there exists a solution x∗ of (3.5) and c > 0 such that ||x∗ − y|| 6 c · ε.

Definition 3.18. Let F : [0,a] → Pcl(R
n) be a measurable multivalued operator. If L1([0,a], Rn) denotes

the set of all measurable and integrable mappings from [0,a] to Rn, then SF will denote the set of all
integrable selections of F, i.e.,

SF := {f ∈ L1([0,a], Rn)|f(t) ∈ F(t), a.e. t ∈ [0,a]}.

Remark 3.19. In particular, if x : [0,a] → Rn and T : [0,a]×Rn → Pcl(R
n), then the set of all integrable

selections of T will be denoted by

ST(·,x(·)) := {f ∈ L1([0,a], Rn) | f(t) ∈ T(t, x(t)) a.e. t ∈ [0,a]}.

Theorem 3.20. Let us consider the inclusion (3.5). We assume:

(a) T : [0,a]×Rn → Pcl,cv(R
n) is a continuous, measurable and integrably bounded multivalued operator.

(b) There exists L > 0 such that

H+(T(t,u1), T(t,u2)) 6 L||u1 − u2||, ∀(t,u1), (t,u2) ∈ [0,a]×Rn.

Then the differential inclusion (3.5) with initial condition x(0) = x0 has at least one solution. Moreover the
differential inclusion (3.5) is Ulam-Hyers stable.

Proof. Let us define U : C[0,a]→ P(C[0,a]), u→ Ux and Ux(t) := b+
∫t

0 T(s, x(s))ds, t ∈ [0,a]. We notice
that, since T is u.s.c., (3.5) is equivalent with the fixed point problem

x ∈ Ux. (3.6)

We will show that the fixed point problem (3.6) is Ulam-Hyers stable.
Let y, z ∈ C[a,b] and u1 ∈ Ux. Then u1 ∈ C[0,a] and

u1(t) ∈ x(0) +
∫t

0
T(s, x(s))ds a.e. on [0,a].
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It follows that there is a mapping ky ∈ ST(·,y(·)) such that

u1(t) = x(0) +
∫t

0
kx(s)ds a.e. on [0,a].

Since
H+(T(t, x(t)), T(t,y(t))) 6 L||x(t) − y(t)||,

one obtains that there exists w ∈ T(t,y(t)) such that

||kx(t) −w|| 6 H(T(t, x(t)), T(t,y(t))) 6 2H+(T(t, x(t)), T(t,y(t))) 6 2L||x(t) − y(t)||.

Thus the multivalued operator G defined by G(t) = Ty(t)∪K(t) (where Ty(t) = T(t,y(t)) and

K(t) = {w | ||kx(t) −w|| 6 2L||x(t) − y(t)||},

has nonempty values and is measurable.
Let kz be a measurable selection for G (which exists by Kuratowski and Ryll Nardzewski’s selection

theorem). Then ky(t) ∈ T(t,y(t)) and

||kx(t) − ky(t)|| 6 2L||x(t) − y(t)||, a.e. on [0,a].

Define u2 = x(0) +
∫t

0 ky(s)ds. It follows that u2 ∈ Uy and

||u1(t) − u2(t)|| 6
∫t

0
||kx(s) − ky(s)||ds

6 2L
∫t

0
||x(s) − y(s)||ds

= 2L
∫t

0
||x(s) − y(s)|| · e−τ(s−a) · eτ(s−a)ds

6 2L||x− y||B
∫t

0
eτ(s−a)ds

6
2L
τ
eτ(s−a)||x− y||B.

Here || · ||B denotes the Bielecki-type norm on C[0,a]. Finally, we have that

||u1 − u2||B 6
2L
τ
||x− y||B.

From this and the analogous inequality obtained by interchanging the roles x and y and adding them and
then dividing by 2 we get that

H+(Ux,Uy) 6
2L
τ
||x− y||B, ∀x,y ∈ C[0,a].

Taking τ > 2L, it follows that U is multivalued (H+,α)-contraction.

4. Continuation results for multivalued (H+,α)-contractions

In this section, we present a local result and a continuation result for a special kind of multivalued
(H+,α)-contractions. Following Kirk and Shahzad ([6]), we will replace the second condition of the
Definition 1.2:
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(∗) for every x ∈ X, y ∈ T(x) and for every ε > 0 there exists z in T(y) such that

d(y, z) 6 H+(T(x), T(y)) + ε,

with the following one:

(∗∗) for every x ∈ X and every y ∈ T(x) we have that

D(y, T(y)) 6 H+(T(x), T(y)).

Notice that (∗∗) implies (∗). Moreover if we consider the following condition:

(∗ ∗ ∗) for every ε > 0, for every x ∈ X, y ∈ T(x) there exists z in T(y) such that

d(y, z) 6 H+(T(x), T(y)) + ε.

Then it is easy to see that (∗∗) is equivalent with (∗ ∗ ∗). In this last case, we also notice that for each
x ∈ X and every y ∈ T(x) we have ρ(T(x), T(y)) 6 H+(T(x), T(y)). As a consequence, ρ(T(x), T(y)) 6
ρ(T(y), T(x)) and so

H+(T(x), T(y)) 6 ρ(T(y), T(x)), ∀x ∈ X, y ∈ T(x).

Homotopy results for multivalued operators of contractive types are well-known in the literature, see
[4, 5, 8]. This approach is applied in all cases on a local fixed point theorem. The first result of this section
is the following local fixed point theorem.

Theorem 4.1. Let (X,d) be a complete metric space, x0 ∈ X, r > 0 and T : B̃(x0, r) → Pcl(X) is a multivalued
operator. We suppose that:

(i) T is a multivalued (H+,α)-contraction, i.e., α ∈]0, 1[ and

H+(T(x), T(y)) 6 αd(x,y), ∀x,y ∈ X;

(ii) for every x ∈ X and every y ∈ T(x) we have that D(y, T(y)) 6 H+(T(x), T(y));

(iii) D(x0, T(x0)) < (1 −α)r.

Then, there exists x∗ ∈ B̃(x0, r) such that x∗ ∈ T(x∗).

Proof. Notice first that, by (iii), we can find an element x1 ∈ T(x0) such that d(x0, x1) < (1 − α)r. Clearly
x1 ∈ B̃(x0, r). Now, for arbitrary ε > 0, by (ii) and (i), it follows that we can choose x2 ∈ T(x1) such that

d(x1, x2) < D(x1, T(x1)) + ε 6 H+(T(x0), T(x1)) + ε 6 αd(x0, x1) + ε.

If we take ε := α[(1 −α)r− d(x0, x1)] > 0, then we get that

d(x1, x2) < α(1 −α)r.

Moreover d(x2, x0) 6 d(x0, x1) + d(x1, x2) < (1 − α)r+ α(1 − α)r = (1 − α2)r, proving that x2 ∈ B̃(x0, r).
Using this procedure (taking at each step k > 2, for the construction of xk, the value of ε as
εk := α[αk−2(1 −α)r− d(xk−2, xk−1)]), we obtain a sequence (xn)n∈N having the properties:

(1) d(x0, xn) < (1 −αn)r, for each n ∈N∗ (i.e., xn ∈ B̃(x0, r), for each n ∈N∗);

(2) xn+1 ∈ T(xn), for each n ∈N;

(3) d(xn, xn+1) < α
n(1 −α)r, for each n ∈N.
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Then, by (3), we get that the sequence (xn)n∈N is Cauchy in (X,d) and hence it converges in (X,d) to some
x∗ ∈ B̃(x0, r). By Theorem 2.13, we have that T : B̃(x0, r)→ Pcl(X) has closed graph, thus we immediately
get, by (2), that x∗ ∈ T(x∗) as n→∞.

Theorem 4.2. Let (X,d) be a complete metric space. Let U be an open subset of (X,d). Let G : U× [0, 1]→ P(X)
be a multivalued operator such that the following conditions are satisfied:

1. x 6= G(x, t) for each x ∈ ∂B and each t ∈ [0, 1];
2. there exists α ∈ [0, 1[ such that for each t ∈ [0, 1] and each x,y ∈ U we have

H+(G(x, t),G(y, t)) 6 αd(x,y);

3. there exists a continuous increasing function φ : [0, 1]→ R such that

H+(G(x, t),G(x, s)) < |φ(t) −φ(s)|, ∀t, s ∈ [0, 1], t 6= s, ∀x ∈ U;

4. G : U× [0, 1]→ P((X,d)) is closed.

Then G(·, 0) has a fixed point if and only if G(·, 1) has a fixed point.

Proof. Let us consider the set Q = {(t, x) ∈ [0, 1]×U : x ∈ G(x, t)}. Clearly Q 6= ∅, since (0, z) ∈ Q where
z ∈ G(z, 0). On Q we define the partial order

(t, x) 6 (s,y) if and only if t 6 s and d(x,y) 6
2

1 −α
(φ(s) −φ(t)).

Let P be a totally ordered subset of Q. Define t∗ = sup{t : (t, x) ∈ P}.
Taking a sequence {(tn, xn)} in P such that

(tn, xn) 6 (tn+1, xn+1) and tn → t∗ as n→∞.

We have

d(xm, xn) 6
2

1 −α
(φ(tm) −φ(tn)), for m > n, m,n ∈N∗.

Thus, {xn} is a Cauchy sequence, and hence converges to some x ∈ Ũ. Since xn ∈ G(xn, tn), n ∈ N∗ and
G is closed, we have x∗ ∈ G(x∗, t∗). Thus (t∗, x∗) ∈ Q.

Since P is totally ordered we get (t, x) 6 (t∗, x∗) for each (t, x) ∈ P. That means that (t∗, x∗) is a bound
of P. It follows from Zorn’s Lemma that Q admits a maximal element (t0, x0) ∈ Q.

To complete the proof, we have to show that t0 = 1. Suppose this is false. Then, we can choose r > 0

and t ∈ (t0, 1] such that B̃(x0, r) and r :=
2

1 −α
(φ(t) −φ(t0)). It follows that

D(x0,G(x0, t)) 6 ρ(G(x0, t0),G(x0, t))
6 H(G(x0, t0),G(x0, t))
6 2H+(G(x0, t0),G(x0, t))
< φ(t) −φ(t0) = (1 −α)r.

Since B̃(x0, r) ⊂ U, the multivalued operator G(·, t) : B̃(x0, r) → Pcl(X) satisfies, for all t ∈ [0, 1] the
assumptions of Theorem 4.1. Hence, for all t ∈ [0, 1], there exists x ∈ B̃(x0, r) such that x ∈ G(x, t). Thus
(t, x) ∈ Q.

Since d(x0, x) 6 r =
2

1 −α
(φ(t) −φ(t0)) we immediately get (t0, x0) < (t, x). This is a contradiction

with the maximality of (t0, x0).
Conversely, if G(·, 1) has a fixed point, then putting t := 1 − t and using the first part of the proof we

get the conclusion.
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