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Abstract

In this paper, we consider a class of neutral type fuzzy cellular neural networks with time-varying delays and D operator
on time scales. Based on inequality analysis techniques on time scales and a fixed point theorem and the theory of calculus
on time scales, we obtain the existence and global exponential stability of anti-periodic solutions for this class of the networks.
Finally, a numerical example is given to illustrate the feasibility of our results. (©2017 All rights reserved.
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1. Introduction

So far, there are two basic cellular neural networks (CNNs) structures being proposed. The first
one is traditional CNNs ([4, 5]). The second one is fuzzy cellular neural networks (FCNNs) ([17, 18]).
Unlike the first structure, FCNNs has fuzzy logic between its template and input and/or output besides
the sum of product operations, which allows us to combine the low of fuzzy systems. FCNNs is very
useful paradigm for image processing problems, which is a cornerstone in image processing and pattern
recognition. In recent years, various interesting results on the dynamical behaviors of FCNNs with delays
have been reported [1, 2, 6, 7, 10-16, 19, 20, 22, 23].

On the other hand, according to the theory of functional differential equations, neutral type CNNs
with D operator may have more realistic significance than non-operator-based ones in many practical
applications of neural networks” dynamics. However, among the existing results about the dynamics of
FCNNSs, most of them did not consider the effect of neutral type delays. So, the dynamics of neutral type
FCNNs with D operator should be further studied. Moreover, although the signal transmission process
of neural networks can often be regarded as an anti-periodic process, in particular, voltage transmission
process of CNNs have an anti-periodic process, the periodic dynamics of neural networks models with

*Corresponding author
Email addresses: b11123@126. com (Bing Li), yklie@ynu.edu.cn (Yongkun Li)

doi:10.22436 /jnsa.010.11.45

Received 2017-05-20


http://dx.doi.org/10.22436/jnsa.010.11.45

B. Li, Y. K. Li, J. Nonlinear Sci. Appl., 10 (2017), 6119-6131 6120

D operator has been extensively investigated (see [2, 15, 19] and the references cited therein), the anti-
periodic one remains less touched.

In addition, it is well-known that both continuous time and discrete time neural networks are very
important in implementation and applications. But, few results are available for discrete time FCNNs
which are more convenient for numerical simulations than the continuous ones. Besides, in fact, studying
neural networks can unify the continuous time case and the discrete time case ([3, 8]). However, to the
best of our knowledge, there is no published paper considering the anti-periodic solutions for FCNNs
with time-varying delays and D operator on time scales. Therefore, it is very important in theories and
applications and also is a very challenging problem.

Motivated by the above statement, in this paper, we are concerned with the following neutral type
FCNNs with time-varying delays and D operator on time scales

(i (1) — ci(txi(t — oy (0)]4 = —ai (xi(t) + ) by (0)F (x5 (t—T35(1))) + Z dy (t
=1
N t
1 j \Xj A ij i (%5 A .
A sty Jo @t ”j\/l By (1 L_aﬁm 05 (xs(s)As (L)
+ AT+ Sy +L(t), teT, i=12---,n,
j=1 j=1

where T is a translation invariant time scale, n is the number of neurons in layers, x;(t) denotes the
activations of the i-th neuron at time t, a; represents the rate with which the i-th neuron will reset its
potential to the resting state in isolation when they are disconnected from the network and the external
inputs at time t, «yj, B1j, Ti; and Si; are the elements of fuzzy feedback MIN template, fuzzy feedback
MAX template, fuzzy feed forward MIN template and fuzzy feed forward MAX template, respectively,
bij and dy;j are the elements of feedback template and feed forward template, /\,\/ denote the fuzzy AND
and fuzzy OR operations, respectively, f; and g; are the activation functions, o;(t), Ti;(t),nij(t) and &z;(t)
are transmission delays at time t and satisfy t — oy(t) € T,t —Ty;(t) € T,t —my;(t) €e Tand t — &i5(t) € T
for t € T, I; denotes the input of the i-th neuron at time t,i,j =1,2,--- ,n.
The initial conditions associated with system (1.1) are of the form

xi(s) = @i(s), s [-6,0lT,

— . .. . Rl - ..
where 0 _Tg;{121)(71{01“)}’13@?%{% (t),Mm45(t), &5 (1)1}, @1 € C([=6,0l7, RT),i=1,2,--- ,n

Throughout this paper, we denote [a, bl = [a,b] N T. For convenience, for an anti-periodic function
f: T — R, we denote f~ = inf |f(t)| and f* = sup [f(t)].
teT teT
This paper is organized as follows. In Section 2, we introduce some definitions and preliminary

lemmas. In Section 3, we derive some sufficient conditions for the existence and global exponential
stability of anti-periodic solutions of (1.1). In Section 4, we give an example to demonstrate the feasibility
of our results. This paper ends with a brief conclusion in Section 5.

2. Preliminaries

In this section, we shall recall some basic definitions, lemmas which are used in what follows.

A time scale T is an arbitrary nonempty closed subset of the real numbers, the forward and backward
jump operators o, p : T — T and the forward graininess n : T — R* are defined, respectively, by
o(t):=inf{[s € T:s>t}, p(t) :=sup{s € T:s < t}and pu(t) = o(t) —t. A point t is said to be left-dense if
t > infT and p(t) = t, right-dense if t < sup T and o(t) = t, left-scattered if p(t) < t and right-scattered
if o(t) > t.
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A function f : T — R is right-dense continuous or rd-continuous provided it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function on T.

A function p : T — R is called regressive provided 1+ pu(t)p(t) # 0 for all t € T¥. The set of all
regressive and rd-continuous functions p : T — R will be denoted by R = R(T) = R(T,R). We define the
set RT =RT(T,R) ={p e R:1+pu(t)p(t) >0, Vt € T}

Lemma 2.1 ([16]). Suppose x and y are two states of system (1.1). Then we have

| /\% /\ocl) ()| < Zm) )i () — F5.(y)],
‘\/Bij(t)fj(X)—\/Bij(t) y)| < ZBU JliF5 (%) — 5.y,
j=1 j=1 j=1

wherei=1,2,--- ,n.
Definition 2.2 ([9]). A time scale T is called a translation invariant time scale if
Mi={teR:tx1teT,VteT}#£{0.

Definition 2.3. Let T # R be a translation invariant time scale with p = inf{t € T} > 0. We say
that the function f : T — R is periodic with period w, if there exists a natural number n such that
w =np, f(t+w) =1(t) forall t € T and w is the smallest number such that f(t + w) = f(t) and we say
that the function f : T — R is anti-periodic with period w, if there exists a natural number n such that
w=np, f(t+w) =—f(t) forall t € T and w is the smallest number such that f(t+ w) = —f(t).

If T =R, we say that f is periodic with period w > 0 if w is the smallest positive number such that
f(t+w) = f(t) for all t € T and we say that f is periodic with period w > 0 if w is the smallest positive
number such that f(t + w) = —f(t) forall t € T.

Lemma 2.4 ([21]). Let T be a translation invariant time scale and h € TI. Then
(i) o(t+h)=o0(t)+hand o(t—h) =0o(t)—h, forevery t € T;

(ii) u(t+h) =p(t) = o(t—"h), forevery t € T.

3. Main results

In this section, we will state and prove the sufficient conditions for the existence and global exponential
stability of anti-periodic solutions of (1.1).
Set X ={¢ € C(T,R™) : ¢(t + w) = —@(t)} with the norm ||¢||x = sup |@(t)|, then X is a real Banach

teT
space. Let ° = (@9, 09, , %) T, where
t n n n
(pg(t):J e_q, (to(s Zd /\Tij(s)uj(s)—i—\/Sij(s)uj(s)—i—li(S))As, i=1,2,---,n
- j=1 j=1 j=1

and L be a constant satisfying L > ||¢°||x.
Throughout this paper, we assume that the following conditions hold:

(Hi) —ai € R, ai,04,T5,M45, &5 € C(T,RT), cl,bl),dll,ocll,ﬁu,Tl),Sl] € C(T,R) are w-periodic, and
w, I; € C(T,R) are w-anti-periodic, where ,j =1,2,--- ,1;
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(Hy) fi,g; € C(R,R),fj(u) = —f;(—u), g; (u) = —g;j(—u) for all u € R and there exist positive constants L{
jr9j j j 9j 9j p j
and ]_)9 such that [f;(x) — f;(y)| < Ll?clx—yl, 1g;(x) — g;(y)I < L]le—y\ forallx,yeR,j=1,2,---,1n;

n
(Hj) pzlrgrke;xn{cf—i—al_(afcf—l—jz (Lfbf]—i—l_gocunl)—i—l_g *E,*))} <1,i=12,---,n

Theorem 3.1. Let (Hy)-(H3) hold. Then, system (1.1) has an anti-periodic solution in
X* ={¢ € Xl[o—¢°Ix <

Proof. Let

Then

YA(t) = [xi(t) — i (t)xi(t — o (1)))4
= —ai(t)Y(t) — ai(t)ci(t)xi(t — oy (t))

n
+ Z bij (t)f (X) t TU + Z dl]

j=1
+)/n\ (t)f (g (s))as + \/ B (”Jt (xi(5))A
oy i(xj(s))As i i(xj(s))As
A j 95 (% j (1) 9%
+ /\ Ty (1)
j=1

t—my5(t) =1
n
1)+ \/ Syt + L), i=12,--,n
j=1

For any ¢ € X*, we consider the following anti-periodic system:

YA(t) = —ai(t)Yi(t) + Fi(t, @) + Li(t),

where
Filt, @) = —ai(t)ei(t)ei(t— oi(t) + ) by (0)f (@5(t — T35 (1)) + Y dij(H)p;(t)
=1 =1
n t ) n t ]
1 A 19 A
—i—]/\lcx](t)L_mj(t)g( s+j\/1[3] L_aM gj (@j(s))As
+ A\ Ty +\/ Syt), i=12--,n
j=1
Define
YO(t) = (Y (), YP (), Y2 (1),
where

YP(t) = Jt e_q,(t,0(s))(Fi(s, @) +Li(s))As, i=1,2,---,n.

For ¢ € X, we have

T
YOt T) = J e o (t+T,0(s))(Fi(s, &) + Li(s))As

—00
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t

:J e_q,(t+T,0(s+T))(Fi(s+T,¢)+Li(s+T))As
t

:J e_q,(t+T,0(s)+T)(Fi(s+T,¢)+Li(s+T))As

:Jt efai(t/U(S))(Fi(S/(P)+Ii(s))As, 1:1,2, m,

< PL
1—

that is, Y® € X. For @ € X*, we find |lo||x < [l¢ — @°||x + |@°[|x < p—H_:ﬁ.

Define an operator as follows:

O:XF 5 X5, (b, da )T = (OB, (DP)y, -, (D))",

where
(@P)i(t) = ci(H)pi(t—oi(t) + Y (1), Ve X,
First we show that for any ¢ € X*, ®¢ € X*. From Lemma 2.1, fori=1,2,--- ,n, we have

(De)i(t) — @d(t) =

+Zbll( )5 (@j(s —Ti5(s))) + /\ qu(s)J ( )gJ((pJ(u))Au
=1 j=1 $—Mijls
+ )-\_/1 Bij(s) L&ij(s) gj ((pj (u))Au)As’

t
<cr|<pi(t—oi(t))|+J e_a,(t, o(s)) (aF cF (s — 0i(s))]
—00
ZbgLfqu] —Tyj(s |+Z°‘n”m+]LJg|‘pl s)|
+er+a;L)9|<p] s)l)As
t mn
<c{*\|(pHX+J e_a,(t,0(s))As(a; +Zb:Lf—1—Zo¢ ng LY
_m 3 —
+Zﬁ+a1+,L§’ lollx

1
<cflolx +—=(afef F3 (U + aind 4 L9B5ED)) [ollx
a; j=1
= L
+ o+ 419 +79p+s+
< (el +* afel +2_ (Lol +Ladini + L] ii‘iij))>1_p
j=1
pL
1—p’
which implies that @ € X*. Next, we show that ® : X* — X* is a contraction operator. In fact, for any
¢ =(01, 02, on)T, b= (1,2, , hn)" € X*, we can get

t
[(@@)i(t) — (@U)i(t)] = [ci(t) (it —oi(t)) —Wilt—oi(t))) + J_ e_a;(t, 0(s))
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X [— ai(s)eils)(@ils — oi(s)) —wi(s — ai(s)))

+Zbij(5)(fj((9)( Tl)( )))—fj (ll’j(S—Tij(S))))
j=1

" j/—\l " s) L—mj(S) <gj ((pj (u)) — 9 (1])] (u)))Au

Vo] (o) -am)sad

t
< of|@ilt—oi(t) — Pyt — oy (1)] +J_ e a.(t,o(s))
X |:a Ci ’(pl s—oi(s ))_wi(s_ci(s))’

+Zb;L;‘\<p)~(s—m(s))—wj(s—nj(sm

+Zocun:L)9\<pj(s) |+Zfs+a;Lf\<pj(s)—xp5(s)|]As
<(ei+= Z (Lo + Loy + LBYES)) ) o — vl
<ple— 1be.

Because p < 1, so @ is a contraction mapping. By the Banach’s fixed point theorem, it follows that @ has
a fixed point x* = (xj, x5, - ,x:)T € X* such that

XE(t) = (@x*)i(t) = ci (xS (t— o3 () + V)5 (1),

and
X (1) = e (D (t — 03(1) + V)5 (1)
t
= ci (t)x](t Gl(t))+J e_a(t, o ))(—al( Jei(s)xi (s — oi(s))
+Zb1](3)f](XJ (S_Ti]’( )))+Zd ( )u]( )
j=1 j=1
—l—)/_\1 ocl)(s)Ln](s) g5 (x5 ( Au—i—]\/l Bij(s Jsé)(s g; (xj (u))Au
+ A\ T (s)m(s) + \/ Sij(s)m(s) + L ))As i=12,-,n
j=1 j=1
Hence
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.\ oqj(t)J 6; (< () As + \/ Bﬁ(t)J g; (x:(s))As
j=1

j=1 t—m;(t) t—&i5(t)
mn

+ ATy +\/ Sy + L), i=12--m,
j=1 j=1

so x} (t) is an anti-periodic solution of system (1.1). This completes the proof. O

Theorem 3.2. Assume that (H;)-(Hgz) hold, then system (1.1) has a unique anti-periodic solution that is globally
exponentially stable.

Proof. From Theorem 3.1, we see that system (1.1) has an anti-periodic solution
X)) = (6 (1), %3 (1), - xn ()T,

with initial value V*(s) = (Y7 (s), P3(s),--- , % (s))T. Suppose that x(t) = (x1(t),x2(t), -, xn(t))T is an
arbitrary solution of system (1.1) with initial value P (s) = (P1(s), P2(s),--- ,Pn(s))T and

zi(t) = xi(t) = x{(t), Zi(t) =zi(t) —ci(t)zi(t —oy(t)), 1i=12,---,n

Then

= —ai(t)Zi(t) — ai(t)ei(t)zi(t — oy (t)) + Z bl) (t) (f (X] (t Tij (t)))
j=1
—f; (x] (t 'cll(t)))> +)~/_\1 i (t) Lmj(t) (g] (xi(s)) — g (x] (s)))As
Jr)\_/1 Bi;(t) L_ o (gj (xj( )) gj (x] (s)))As, i=1,2,---,n

From (Hj3), there exists a constant A € (0, m1<n {a;}) such that 1 —c; exp(Ao;) >0, and

RN

! +rf
I<ien { (1—ci exp(Aoi))(ai —A) (exp (Ao Z bi;Lj exp(Aty))

+ Z o LInf exp(n) + > BELIES exp(Aag.)) } <1
j=1

Denote ||@lo = sup max [(@i(t) —x{(t)) —ci(t)(@i(t —oi(t)) —xI(t—oyi(t)))] and

te[—6,0]p ISIsT

1Z(t)]| = max {1Zi ()]}

I
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Let ¢ > 0and M > 1. Clearly,

1Z(0)]] < (lello+¢), (3.1)
and
1Z(B)] < ([[ello+ e)ean(t, to) < M([@llo + e)esalt, to), vVt € [-0,0lr. 3.2)
We claim that
1Z(1)]| < M([l@llo + €)esalt, to), Vvt (0,400)T. (3.3)

Contrarily, there exist a t; € (tp, +00)T and some i € {1,2,--- ,n} such that

{ 1Zi(t1)] = [|Z(t1)]| = M([|@]lo + €)eaa(ty, to), (3.4)

IZ(t)| < M(|l@llo+ €)ean(t, to), t e (to, tilT.

Therefore, there must exist a constant ¢ > 1 such that

1Zi(t1)] = [|Z(t1)]| = cM(||@]lo + e)eaa(t1, to),
{ i<e (32)

Il Z(t M([l@llo+€)eaa(t, to), te (to, t1lT.

Moreover,

ex(G to)lzi ()] < ea((, to)lzi(CQ) — ci(Q)zi (C— o1 (0)) + eal({, to)lei (Q)zi (C— oy (C))]
< en(G t0)lZi(Q)| + ci exp(Aoy )ea(C— 0i(C), to)|zi(C— 01 ()]
< cM(|[@llo+ ) +¢i exp(Aay ) sup ea(s, to)lzi(s)]

s<t

for all ¢ < t,t < t;, which implies that

ex(t, to) z:(1)] < sup e(s, to)lzi(s)] < —~rlello ) (3.6)

s<t T 1—cfexp(Aci)’
Integrating

e_q;(to, 0(s)) (Z2(s) + ai(s)Zi(s))

— (X}k(s —Tij(S)))> + /\ “ij(S)J

+ VBl L_aﬁ (905090 = g3 (x5 51))asf, s € lto,
we obtain
t n
Zi(t) = Zi(to)e—a,(t, to) +J e—a;(t, 0(s)) ( — ai(s)ci(s)zi(s — oi(s)) + ) byj(s)
to i1

u
I
_
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Thus, M > 1, (3.1), (3.2), (3.5) and (3.6) imply that

t n
1Zi(t1)] = |Zi(to)e—q, (t1, to) +L e—ai(t1,0(8))<— ai(s)ci(s)zi(s — oi(s)) + ) bi;(s)
0 j=1
(6 0sts —rate) =05 =) + As(a [ (ait00)
—g; (x]* (u)))Au+ j\_/1 Bij(s) Léﬁ(s) (gj (xj(u)) — g; (x;k (u)))Au) As
< |Zi(to)le—q; (t1, to) +J 1 eai(tlro-(s))’ —ai(s)ci(s)zi(s — oils)) + Zbij(s)
to i1
x (5 05 (s = i (5))) = 15 (x5 (s = w35 (s))) ) + /\% L e )(gj(xi(u))
— g; (x}‘(u)))Au+ \/ Bij(S)J e (gj (xj(u)) — g; (x;‘ (u)))Au As
=1 s—&(s
t

< |Zi(t0)|e—ai(t11t0)+J e—ai(tll 0_(5))<a C+|Zl S_Gl |+Zb::[-]f

to

x [xj(s —Ti5(s)) — (s —Tij(s \—i—Z oci;LJQJ " |x; () —x;“(u)}Au
$—Mij(s

ZB;L?J ( )|xj (u)—xf(u)‘Au)As
1) S
1 exp(Ao;)
< t1,t0)e_a.an(ty, t Cween(ty, i +oi
(ol + Eleant a)e-aan(t ol + | e asonlty ols) (=gt or oied
" exp (AT exp(An;;
3O oo * 1 ST o epiae?
j:1 1—ci exp( 7\0 1—ci exp(Ao})

xp (A Ei)
+19:+ 1)
+ JZ BUL] E’l] 1— Ci+ eXp(AGiJF))ASCM(H(pHO + E)eek(tlztO)

1 _e_ai@)\(tlztO)( exp(Aoy) .
1 1

< ele t1,to)e—q tq, t — a. c;
(lello + e)eonlts, to)e—a@n(ts, to) + @ —A 1—c exp(AcT)

Zb+ L exp 7\T Z LI exp(?\n;;)
H51— i exp( 7\0 HiiH i ¢ exp(Ao})

xp (A 51')
+_Zf5$L?€$1 o oxpha]) MUl ecalty o)

M(|[@llo + &)ean(ts, to) (== — De_q-galty, to) + 1)

cM
< cM(||@llo + €)ean(ts, to),

which contradicts the first equation of (3.4). Therefore, (3.3) holds. Letting ¢ — 07, we get

IZ(t)]] < M|l@lloeon(t, to), Vt e (tg,+o00)T.
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Hence, the anti-periodic solution of system (1.1) is globally exponentially stable and the uniqueness fol-
lows from the stability. The proof is complete. O

Remark 3.3. From the conditions of Theorems 3.1 and 3.2, it is easy to see that both the continuous time
case and the discrete time case of FCNNs (1.1) have the same anti-periodic dynamics.

4. An example

In this section, we give an example to illustrate the feasibility and effectiveness of our results obtained
in Section 3.

Example 4.1. In (1.1), let n = 2, and the coefficients are taken as follows:

1 3 1 . 1 1
fi1(x) = 18 sin” x, fa(x) = 3 sinx, g1(x) = o sin 2x, ga(x) = 18 sin 3x,
ot 5t o 1
I1(t) =5sin 5 I(t) = sin 5 ci1(t) =0.1sint, co(t) = 15 cost,
ai(t) =0.8+0.1|sint|, a(t)=0.74+0.1]cost|, by(t) =04+0.1sint,
b1a(t) =0.340.1cost, by(t) =05+0.1cost, byp(t)=0.2+0.1sint,

(t) (t)
di1(t) =0.2—0.1cost, dia(t) =03+0.1sint, dp(t) =0.6—0.1cost,
) =05—0.1sint, o1(t) =05+0.1cost, oz
(t) (
1(t)

dpo(t t) =0.3+0.2sint,

x1(t) =04 +0.1sint, o (t) =0.3—0.1sint, P11(t) =0.1+0.3sint,

B12(t) =0.5+0.1cost, Pr(t) =03+02cost, Pxn(t)=0.1+0.4sint,
01(t) = |cost|, 07(t) = |sint], T11(t) = 2| cost|, T12(t) = | cos t, Tp1(t) = 3|sint|,
To(t) =5/cost], mi(t) =2/cost],  mi2(t) =|sint|, M1 (t) =[sint],  mxn(t) =2|sint|,
uy(t) =sin %, tp(t) = —sin® %, &ij(t) =[sint], Ti5(t) = 5cos’ t, Si(t) = 3sin’t, i,j=1,2.

Obviously, conditions (Hy) and (Hy) are verified. By simple calculation, we have

1 1 1
L=L=l{=Y=-, ¢f==, ¢g==—, af =09, af =08, a; =08, a, =07,

bj; =05, bf, =04, bj; =06 b} =03 of; =06 of=05 of =05
06;2:0.4, BEZOA, ﬁE:Ob, [5;1:0.5, [5;2:0.5 szl 6;21
Tﬁzzf TE:L TEL1:3/ T, =5, nﬂ:z, ﬂffnzﬁ:l/ Ny =2, ‘211 ‘312 E21 &n =1,

and
_ + fit 19 gatct
p_fé‘iaéz{ci +< Z by + Loy + LBy & )>}

= max 2119 <1

B 240" 21 ’
so condition (Hg) is also satisfied. Therefore, according to Theorems 3.1 and 3.2, system (1.1) has a unique 2m-anti-
periodic solution that is globally exponentially stable (see Figures 1-4).
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Figure 1: When T = R, anti-periodic solution of system (1.1) with initial condition (x; (0),x2(0)T = (0.25,0.32)T.
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Figure 2: When T = R, phase response of state variables x;(t) and x;(t) of system (1.1) with initial condition (x1(0), x2(ONT =
(0.25,0.32)T.
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Figure 3: When T = Z, anti-periodic solution of system (1.1) with initial condition (0.72,0.85).
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Figure 4: When T = Z, phase response of state variables x; (n) and x(n) of system (1.1) with initial condition (0.72,0.85).

5. Conclusion

In this paper, we have investigated the FCNNs with mixed time-varying delays and D operators on

time scales.

By using the Banach’s fixed point theorem and the theory of calculus on time scales, we

obtain some sufficient conditions for the existence and exponential stability of anti-periodic solutions for
FCNNSs. An example has been given to demonstrate the effectiveness of our results. The method of this
paper can be applied to study other neural networks with D operators on times scales.
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