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Abstract
This paper focuses on the following elliptic equation{

− u ′′ − p(x)u = f(x,u), a.e. x ∈ [0, l],

u(0) − u(l) = u ′(0) − u ′(l) = 0,

where the primitive function of f(x,u) is either superquadratic or asymptotically quadratic as |u| → ∞, or subquadratic as
|u| → 0. By using variational method, e.g. the local linking theorem, fountain theorem, and the generalized mountain pass
theorem, we establish the existence and multiplicity results for the periodic solution and subharmonic solution. c©2017 All
rights reserved.
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1. Introduction and main results

In this paper, we consider the following elliptic equation{
− u ′′ − p(x)u = f(x,u), a.e. x ∈ [0, l],
u(0) − u(l) = u ′(0) − u ′(l) = 0,

(1.1)

where 0 < l < ∞, p(x) is continuous, and F(x,u) =
∫u

0 f(x, s)ds : [0, l]×R → R is l-periodic in x for all
u ∈ R and satisfies the following assumption.

(A) F(x,u) is measurable in x for each u ∈ R and there exist a ∈ C(R+, R+),b ∈ L1(0, l; R+) such that

|F(x,u)| 6 a(|u|)b(x), |f(x,u)| 6 a(|u|)b(x)

for all u ∈ R and a.e. x ∈ [0, l].

In the past, a series of existence results for periodic solution have been obtained in the literatures (see
[1, 2, 8, 13, 20, 21] and their references). But the widely used tool is either the various fixed point theorem
or cone theory.
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In recent years, however, many scholars have tried to use variational method to get the best result for
simple elliptic equation. Nevertheless, to the best of our knowledge, there are few such results. In [7], Liu
and Zhao considered the impulsive boundary value problem with small non-autonomous perturbations.
They showed the existence of three distinct classical solutions via variational methods and the three critical
point theorem. But their works did not identify that the solutions which they obtained are periodic or
subharmonic. This has motivated our interest in the topic.

As is known to all, there are many results on periodic solutions and subharmonic solutions for classical
Hamiltonian systems. In [4], Li et al. considered the second order Hamiltonian system{

ü(t) +B(t)u(t) +∇F(t,u(t)) = 0, a.e. t ∈ [0, T ],
u(0) − u(T) = u̇(0) − u̇(T) = 0,

(1.2)

where B(t) is an N×N symmetric matrix, continuous and T -periodic in t; F : R×RN → R is T -periodic
(T > 0) in t and satisfies the following.

(F0) There exist constants a0 > 0 and L1 > 0, such that

〈∇F(t,u),u〉− 2F(t,u) >
a0

|u|2
F(t,u)

for all u ∈ RN, with |u| > L1 and a.e. t ∈ [0, T ].

In [4], the conditions (F0) and (A) are used to prove the C condition. Nevertheless, Tang and Wu [19]
proved (C)∗ condition by (F0), (A), and the following condition

lim
|u|→0

F(t,u)
|u|2

= +∞ uniformly for a.e. t ∈ [0, T ]. (1.3)

Clearly, we can use the method introduced in [4] to prove the (C)∗ condition without (1.3).
Over the last few years, many researchers studied the existence of periodic solutions for problem (1.2)

under the following condition.

(F ′0) Assume that there exist λ > 2 and β > λ− 2 such that

lim sup
|u|→∞

F(x,u)
|u|λ

<∞ uniformly for a.e. x ∈ [0, T ],

lim inf
|u|→∞

〈∇F(x,u),u〉− 2F(x,u)
|u|β

> 0 uniformly for a.e. x ∈ [0, T ].

Obviously, (F0) is weaker than (F ′0). Hence, we will replace (F ′0) by (F0).
For more papers on periodic solutions and subharmonic solutions for classical Hamiltonian systems

(1.2), please see [5, 9, 22–24] and their references. Inspired by those works mentioned above, we study
periodic solutions and subharmonic solutions problems for the elliptic equation (1.1).

1.1. Periodic solutions of elliptic equation
In this section, we deal with the existence and multiplicity of l-periodic solution of problem (1.1) under

the assumption: p(x) is l-periodic in x.
We will divide the problem into three cases.

1.1.1. The superquadratic case
For the superquadratic case, we make the following assumptions

(F1) lim
|u|→ 0

F(x,u)
|u|2

= 0 uniformly for a.e. x ∈ [0, l].

(F2) lim
|u|→ ∞ F(x,u)

|u|2
= +∞ uniformly for a.e. x ∈ [0, l].
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(F3) There exist constants a0, L1 > 0, such that

〈f(x,u),u〉− 2F(x,u) >
a0

|u|2
F(x,u)

for all u ∈ R, with |u| > L1 and a.e. x ∈ [0, l].
(F4) For some r0 > 0

F(x,u) > 0, ∀|u| 6 r0, ∀x ∈ [0, l] or F(x,u) 6 0, ∀|u| 6 r0, ∀x ∈ [0, l].

(F5) F(x,−u) = F(x,u) for all u ∈ R, and a.e. x ∈ [0, l].

Theorem 1.1. Suppose that F(x,u) satisfies (F1)-(F4), if 0 is an eigenvalue of − d2

dx2 + p(x), then problem (1.1) has
at least one nontrivial solution.

Remark 1.2. (F3) is weaker than (F ′0). It is easy to show that F(x,u) = |u|2 ln(1+ |u|2) + sin |u|2 − ln(1+ |u|2)
for all u ∈ R and a.e. x ∈ [0, l], satisfies our assumption (F3) but not the condition (F ′0) in R.

Theorem 1.3. Suppose that F(x,u) satisfies (F2), (F3), and (F5), then problem (1.1) has infinitely many solutions.

1.1.2. The subquadratic case
For the subquadratic case, we make the following assumptions

(SF1) There exists r > 0 such that F(x,−u) = F(x,u) for all |u| 6 r and x ∈ [0, l].
(SF2) F(x, 0) = 0 for x ∈ [0, l], and lim|u|→0

F(x,u)
|u|2

= +∞ uniformly for x ∈ [0, l].

Theorem 1.4. Suppose that F(x,u) satisfies (SF1) and (SF2), then problem (1.1) possesses infinitely many solutions.

Remark 1.5. Under (SF1) and (SF2), by the well-known theorem (in [3]), we can also get a sequence of
critical value ck of Φ(u) (defined in next section) with ck 6 ck+1 < 0 for k ∈ N, and {ck} converges to
zero.

1.1.3. The asymptotically quadratic case
For the asymptotically quadratic case, we assume

(AF1) F(x,u) > 0 for all (x,u) ∈ [0, l]×R, and there exist constants µ ∈ (0, 2) and R1 > 0 such that
〈f(x,u),u〉 6 µF(x,u) for all x ∈ [0, l] and |u| > R1;

(AF2) lim
|u|→0

F(x,u)
|u|2

= ∞ uniformly for x ∈ [0, l], and there exist constants c2,R2 such that F(x,u) 6 c2|u|

for all x ∈ [0, l] and |u| 6 R2;
(AF3) lim inf

|u|→∞ F(x,u)
|u| > d > 0 uniformly for x ∈ [0, l].

Theorem 1.6. Assume that (AF1)-(AF3) hold, F(x,−u) = F(x,u), then (1.1) possesses infinitely many solutions.

1.2. Subharmonic solutions of elliptic equation
We assume the following hypotheses.

(HF1) lim
|u|→ 0

F(x,u)
|u|2

= 0 uniformly for a.e.x ∈ [0, l].

(HF2) There exist constants a0 > 0, and L1 > 0, such that

〈f(x,u),u〉− 2F(x,u) >
a0

|u|2
F(x,u)

for all u ∈ R, with |u| > L1 and a.e. x ∈ [0, l].
(HF3) F(x,u) > 0, (x,u) ∈ [0, l]×R.
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Theorem 1.7. Suppose that p(x) = m2ω2, where m is a nonnegative integer, ω = 2π
l , and F satisfies (A),

(HF1)-(HF3), and the following condition

(HF4) lim inf
|u|→∞ F(x,u)

|u|2
> 1+2m

2 ω2 uniformly for a.e. x ∈ [0, l].

Then there exist a sequence {kj} ∈N, kj →∞, and corresponding distinct kjl periodic solutions of problem (1.1).

Remark 1.8. In [22], Ye and Tang studied the existence of infinitely many solutions for problem (1.2) under
the condition (F ′0). As stated in Remark 1.2, (HF2) is weaker than (F ′0). Hence, our result generalizes and
improves Theorem 2 in [22].

2. Variational setting and proofs of the main results

In order to apply the variational methods, we first recall some related preliminaries and establish
corresponding variational framework for our problem (1.1), and then give the proofs of all the main
results.

2.1. Periodic solutions of elliptic equation
Let

H1
l =
{
u : [0, l]→ R | u is absolutely continuous, u(0) = u(l), and u

′ ∈ L2(0, l; R)
}

be a Hilbert space endowed with the norm

‖u‖ =

(∫ l
0
|u(x)|2dx+

∫ l
0
|u
′
(x)|2dx

) 1
2

for u ∈ H1
l. According to the Sobolev embedding theorem, H1

l is compactly embedded into Lp([0, l], R)
for 1 6 p 6∞ and there exists τp > 0 such that

‖u‖p 6 τp‖u‖, ∀ u ∈ H1
l, (2.1)

where ‖ · ‖p denotes the usual norm on Lp for all 1 6 p 6∞.
It follows from assumption (A) that the functional Φ on H1

l given by

Φ(u) =
1
2

∫ l
0
|u
′
(x)|2dx−

1
2

∫ l
0
p(x)u2(x)dx−

∫ l
0
F(x,u)dx

is continuously differentiable on H1
l. Moreover, one has

〈Φ ′(u), v〉 =
∫ l

0
[u
′
(x)v

′
(x) − p(x)u(x)v(x) − f(x,u)v(x)]dx

for all u, v ∈ H1
l. It is well-known that the solutions of problem (1.1) correspond to the critical points of Φ

(see [5, 12, 16, 27]).
Let

Q(x) =
1
2
‖u‖2 −

1
2

∫ l
0
(p(x) + 1)u2(x)dx =

1
2
((I−K)u,u),

where K : H1
l → H1

l is the linear self-adjoint operator. Clearly, K is compact. Hence, we can decompose H1
l

into the orthogonal sum of invariant subspaces under (I−K) due to classical spectral theory

H1
l = H

−⊕H0⊕H+. (2.2)

Here H0 = N(I−K), H− and H+ are such that, for some δ > 0,

Q(u) 6 −
δ

2
‖u‖2, if u ∈ H−, (2.3)

Q(u) >
δ

2
‖u‖2, if u ∈ H+. (2.4)
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2.1.1. The superquadratic case
Let {ej}j∈N be a basis for H1

l and define Xj, Yk, and Zk as in [4, 5, 10, 16, 27].

Definition 2.1 ([19]). A sequence {αn} ∈ N2 is admissible if, for every α ∈ N2, there is m ∈ N such that
αn > α for all n > m.

Lemma 2.2 ([5, 15–17]). If Zk =
⊕
j>k

Xj, then βk = sup
u∈Zk‖u‖=1

‖u‖∞ → 0 as k→∞.

Lemma 2.3. Suppose (A) and (F2)-(F3) hold, then Φ satisfies the (C)∗ condition.

Proof. Let X = H1
l,X

1 = H+ with {en}n>1 being its Hilbertian basis, X2 = H−
⊕
H0 and define

X1
n = span{e1, e2, . . . , en}, n ∈N, X2

n = X2, n ∈N, Xj =
⋃
n∈N

X
j
n, j = 1, 2.

Let {uαn} be a sequence in H1
l such that {αn} is admissible and satisfying

uαn ∈ Xαn , supΦ(uαn) <∞, (1 + ‖uαn‖)‖Φ
′
(uαn)‖ → 0.

Hence, there exists a constant M > 0 such that

|Φ(uαn)| 6M, (1 + ‖uαn‖)‖Φ
′
(uαn)‖ 6M (2.5)

for all n.
Now we prove the sequence {uαn} is bounded. If {uαn} is unbounded, we can assume that ‖uαn‖ →∞

as n → ∞. Let wαn =
uαn
‖uαn‖

, then ‖wαn‖ = 1. Passing, if necessary, to a subsequence, for some w ∈ H1
l

we obtain

wαn ⇀ w weakly in H1
l, wαn → w in C([0, l]; R) (2.6)

as n→∞. Since p(x) is continuous and l-periodic in x, we can find a positive constant p0 such that

|p(x)| 6 p0, ∀ x ∈ [0, l]. (2.7)

Using (2.5), (2.6), and (2.7), we have∣∣∣∣∣
∫ l

0

F(x,uαn)
‖uαn‖2 dx−

1
2

∣∣∣∣∣ 6 |Φ(uαn)|

‖uαn‖2 +
1
2

∣∣∣∣∣
∫ l

0
(p(x) + 1)w2

αn
(x)dx

∣∣∣∣∣ 6 M

‖uαn‖2 +
1
2
(p0 + 1)l‖wαn‖2∞. (2.8)

From (F2), we see that there exists a positive constant r1 > L1 such that F(x,u) > 0 for all u ∈ R with
|u| > r1 and a.e. x ∈ [0, l]. Noting that, the assumption (A) implies that

|F(x,u)| 6 a1b(x), |f(x,u)| 6 a1b(x) (2.9)

for all u ∈ R with |u| 6 r1 and a.e. x ∈ [0, l], here a1 = max
06s6r1

a(s). Then we obtain

F(x,u) > −a1b(x) (2.10)

for all u ∈ R and a.e. x ∈ [0, l].
If w ≡ 0, on one hand, by (2.8), we have

lim
n→∞

∫ l
0

F(x,uαn)
‖uαn‖

dx =
1
2

. (2.11)
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On the other hand, we deduce from (F3), (2.5) and (2.9) that∫
{x||uαn |>r1}

|F(x,uαn)|
|uαn |

2 dx

6 a−1
0

∫ l
0
(〈f(x,uαn),uαn〉− 2F(x,uαn))dx− a

−1
0

∫
{x||uαn |<r1}

(〈f(x,uαn),uαn〉− 2F(x,uαn))dx

6 a−1
0 (2Φ(uαn) − 〈Φ

′
(uαn),uαn〉) + a−1

0 (r1 + 2)
∫
{x||uαn |<r1}

a1b(x)dx

6 3a−1
0 M+ a−1

0 (r1 + 2)a1‖b‖1.

Then, we obtain ∣∣∣∣∣
∫ l

0

F(x,uαn)
‖uαn‖2 dx

∣∣∣∣∣ 6
∫
{x||uαn |>r1}

|F(x,uαn)|
‖uαn‖2 dx+

∫
{x||uαn |<r1}

|F(x,uαn)|
‖uαn‖2 dx

6
∫
{x||uαn |>r1}

|F(x,uαn)|
|uαn |

2 |wαn |
2dx+

a1‖b‖1

‖uαn‖2

6 ‖wαn‖2∞(3a−1
0 M+ a−1

0 (r1 + 2)a1‖b‖1) +
a1‖b‖1

‖uαn‖2 → 0

as n → ∞, which contradicts to (2.11). So w 6≡ 0. Let L = {x ∈ [0, l], |w(x)| > 0}, then |L| > 0, and
|un|→ +∞ as n→ +∞ for a.e. x ∈ L.

From (F2), one has

lim
n→+∞ F(x,uαn)

|uαn |
2 = +∞ a.e. on L.

We conclude from (2.10) and Fatou Lemma that

lim inf
n→+∞

∫ l
0

F(x,uαn)
‖uαn‖2 dx > lim inf

n→+∞
(∫
L

|F(x,uαn)|
|uαn |

2 |wαn |
2dx−

a1

‖uαn‖2

∫
[0,l]\L

b(x)dx

)
> lim inf
n→+∞

(∫
L

|F(x,uαn)|
|uαn |

2 |wαn |
2dx−

a1‖b‖1

‖uαn‖2

)
= +∞,

which is contradiction to (2.8), so ‖uαn‖ is bounded. By similar arguments as those in Proposition 4.1 in
[12], we get that the (C)∗ condition is satisfied. The proof is completed.

Lemma 2.4 ([5, 11]). If the Cerami sequence of Φ is bounded, then its subsequence converges weakly to solution of
problem (1.1).

Proof of Theorem 1.1.

Step 1. We claim that Φ has a local linking at 0 with respect to (X1,X2). Here we only consider the case
where 0 is an eigenvalue of − d2

dx2 − p(x) and F(x,u) > 0 for all |u| 6 r, x ∈ [0, l]. The other cases are
similar.

Using (F1), we can get that there exists l1 > 0 such that

|F(x,u)| 6
δ

2
|u|2 (2.12)

for all |u| 6 l1 and a.e. x ∈ [0, l]. Due to (2.12), (2.1), and (2.4), for u ∈ X1 = H+ with ‖u‖ 6 r3 , l1
τ∞ , we

have

Φ(u) >
δ

2
‖u‖2 −

δ

2

∫ l
0
|u|2dx > 0,
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which implies that
Φ(u) > 0, ∀u ∈ X1 with ‖u‖ 6 r3.

Set u = u− + u0 ∈ X2 = H−
⊕
H0 satisfying ‖u‖ 6 r4 , r0

τ∞ , by (2.1), (2.3), and (F4) we get

Φ(u) 6 −
δ

2
‖u−‖2,

which implies that
Φ(u) 6 0, ∀u ∈ X2 with ‖u‖ 6 r4.

Let r = min{r3, r4}, then Φ has a local linking at 0.

Step 2. We claim that Φ maps bounded sets into bounded sets.
Assume that ‖u‖ 6M for some positive constant M. Combining (2.1) and (2.7) with (A), we have

|Φ(u)| 6
1
2

∫ l
0
|u
′
|2dx+

p0

2

∫ l
0
u2dx+ aM

∫ l
0
b(x)dx 6

1 + p0

2
M2 + aM‖b‖1

for all u ∈ H1
l, where aM = max

06s6τ∞Ma(s).
Step 3. We claim that for every m ∈N,

Φ(u)→ −∞ as ‖u‖ →∞, on X1
m

⊕
X2.

Evidently, there exists d1 > 0 such that

‖u‖ 6 d1‖u‖2, ∀u ∈ X1
m

⊕
X2. (2.13)

By (F2), there exists a constant l2 > 0 such that F(x,u) > 1
2d

2
1(p0 + 2)|u|2 for all |u| > l2 and a.e. x ∈ [0, l].

Applying (A), we have |F(x,u)| 6 max
s∈[0,l2]

a(s)b(x) for all |u| 6 l2 and a.e. x ∈ [0, l], which implies that

F(x,u) >
1
2
d2

1(p0 + 2)|u|2 −M1 − max
s∈[0,l2]

a(s)b(x)

for all u ∈ R, and a.e. x ∈ [0, l], where M1 = 1
2d

2
1(p0 + 2)l22, and p0 is the same as in (2.7). Combining this

with (2.13), we get, for u ∈ X1
m

⊕
X2,

Φ(u) 6
p0 + 1

2
‖u‖2 −

∫ l
0
F(x,u)dx 6 −

1
2
‖u‖2 +M1l+M2,

which implies that
Φ(u)→ −∞ as ‖u‖ →∞ on X1

m

⊕
X2,

whereM2 = max
s∈[0,l2]

a(s)‖b‖L1 . Therefore, by the local lining theorem (see [6, 17, 27]), the proof is complete.

Proof of Theorem 1.3. Obviously, we can prove that Φ satisfies condition (C) in the similar way as Lemma
2.3, and Φ(−u) = Φ(u) by using (F5). Then, we only need to check conditions (A1) and (A2) of the
fountain theorem (see [4, 6, 7, 14, 15, 25]).

Step 1. In fact, for each u ∈ Yk, there exists a constant d2 > 0 such that

‖u‖ 6 d2‖u‖2. (2.14)

Applying condition (F2), there is l3 > 0 such that F(x,u) > (1 + p0)d
2
2|u|

2 for all |u| > l3 and a.e. x ∈ [0, l].
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From assumption (A), one has |F(x,u)| 6 a2b(x) for all u ∈ R with |u| 6 l3 and a.e. x ∈ [0, l], where
a2 = max

06s6l3
a(s). Then,

F(x,u) > (1 + p0)d
2
2(|u|

2 − l23) − a2b(x) (2.15)

for all u ∈ R and a.e. x ∈ [0, l].
Therefore, for all u ∈ Yk, combining (2.14) with (2.15), we have

Φ(u) 6
1
2
‖u ′‖2

2 +
p0

2
‖u‖2

2 − (1 + p0)d
2
2(‖u‖2

2 − l
2
3l) + a2‖b‖1

6 −
1 + p0

2
‖u‖2 + (1 + p0)d

2
2l

2
3l+ a2‖b‖1,

which implies that Φ(u)→ −∞ as ‖u‖ →∞ in Yk. Hence, (A1) holds.

Step 2. Let us define rk = β−1
k . Applying lemma 2.2, we have

rk → +∞, as k→∞. (2.16)

Then by (2.4), we get that Zk ⊂ H+ and r2
k > 4δ−1a3‖b‖1 for k large enough. Thus, for all u ∈ Zk with

‖u‖ = rk, we have ‖u‖∞ 6 1. Hence,

Φ(u) >
δ

2
‖u‖2 − a3‖b‖1 >

δ

4
r2
k.

where a3 = max
06s61

a(s). Therefore, it follows from (2.16) and the above expression that

inf
u∈Zk,‖u‖=rk

Φ(u)→ +∞ as k→∞.

Hence, (A2) is proved.

2.1.2. The subquadratic case
Proof of Theorem 1.4. We consider the truncated functional

I(u) =
1
2
‖u‖2 +

(
−

1
2

∫ l
0
(p(x) + 1)dx−

∫ l
0
F(x,u)dx

)
h(‖u‖)

for all u ∈ H1
l, where h : R+ → [0, l] is a non-increasing C1 function such that h(s) = 1 for 0 6 s 6 δ

2τ∞ ,
and h(s) = 0 for s > δ

τ∞ . Clearly, I ∈ C1(H1
l, R) and I(0) = 0.

Case 1. ‖u‖ > δ
τ∞ . It is easy to see I(u) = ‖u‖2, which shows that

I(u)→ +∞ as ‖u‖ →∞.

Hence, I is bounded from below and the (PS) condition holds. By lemma 2.4 we know that this is enough
to get a solution of problem (1.1).

Case 2. ‖u‖ 6 δ
2τ∞ . By the sobolev embedding, one has

|u(x)| 6 ‖u(x)‖∞ 6 τ∞‖u(x)‖ 6 δ

2
, ∀x ∈ [0, l].

Applying (SF1), we have F(x,−u) = F(x,u), x ∈ [0, l], and I(u) = I(−u).

For any k ∈N, set Ek =
k⊕
j=1
Xj, where Xj = span{ej}, there is a constant dk > 0 such that

dk‖u‖2 > ‖u‖, ∀u ∈ Ek. (2.17)
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By (SF2), there exists r5 > 0 such that

F(x,u) > (p0 + 2)d2
k|u|

2 (2.18)

for all |u| 6 r5 and x ∈ [0, l]. Hence, for u ∈ Ek with ‖u‖ = lk = 1
2 min{1, r5

dk
}, applying (2.7), (2.17) and

(2.18), we have

I(u) 6
1
2
‖u‖2 +

p0 + 1
2
‖u‖2

2 −

∫ l
0
F(x,u)dx 6

p0 + 2
2
‖u‖2 − (p0 + 2)‖u‖2 = −

p0 + 2
2

l2k,

which implies that

{u ∈ Ek : ‖u‖ = lk} ⊂
{
u ∈ H1

l : I(u) 6 −
p0 + 2

2
l2k

}
.

Let Ak = {u ∈ H1
l : I(u) 6 −p0+2

2 l2k}, by the properties of genus we get that

γ(Ak) > γ({u ∈ Ek : ‖u‖ = lk}) > k,

which implies that Ak ∈ Γk and

sup
u∈Ak

I(u) 6 −
(p0 + 2)l2k

2
< 0.

By virtue of Theorem 1 (see [3] and its reference), we can see that I admits a sequence of critical points
{uk} such that I(uk) 6 0, uk 6= 0 and uk → 0 as k → ∞, when ‖uk‖ 6 δ

2τ∞ . In fact, I(u) = Φ(u) with
‖u‖ 6 δ

2τ∞ . Hence, the sequence of critical points {uk} satisfies Φ(uk) 6 0,uk 6= 0 and uk → 0 as k → ∞
with ‖uk‖ 6 δ

2τ∞ .
By the two cases we have discussed above, the proof of Theorem 1.4 is finished.

2.1.3. The asymptotically quadratic case
In this subsection, the space and space decomposition we talked about are same as those established

before. To get our next result, we should use the following inner product and norm

(u, v) = (|A|
1
2u, |A|

1
2 v)2 + (u0, v0)2, ‖u‖ = (u,u)

1
2 ,

where u = u− + u0 + u+ and v = v− + v0 + v+ with respect to the decomposition (2.2), the operator

A = −
d2

dt2 − p(x).

So the functional Φ defined on H1
l is

Φ(u) =
1
2

∫ l
0
(|u

′
|2 − 〈p(x)u,u〉)dx−Ψ(u) = 1

2
‖u+‖2 −

1
2
‖u−‖2 −Ψ(u) (2.19)

for all u = u− + u0 + u+ ∈ H1
l = H

−
⊕
H0⊕H+, where Ψ(u) =

∫l
0 F(x,u)dx.

Note that (AF1) and (AF3) imply

F(x,u) 6 C1(1 + |u|µ), ∀(x,u) ∈ [0, l]×R (2.20)

for some C1 > 0.

Proposition 2.5 ([24]). Suppose that (AF1) and (AF3) are satisfied. Then Ψ ∈ C1(H1
l, R) and Ψ

′
: H1
l → (H1

l)
∗ is

compact, and hence Φ ∈ C1(H1
l, R). Moreover,

Ψ
′
(u)v =

∫ l
0
〈f(x,u), v〉, (2.21)

Φ
′
(u)v = (u+, v+) − (u−, v−) −Ψ

′
(u)v (2.22)

for all u, v ∈ H1
l = H−

⊕
H0⊕H+ with u = u− + u0 + u+ and v = v− + v0 + v+, respectively, and critical
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points of Φ on H1
l are solutions of (1.1).

Let Xj=span{ej} for all j ∈ N, where {en : n ∈ N} is the system of eigenfunctions of A, and Yk =
k⊕
j=1
Xj,Zk =

∞⊕
j=k

Xj. Consider the following C1-functional Φλ : H1
l → R defined by

Φλ := A(u) − λB(u), λ ∈ [1, 2].

where

A(u) =
1
2
‖u+‖2, B(u) =

1
2
‖u−‖2 +

∫ l
0
F(x,u)dx. (2.23)

By virtue of Proposition 2.5, we know that Φλ ∈ C1(H1
l, R) for all λ ∈ [1, 2]. Note that Φ1 = Φ, where

Φ is the functional defined in (2.19).

Lemma 2.6. Let (AF1) and (AF3) hold. Then B(u) > 0 for all u ∈ H1
l and B(u) → ∞ as ‖u‖ → ∞ on any

finite-dimensional subspace of H1
l.

Proof. Obviously, (2.23) and (AF1) imply that B(u) > 0 for all u ∈ H1
l.

We claim that for any finite-dimensional subspace E ∈ H1
l, there exists a constant ε > 0 such that

meas ({x ∈ [0, l] : |u(x)| > ε‖u‖}) > ε, ∀u ∈ E\{0}, (2.24)

where meas(·) denotes the Lebesgue measure in R.
If this conclusion is not true, then for any n ∈N, there exists un ∈ E\{0} such that

meas
({
x ∈ [0, l] : |un(x)| >

‖un‖
n

})
<

1
n

.

Set vn = un
‖un‖ ∈ E for all n ∈N. Then {vn} is bounded, and

meas
({
x ∈ [0, l] : |vn(x)| >

1
n

})
<

1
n

, ∀n ∈N. (2.25)

Passing to a subsequence if necessary, we may assume vn → v0 in H1
l for some v0 ∈ E. Clearly, ‖v0‖ = 1,

and ∫ l
0
|vn − v0|dx→ 0 as n→∞, ‖v0‖∞ > 0. (2.26)

By the definition of norm ‖ · ‖∞, there exists a positive constant δ0 such that

meas({x ∈ [0, l] : |v0(x)| > δ0}) > δ0. (2.27)

For any n ∈N, set

Λn =

{
x ∈ [0, l] : |vn(x)| <

1
n

}
, Λcn = [0, l]\Λn.

Let Λ0 = {x ∈ [0, l] : |v0(x)| > δ0}. Applying (2.25) and (2.27), for n large enough, one has

meas(Λn ∩Λ0) > meas(Λ0) − meas(Λcn) > δ0 −
1
n

>
δ0

2
.

Evidently, for n large enough, we have∫ l
0
|vn − v0|dx >

∫
Λn∩Λ0

(|v0|− |vn|)dx > (δ0 −
1
n
) ·meas(Λn ∩Λ0) > 0,

which contradicts (2.26). So (2.24) holds.
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For the ε given in (2.24), set Λu = {x ∈ [0, l] : |u(x)| > ε‖u‖} for all u ∈ E\{0}. Using (2.24),

meas(Λu) > ε, ∀u ∈ E\{0}. (2.28)

Applying (AF3), there exists a constant R3 > R1 such that

F(x,u) >
d

2
|u|, ∀x ∈ [0, l] and |u| > R3, (2.29)

where R1 is given in (AF1). Observe that

|u(x)| > R3, ∀x ∈ Λu (2.30)

for any u ∈ E with ‖u‖ > R3
ε . By (AF1), (2.28)-(2.30), for any u ∈ E with ‖u‖ > R3

ε , we obtain

B(u) >
∫
Λu

F(x,u)dx > dε‖u‖ · meas(Λu)
2

>
dε2

2
‖u‖,

which implies B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace E ⊂ H1
l. The proof of lemma

2.6 is finished.

Lemma 2.7. Assume that (AF1)-(AF3) is satisfied. Then there exist a positive integer k1 and two sequences
0 < rk < ρk → 0 as k→∞ such that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) > 0, ∀k > k1, (2.31)

ξk(λ) := inf
u∈Zk,‖u‖6ρk

Φλ(u)→ 0 as k→∞ uniformly for λ ∈ [1, 2], (2.32)

and
βk(λ) := max

u∈Yk,‖u‖=rk
Φλ(u) < 0, ∀k ∈N, (2.33)

where Yk =
k⊕
j=1
Xj = span{e1, e2, · · · , ek} and Zk =

∞⊕
j=k

Xj = span{ek, · · · } for all k ∈N.

Proof.

Step 1. We show that (2.31) and (2.32) hold.
Note that Zk ⊂ H+ for k large enough. Due to (2.1), for any u ∈ H1

l with ‖u‖ 6 R2
τ∞ , one has ‖u‖∞ 6 R2,

where R2 and τ∞ are the constants given in (AF2) and (2.1), respectively. Then for k large enough and
u ∈ Zk with ‖u‖ 6 R2

τ∞ , by (AF2), we obtain

Φλ(u) >
1
2
‖u‖2 − 2

∫ l
0
F(x,u)dx >

1
2
‖u‖2 − 2c2‖u‖1, ∀λ ∈ [1, 2]. (2.34)

Let
lk = sup

u∈Zk,‖u‖=1
‖u‖1, ∀k ∈N, (2.35)

then
lk → 0, as k→∞. (2.36)

Since H1
l is compactly embedded into L1. Evidently, (2.34) and (2.35) imply

Φλ(u) >
1
2
‖u‖2 − 2c2lk‖u‖ (2.37)
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for any k large enough and u ∈ Zk with ‖u‖ 6 R2
τ∞ . For any k ∈N, let

ρk = 8c2lk. (2.38)

Combining this with (2.36), we get
ρk → 0 as k→∞. (2.39)

Clearly, there exists a positive integer k1 large enough such that

ρk <
R2

τ∞ , ∀k > k1. (2.40)

Using (2.37), (2.38), and (2.40), for any k > k1

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) >
ρ2
k

4
> 0.

By (2.37), for any k > k1 and u ∈ Zk with ‖u‖ 6 ρk, we have

Φλ(u) > −2c2lkρk.

Note that Φλ(0) = 0 , then

0 > inf
u∈Zk,‖u‖6ρk

Φλ(u) > −2c2lkρk, ∀k > k1.

Combining this with (2.36) and (2.39), we have

ξk(λ) := inf
u∈Zk,‖u‖6ρk

Φλ(u)→ 0 as k→∞ uniformly for λ ∈ [1, 2].

Step 2. We prove (2.33).
For any k ∈N, there exists a constant Ck > 0 such that

‖u‖2 > Ck‖u‖, ∀u ∈ Yk. (2.41)

Using (AF2), for any k ∈N, there exists a constant δk > 0 such that

F(x,u) >
1
C2
k

|u|2, ∀|u| 6 δk. (2.42)

By (2.1), for any k ∈N and u ∈ H1
l with ‖u‖ 6 δk

τ∞ , one has ‖u‖∞ 6 δk, where τ∞ is the constant in (2.1).
Applying (2.41) and (2.42), for any k ∈N and u ∈ Yk with ‖u‖ 6 δk

τ∞ , one has

Φλ(u) 6
1
2
‖u‖2 −

‖u‖2
2

C2
k

6 −
1
2
‖u‖2, ∀ λ ∈ [1, 2]. (2.43)

Now for any k ∈N, we choose 0 < rk < min{ρk, δkτ∞ }, thus

βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) 6 −
r2
k

2
< 0, ∀k ∈N.

The proof of this lemma is finished.

Proof of Theorem 1.6. By virtue of (2.20) and (2.1), Φλ maps bounded sets to bounded sets uniformly for
λ ∈ [1, 2]. Obviously, Φλ(−u) = Φλ(u) for all (λ,u) ∈ [1, 2]×H1

l since F(x,−u) = F(x,u). So, the condition
(T1) of the variant fountain theorem (see [26]) holds. Lemma 2.6 indicates that the condition (T2) is
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satisfied, and Lemma 2.7 implies that (T3) holds for all k > k1, where k1 is given in (2.42). Hence, by
virtue of the variant fountain theorem, for any k > k1, there exist λn → 1,uλn ∈ Yn such that

Φ
′
λn

|Yn (uλn) = 0, Φλn(uλn)→ ηk ∈ [ξk(2),βk(1)] as n→∞. (2.44)

For the sake of notational simplicity, throughout the remaining proof of Theorem 1.6 we always set
un = uλn for all n ∈N.

Claim 1. {un} is bounded in H1
l.

Obviously, for the constant R3 given in (2.29), there exists a constant M3 such that∣∣∣∣F(x,u) −
1
2
〈f(x,u),u〉

∣∣∣∣ 6M3, ∀x ∈ [0, l] and |u| 6 R3. (2.45)

By virtue of (2.21), (2.22), (2.29), (2.44), (2.45), and (AF1), we obtain

−Φλn(un) =
1
2
Φ ′λn |Yn (un)un −Φλn(un)

= λn

∫ l
0

[
F(x,un) −

1
2
〈f(x,un),un〉

]
dx

>
λn(2 − µ)

2

∫
Ln

F(x,un)dx− λnM3l

>
dλn(2 − µ)

4

∫
Ln

|un|dx− λnM3l, ∀n ∈N,

where Ln = {x ∈ [0, l] : |un(x)| > R3}. Combining this with (2.44), there exists a positive constant M4 such
that ∫

Ln

|un|dx 6M4, ∀n ∈N. (2.46)

For any n ∈N, let χn : [0, l]→ R be the indicator of Ln, that is for all n ∈N,

χn(x) =

{
1, x ∈ Ln,
0, x 6∈ Ln.

Then by the definition of Ln and (2.46), one has

‖(1 − χn)un‖∞ 6 R3 and ‖χnun‖1 6M4, ∀n ∈N.

Applying (2.1) and by Hölder inequality, we have

‖u−n + u0
n‖2 6 ‖(1 − χn)un‖∞‖u−n + u0

n‖1 + ‖χnun‖1‖u−n + u0
n‖∞

6 c3(R3 +M4)‖u−n + u0
n‖2, ∀n ∈N

for some c3 > 0. Thus, we obtain

‖u−n + u0
n‖2 6 c3(R3 +M4), ∀n ∈N.

In view of the equivalence of norms ‖ · ‖ and ‖ · ‖2 on H−
⊕
H0, there exists a positive constant M5 such

that
‖u−n + u0

n‖ 6M5, ∀n ∈N. (2.47)

Note that

‖u+n‖2 = 2Φλn(un) + λn‖u
−
n‖2 + 2λn

∫ l
0
F(x,un)dx, ∀n ∈N.
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Thus by (2.19), (2.20), (2.43), and (2.47), it holds that

‖un‖2 = 2Φλn(un) + λn‖u
−
n‖2 + ‖u−n + u0

n‖2 + 2λn
∫ l

0
F(x,un)dx

6M6 + 4C1τ
µ
µ‖un‖µµ, ∀n ∈N

(2.48)

for some M6 > 0, where τµ and C1 are the constants in (2.1) and (2.20), respectively. Since µ < 2 in (2.48),
{un} is bounded in H1

l.

Claim 2. {un} possesses a strong convergent subsequence in H1
l.

Actually, by Claim 1, without loss of generality, we can assume that

u−n → u−0 , u0
n → u0

0, u+n ⇀ u+0 , un ⇀ u0, as n→∞ (2.49)

for some u0 = u−0 + u0
0 + u

+
0 ∈ H1

l = H−
⊕
H0⊕H+ since dim(H−

⊕
H0) < ∞. In view of the Riesz

representation theorem, Φ
′
λn

|Yn : Yn → Y∗n and Ψ
′
: H1

l → (H1
l)
∗ can be considered as Φ

′
λn

|Yn : Yn → Yn

and Ψ
′
: H1
l → H1

l, respectively, where Y∗n is the dual space of Yn. Note that

0 = Φ
′
λn

|Yn (un) = u
+
n − λn(u

−
n + PnΨ

′
(un)), ∀n ∈N,

where Pn : H1
l → Yn is the orthogonal projection for all n ∈N. Thus

u+n = λn(u
−
n + PnΨ

′
(un)), ∀n ∈N. (2.50)

By Proposition 2.5, Ψ
′
: H1

l → H1
l is also compact. Since the compactness of Ψ

′
and (2.50), the right

hand side of (2.50) converges strongly in H1
l and u+n → u+0 in H1

l. Combining this with (2.49), we obtain
un → u0 in H1

l. Hence Claim 2 is true.
Now by the variant fountain theorem (see [1, 10, 26]), we know that Φ = Φ1 has infinitely many

nonzero critical points. Thus, problem (1.1) has infinitely many nonzero solutions due to Proposition 2.5.
The proof of Theorem 1.6 is finished.

2.2. Subharmonic solutions of elliptic equation
In this section, we assume p(x) = m2ω2, where m ∈ N, ω = 2π

l . Choose k ∈ N. Replacing l by
kl in the definitions of H1

l, Φ, Φ
′
, Q, H0, H−, and H+, we get the corresponding spaces and functions

H1
kl,Φk,Φ

′
k,Qk,H0

k,H−
k , and H+

k , respectively. Especially, according to p(x) = m2ω2, we get

H−
k =
{
Σkm−1
j=0 (aj cos jk−1ωx+ bj sin jk−1ωx) : aj,bj ∈ R, 0 6 j 6 km− 1

}
,

H0
k = {a cosmωx+ b sinmωx : a,b ∈ R} ,

H+
k =

{
u ∈ H1

kl :

∫kl
0
u(x) cos jk−1ωxdx =

∫kl
0
u(x) sin jk−1ωxdx = 0, 0 6 j 6 km

}
,

and we define H−
k = ∅ if m = 0. Let us point out that the norm ‖ · ‖ in the following is the usual norm

defined on H1
kl. Arguing as Section 2.1, we can find δk > 0 and Ck > 0 such that

Qk 6 −
δk
2
‖u‖2, if u ∈ H−

k , (2.51)

Qk >
δk
2
‖u‖2, if u ∈ H+

k , (2.52)

and
‖u‖∞ 6 Ck‖u‖, ∀u ∈ H1

kl. (2.53)
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Proof of Theorem 1.7.

Step 1. In a similar way as the proof of Lemma 2.3 with l replaced by kl, we can obtain that Φk satisfies
the (C) condition.

Step 2. We claim that there exist ρk > 0 and bk > 0 such that

Φk(u) > bk > 0, ∀u ∈ H+
k ∩ ∂Bρk .

Evidently, by virtue of (HF1) and the periodicity of F in x, for any ε > 0, there exists a positive constant
ρ1 such that

|F(x,u)| 6 εk|u|2 (2.54)

for all |u| 6 ρ1 and a.e. x ∈ [0, l]. Let εk = δk
4 > 0, ρk = min{1, ρ1

Ck
} > 0, and bk = δk

4 ρ
2
k > 0, using

(2.52)-(2.54), we obtain

Φk(u) >
δk
2
‖u‖2 − εk

∫kl
0

|u|2dx >
δk
4
‖u‖2 = bk

for all u ∈ H+
k ∩ ∂Bρk .

Step 3. Let
ek(x) = sin((km+ 1)k−1ωx)u0

for all x ∈ R and u0 ∈ R with |u0| = 1, where ω = 2π
l . Then, one has

e
′
k =

km+ 1
k

ω cos((km+ 1)k−1ωx)u0

for all x ∈ R, which implies

‖ek‖2
L2(0,kl;R) =

kl

2
,

and

‖e ′k‖2
L2(0,kl;R) =

(km+ 1)2

k2 ω2‖ek‖2
L2(0,kl;R).

Applying (HF4), for

ε0 = inf
x∈[0,l]

lim inf
|u|→∞

F(x,u)
|u|2

−
1 + 2m

2
ω2 > 0,

there exists a positive constant l4 such that

F(x,u) >
(

1 + 2m
2

ω2 + ε0

)
|u|2

for all |u| > l4 and a.e. x ∈ [0, l]. Therefore, due to (HF3) and the periodicity of F(·,u), we have

F(x,u) >
(

1 + 2m
2

ω2 + ε0

)
|u|2 −M7 (2.55)

for all u ∈N and a.e. x ∈ [0,kl], where M7 = (1+2m
2 ω2 + ε0)l

2
4.

By the properties of H−
k and H0

k, one has

‖u‖2 =

∫kl
0

|u|2dx+

∫kl
0

|u
′
|2dx 6 (1 +m2ω2)‖u‖2

L2 (2.56)

for all u ∈ H−
k

⊕
H0
k. Thus, combining (2.51) and (2.55) with (2.56), we get

Φk(sek + u) 6 −
δk
2
‖u−‖2 +

s2

2

∫kl
0

|e
′
k|

2dx−
m2ω2s2

2

∫kl
0

|ek|
2dx−

∫kl
0
F(x, sek + u)dx
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6
1
2
ω2s2

(
1 + 2km
k2

)
‖ek‖2

L2 −

(
1 + 2m

2
ω2 + ε0

)
(s2‖ek‖2

L2 + ‖u‖2
L2) + kM7l

6 −
1
2
ε0kls

2 −M8‖u‖2 + kM7l

for all s > 0 and u ∈ H−
k

⊕
H0
k, where M8 = ((1 + 2m)ω2/2 + ε0)/(1 +m2ω2).

Hence we have
Φk(sek + u) 6 0, either s > s1 or ‖u‖ > s2, (2.57)

where

s1 =

√
2M7

ε0
and s2 =

√
kM7l

M8
.

Let
Fk = {sek : 0 6 s 6 s1}

⊕{
u ∈ H−

k

⊕
H0
k : ‖u‖ 6 s2

}
. (2.58)

Thus
∂Fk = Fk1

⋃
Fk2

⋃
Fk3 ,

where
Fk1 =

{
u ∈ H−

k

⊕
H0
k : ‖u‖ 6 s2

}
,

Fk2 = s1ek
⊕{

u ∈ H−
k

⊕
H0
k : ‖u‖ 6 s2

}
,

Fk3 = {sek : 0 6 s 6 s1}
⊕{

u ∈ H−
k

⊕
H0
k : ‖u‖ = s2

}
.

By virtue of (2.57), one has
Φk(u) 6 0, ∀u ∈ Fk2

⋃
Fk3 .

Applying (HF3), it holds that Φk(u) 6 0 for all u ∈ H−
k

⊕
H0
k, which implies that

Φk(u) 6 0, ∀u ∈ Fk1 .

Therefore,
Φk(u) 6 0, ∀u ∈ ∂Fk.

Finally, by the generalized mountain pass theorem (see [11, 14, 17, 18, 27]), for a given k ∈ N, there
exists a critical point uk ∈ H1

kl such that Φk(uk) > 0.

Step 4. We claim that (1.1) has infinitely many subharmonic solutions.
If uk = u1 for some k > 1, it is easy to see that

Φk(uk) = kΦ1(u1)→ +∞, as k→∞. (2.59)

Note that

Φk(uk) 6 sup
u∈Fk

(
s2

2

∫kl
0

|e
′
k|

2dx−
m2ω2s2

2

∫kl
0

|ek|
2dx−

∫kl
0
F(x,u)dx

)
6

(
1 + 2m

2ε0

)
ω2M3l,

where Fk is the same as (2.58). This is a contradiction to (2.59). Hence, Φk(uk) is bounded for all k and
there exists a constant k1 ∈N such that uk 6= u1 for all k > k1. Repeating what we have just shown, there
exists a k2 > k1 such that uk1k 6= uk1 for all k1k > k2. If it is not true, then Φk1k(uk1k) = kΦk1(uk1)→∞
as k→∞, which contradicts that Φk1k(uk1k) is bounded. In a similar way, we can get a sequence {ukj} of
distinct nontrivial solutions of problem (1.1). The proof of Theorem 1.7 is finished.

Acknowledgment

This work was supported financially by the National Natural Science Foundation of China (11471187,
11571197). The authors thank the editor and the referees for careful reading and efforts to this paper.



X. Wang, A. Qian, J. Nonlinear Sci. Appl., 10 (2017), 6229–6245 6245

References

[1] Y.-H. Ding, X.-Y. Liu, Periodic solutions of a Dirac equation with concave and convex nonlinearities, J. Differential
Equations, 258 (2015), 3567–3588. 1, 2.1.3

[2] R. Hakl, M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differential Equations, 263
(2017), 451–469. 1

[3] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations,
J. Funct. Anal., 225 (2005), 352–370. 1.5, 2.1.2
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