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Abstract
We perform a full Lie point symmetry analysis of difference equations of the form

un+6 =
unun+4

un+2(An +Bnunun+4)
,

where the initial conditions are non-zero real numbers. Consequently, we obtain four non-trivial symmetries. Eventually, we get
solutions of the difference equation for random sequences (An) and (Bn). This work is a generalization of a recent result by
Khaliq and Elsayed [A. Khaliq, E. M. Elsayed, J. Nonlinear Sci. Appl., 9 (2016), 1052–1063]. c©2017 All rights reserved.
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1. Introduction

In the past years, after the work of Lie [12] on differential equations, several researchers became
interested in symmetries. Lie studied the group of mappings which leaves the differential equations
invariant. The notion of symmetry is linked to conservation laws and the link between them has sparked
great interest in researchers following the work of Noether [14]. It is a clear fact that as long as the
symmetries and first integrals are related through the condition of invariance, one can execute the double
reduction of the differential equations [13, 16]. The symmetry method has been used to find traveling
wave solutions. For more on traveling waves, refer to [2, 17, 18] and [19]. The idea of symmetry method
has been extended to difference equations and we refer the reader to [3–6, 11, 15] and references therein.
Hydon [6] came up with a symmetry based procedure which makes it possible for one to find solutions of
difference equations without trial and error. Much as Hydon, in his book [6], put emphasis on difference
equations of second order, his algorithm works for any order. Unfortunately in such higher-order cases,
computations are usually cumbersome and so certain assumptions are made to ease the computation.
When this method is employed, we expect single solutions with fewer constraints on initial conditions.
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Our work is inspired by the results of Khaliq and Elsayed [9] where the following difference equation
was studied

xn+1 =
xn−1xn−5

xn−3(±1± xn−1xn−5)
, (1.1)

where x−5, x−4, x−3, x−2, x−1 and x0 are initial conditions and are positive real numbers. It is clear that
(1.1) is specific case of a general form

xn+1 =
xn−1xn−5

xn−3(an + bnxn−1xn−5)
, (1.2)

where (an) and (bn) are real sequences. Our goal is to use a symmetry based method to solve the more
general difference equation (1.2). For definiteness, we study the equation

un+6 =
unun+4

un+2(An +Bnunun+4)
,

instead.
For related work, refer to [1, 7, 8] and [10].

2. Preliminaries

In this section, we follow definitions and notation from [6].

Definition 2.1. A parameterized set of point transformations,

Γε : x 7→ x̂(x; ε),

where x = xi, i = 1, · · · ,p are continuous variables, is a one-parameter local Lie group of transformations
if the following conditions are satisfied:

1. Γ0 is the identity map if x̂ = x when ε = 0.
2. ΓaΓb = Γa+b for every a and b sufficiently close to 0.
3. Each x̂i can be represented as a Taylor series (in a neighborhood of ε = 0 that is determined by x),

and therefore

x̂i(x : ε) = xi + εξi(x) +O(ε
2), i = 1, · · · ,p.

Given the p-th-order difference equation

un+p = ω(un, · · · ,un+p−1) (2.1)

for some function ω. We confine ourselves to symmetries where ûn depends on n and un only. Suppose
that the point transformations take the following shape:

n̂ = n, ûn = un + εQ(n,un). (2.2)

Thus the symmetry condition is defined as

ûn+p = ω(n, ûn, ûn+1, · · · , ûn+p−1), (2.3)

whenever (2.1) is true. Performing a substitution of Lie point symmetries (2.2) into the condition (2.3)
results in the symmetry condition

S(p)Q−Xω = 0, (2.4)

whenever (2.1) holds, in which S is the shift operator, that is, S : n 7→ n+ 1. With the following known
infinitesimal symmetry generator

X =Q(n,un)
∂

∂un
+ SQ(n,un)

∂

∂un+1
+ · · ·+ Sn+p−1Q(n,un)

∂

∂un+p−1
,

it is important to take the canonical coordinate into consideration

sn =

∫
dun

Q(n,un)
.
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3. Symmetries and exact solutions

Considering the sixth-order difference equation of the form

un+6 =
unun+4

un+2(An +Bnunun+4)
. (3.1)

Imposing the symmetry condition (2.4) and with a bit of simplification, we get

Q(n+ 6,un+6) −
Anun

un+2(Bnunun+4 +An)2Q(n+ 4,un+4)

+
unun+4

un+22(Bnunun+4 +An)
Q(n+ 2,un+2) −

Anun+4

un+2(Bnunun+4 +An)2Q(n,un) = 0.
(3.2)

In solving for the characteristic function, differentiate (3.2) with respect to un (keeping ω fixed) and
consider un+2 as a function of un,un+4 and ω. This yields

Bnun+4unun+2
∂

∂un+2
Q (n+ 2,un+2) −Bnun+4unun+2

∂

∂un
Q (n,un)

−Bnun+4unQ (n+ 2,un+2) +Bnunun+2Q (n+ 4,un+4)

+ 2Bnun+4un+2Q (n,un) +Anun+2
∂

∂un+2
Q (n+ 2,un+2)

−Anun+2
∂

∂un
Q (n,un) −AnQ (n+ 2,un+2) +

Anun+2

un
Q (n,un) = 0.

(3.3)

We now proceed by differentiating (3.3) with respect to un twice (keeping un+2 fixed) and obtain

−Bnun+4un
∂3

∂un
3Q (n,un) −An

∂3

∂un
3Q (n,un) +

An

un

∂2

∂un
2Q (n,un)

−
2An
u2
n

∂

∂un
Q (n,un) +

2An
u3
n

Q (n,un) = 0.

The equation above is solved by separation of variables in powers of shifts of un. Thus we have
un+4 : −BnunQ

(3) = 0,

1 : −AnQ
(3) +

An

un
Q(2) −

2An
un2 Q

(1) +
2An
un3 Q = 0,

which has the solution

Q = Q (n,un) = αnun2 +βnun, (3.4)

where αn and βn are some functions of n. We then substitute (3.4) in (3.2) and split the result so that the
following is obtained: 

un+4
2un

2un+2
2 : Bnαn+2 = 0,

un+4
2un

2un+2 : Bn(βn+2 +βn+6) = 0,

un+4
2unun+2 : Anαn+4 = 0,

un+4un
2un+2 : Anαn = 0,

un+4unun+2
2 : Anαn+2 = 0,

un+4
2un

2 : αn+6 = 0,
un+4unun+2 : An (−βn +βn+2 −βn+4 +βn+6) = 0.

(3.5)
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The system above (3.5) has solutions

αn =0, and

βn =

(
−

√
2

2
− i

√
2

2

)n
c1 +

(
−

√
2

2
+ i

√
2

2

)n
c2 +

(√
2

2
− i

√
2

2

)n
c3 +

(√
2

2
+ i

√
2

2

)n
c4

for some arbitrary constants ci, i = 1, · · · , 4. So we obtain four characteristics and their corresponding
generators are as follows:

X1 =(−1)nβnun∂un − (−1)nβn+1un+1∂un+1 + (−1)nβn+2un+2∂un+2

− (−1)nβn+3un+3∂un+3 + (−1)nβn+4un+4∂un+4 − (−1)nβn+5un+5∂un+5 ,

X2 =(−1)nβ̄nun∂un − (−1)nβ̄n+1un+1∂un+1 + (−1)nβ̄n+2un+2∂un+2

− (−1)nβ̄n+3un+3∂un+3 + (−1)nβ̄n+4un+4∂un+4 − (−1)nβ̄n+5un+5∂un+5 ,

X3 =β̄nun∂un + β̄n+1un+1∂un+1 + β̄
n+2un+2∂un+2 + β̄

n+3un+3∂un+3

+ β̄n+4un+4∂un+4 + β̄
n+5un+5∂un+5 ,

X4 =βnun∂un +βn+1un+1∂un+1 +β
n+2un+2∂un+2 +β

n+3un+3∂un+3

+βn+4un+4∂un+4 +β
n+5un+5∂un+5 ,

in which β = exp
(
πi
4

)
.

Now, utilizing X4, we introduce the canonical coordinate

sn =

∫
dun

βnun
= β̄n ln |un|.

Set

Ṽn = βn+4sn+4 +β
nsn,

and

|Vn| = exp{−Ṽn},

i.e., Vn = ±1/(unun+4) but we choose Vn = 1/(unun+4). Using (3.1), one can check that

Vn+2 = AnVn +Bn,

and thus

V2n+k = Vk

n−1∏
k1=0

A2k1+k

+

n−1∑
l=0

B2l+k

n−1∏
k2=l+1

A2k2+k

 , k = 0, 1. (3.6)

We have that
|un| = exp {βnsn}

= expβn
(
c6 + i

nc7 + (−1)nc8 + (−i)nc9 +
1
4

[ n−1∑
k1=0

rk1 + i
n
n−1∑
k2=0

(−i)k2rk2

+ (−1)n
n−1∑
k3=0

(−1)k3rk3 + (−i)n
n−1∑
k4=0

(i)k4rk4 +

])

= expβn
(
c6 + i

nc7 + (−1)nc8 + (−i)nc9 +
1
4

[ n−1∑
k1=0

β̄k1 ln |Vk1 |+ i
n
n−1∑
k2=0

(−i)k2 β̄k2 ln |Vk2 |

+ (−1)n
n−1∑
k3=0

(−1)k3 β̄k3 ln |Vk3 |+ (−i)n
n−1∑
k4=0

(i)k4 β̄k4 ln |Vk4 |

])
,

(3.7)
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|un| = exp

(
1
2

n−1∑
k1=0

[1 + (−1)n+k1 ]Re(γ(n,k1)) ln |Vk1 |+β
nc6 + (−β̄)nc7 + (−1)nβnc8 + β̄

nc9

)
, (3.8)

where Vk is given in (3.6) with γ(n,k) = βnβ̄k. Observe that c6, c7, c8 and c9 satisfy

c6 + c7 + c8 + c9 = ln |u0|, (3.9)
βc6 − β̄c7 −βc8 + β̄c9 = ln |u1|, (3.10)

β2c6 + β̄
2c7 +β

2c8 + β̄
2c9 = ln |u2|, (3.11)

β3c6 − β̄
3c7 −β

3c8 + β̄
3c9 = ln |u3|. (3.12)

Equations (3.7), (3.8), (3.9), (3.10), (3.11), (3.12) give the solutions of (3.1).
The function γ(n,k) = βnβ̄k is such that

γ(0, 1) = β̄, γ(0, 2) = −i, γ(0, 3) = −β, γ(1, 0) = β, γ(1, 2) = β̄, γ(1, 3) = −i, γ(2, 0) = i,
γ(2, 1) = β, γ(2, 3) = β̄, γ(3, 0) = −β̄, γ(3, 1) = i, γ(3, 2) = β, γ(n,n) = 1,
γ(n+ 4,k) = −γ(n,k), γ(n,k+ 4) = −γ(n,k), γ(8n,k) = γ(0,k), γ(n, 8k) = γ(n, 0).

(3.13)

From (3.13), we note that

|u8n+j| = exp

Hj + 1
2

8n+j−1∑
k1=0

[1 + (−1)n+k1 ]Re(γ(n,k1)) ln |Vk1 |

 , (3.14)

where
Hj = β

jc6 + (−1)jβ̄jc7 + (−1)jβjc8 + β̄
jc9.

For j = 0, we have

|u8n| = exp(H0 + ln |V0|− ln |V4|+ ln |V8|− ln |V12|+ · · ·+ ln |V8n−8|− ln |V8n−4|) = exp(H0)

n−1∏
s=0

∣∣∣∣ V8s

V8s+4

∣∣∣∣ .
One can show that there is no need for the absolute values by using the fact that

Vi =
1

uiui+4
. (3.15)

To find exp(H0), we set n = 0 in (3.14) and observe that |u0| = exp(H0). Thus

u8n = u0

n−1∏
s=0

V8s

V8s+4
.

Clearly, 8s = 2(4s) + 0 so that i = 0 and n = 4s in (3.6). From (3.6), we obtain

V8s = V0

4s−1∏
k1=0

A2k1 +
1
V0

4s−1∑
l=0

B2l

4s−1∏
k2=l+1

A2k2


=

1
u0u4

4s−1∏
k1=0

A2k1 + u0u4

4s−1∑
l=0

B2l

4s−1∏
k2=l+1

A2k2

 ,

using (3.15). Similarly, we have

V8s+4 =
1

u0u4

4s+1∏
k1=0

A2k1 + u0u4

4s+1∑
l=0

B2l

4s−1∏
k2=l+1

A2k2

 ,
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so that

u8n = u0

n−1∏
s=0

∏4s−1
k1=0A2k1 + u0u4

∑4s−1
l=0 B2l

∏4s−1
k2=l+1A2k2∏4s+1

k1=0A2k1 + u0u4
∑4s+1
l=0 B2l

∏4s+1
k2=l+1A2k2

.

Hence

x8n−5 = x−5

n−1∏
s=0

∏4s−1
k1=0A2k1 + x−5x−1

∑4s−1
l=0 B2l

∏4s−1
k2=l+1A2k2∏4s+1

k1=0A2k1 + x−5x−1
∑4s+1
l=0 B2l

∏4s+1
k2=l+1A2k2

. (3.16)

For j = 1, (3.14) becomes

|u8n+1| = exp(H1) exp(ln |V1|− ln |V5|+ ln |V9|− ln |V13|+ · · ·+ ln |V8n−7|− ln |V8n−3|).

However, using (3.14) with j = 1,n = 0, |u1| = exp(H1). Thus

u8n+1 = u1

n−1∏
s=0

V8s+1

V8s+5
.

By (3.6), we have

V8s+1 = V1

4s−1∏
k1=0

A2k1+1 +
1
V1

4s−1∑
l=0

B2l+1

4s−1∏
k2=l+1

A2k2


=

1
u1u5

4s−1∏
k1=0

A2k1+1 + u1u5

4s−1∑
l=0

B2l+1

4s−1∏
k2=l+1

A2k2+1

 ,

and similarly,

V8s+5 =
1

u1u5

4s+1∏
k1=0

A2k1+1 + u1u5

4s+1∑
l=0

B2l+1

4s+1∏
k2=l+1

A2k2+1

 .

Now

u8n+1 = u1

n−1∏
s=0

∏4s−1
k1=0A2k1+1 + u1u5

∑4s−1
l=0 B2l+1

∏4s−1
k2=l+1A2k2+1∏4s+1

k1=0A2k1+1 + u1u5
∑4s+1
l=0 B2l+1

∏4s+1
k2=l+1A2k2+1

,

which implies that

x8n−4 = x−4

n−1∏
s=0

∏4s−1
k1=0A2k1+1 + x−4x0

∑4s−1
l=0 B2l+1

∏4s−1
k2=l+1A2k2+1∏4s+1

k1=0A2k1+1 + x−4x0
∑4s+1
l=0 B2l+1

∏4s+1
k2=l+1A2k2+1

. (3.17)

For j = 2, we find that (3.14) becomes

|u8n+2| = exp(H2) exp(ln |V2|− ln |V6|+ ln |V10|− · · ·+ ln |V8n−6|− ln |V8n−2|).

Similar to the earlier cases, setting n = 0 and j = 2 yields the equation |u2| = exp(H2). So we have

u8n+2 = u2

n−1∏
s=0

V8s+2

V8s+6
.

The expressions for V8s+2 and V8s+6 are obtained from (3.6), by setting n = 4s+ 1, i = 0 and
n = 4s+ 3, i = 0, respectively. They are as follows:

V8s+2 = V0

 4s∏
k1=0

A2k1 +
1
V0

4s∑
l=0

B2l

4s∏
k2=l+1

A2k2


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=
1

u0u4

 4s∏
k1=0

A2k1 + u0u4

4s∑
l=0

B2l

4s∏
k2=l+1

A2k2

 ,

and

V8s+6 = V0

4s+2∏
k1=0

A2k1 +
1
V0

4s+2∑
l=0

B2l

4s∏
k2=l+1

A2k2


=

1
u0u4

4s+2∏
k1=0

A2k1 + u0u4

4s+2∑
l=0

B2l

4s+2∏
k2=l+1

A2k2

 .

Hence

u8n+2 = u2

n−1∏
s=0

∏4s
k1=0A2k1 + u0u4

∑4s
l=0 B2l

∏4s
k2=l+1A2k2∏4s+2

k1=0A2k1 + u0u4
∑4s+2
l=0 B2l

∏4s+2
k2=l+1A2k2

,

which gives

x8n−3 = x−3

n−1∏
s=0

∏4s
k1=0A2k1 + x−5x−1

∑4s
l=0 B2l

∏4s
k2=l+1A2k2∏4s+2

k1=0A2k1 + x−5x−1
∑4s+2
l=0 B2l

∏4s+2
k2=l+1A2k2

. (3.18)

For j = 3, we find that (3.14) becomes

|u8n+3| = exp(H3) exp(ln |V3|− ln |V7|+ ln |V11|− · · ·+ ln |V8n−5|− ln |V8n−1|).

Setting n = 0 and j = 3, we find that |u3| = exp(H3), hence

u8n+3 = u3

n−1∏
s=1

V8s+3

V8s+7
.

Following a similar approach as was done in the earlier cases (j = 0, 1, 2), the reader can verify that

u8n+3 = u3

n−1∏
s=0

∏4s
k1=0A2k1+1 + u1u5

∑4s
l=0 B2l+1

∏4s
k2=l+1A2k2+1∏4s+2

k1=0A2k1+1 + u1u5
∑4s+2
l=0 B2l+1

∏4s+2
k2=l+1A2k2+1

.

Thus

x8n−2 = x−2

n−1∏
s=0

∏4s
k1=0A2k1+1 + x−4x0

∑4s
l=0 B2l+1

∏4s
k2=l+1A2k2+1∏4s+2

k1=0A2k1+1 + x−4x0
∑4s+2
l=0 B2l+1

∏4s+2
k2=l+1A2k2+1

. (3.19)

For j = 4, (3.14) becomes

|u8n+4| = exp(H4) exp(− ln |V0|+ ln |V4|− ln |V8|+ · · ·+ ln |V8n−4|− ln |V8n|).

Setting j = 0 and n = 0 in (3.14) yields |u4| = exp(H4) exp(− ln |V0|), so that exp(H4) = |u4||V0|. Thus

u8n+4 = u4

n−1∏
s=1

V8s+4

V8s+8
.

As before, similar steps can be carried out and one obtains

u8n+4 = u4

n−1∏
s=0

∏4s+1
k1=0A2k1 + u0u4

∑4s+1
l=0 B2l

∏4s+1
k2=l+1A2k2∏4s+3

k1=0A2k1 + u0u4
∑4s+3
l=0 B2l

∏4s+3
k2=l+1A2k2

,
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which yields

x8n−1 = x−1

n−1∏
s=0

∏4s+1
k1=0A2k1 + x−5x−1

∑4s+1
l=0 B2l

∏4s+1
k2=l+1A2k2∏4s+3

k1=0A2k1 + x−5x−1
∑4s+3
l=0 B2l

∏4s+3
k2=l+1A2k2

. (3.20)

For j = 5, (3.14) becomes

|u8n+5| = exp(H5) exp(− ln |V1|+ ln |V5|− ln |V9|+ · · ·+ ln |V8n−3|− ln |V8n+1|).

But setting n = 0 and j = 5 in the same equation (3.14), we get |u5| = exp(− ln |V1|) exp(H5) so that
exp(H5) = |u5||V1|. Thus

u8n+5 = u5

n−1∏
s=0

V8s+5

V8s+9
.

After performing similar substitutions as before, we get

u8n+5 = u5

n−1∏
s=0

∏4s+1
k1=0A2k1+1 + u1u5

∑4s+1
l=0 B2l+1

∏4s+1
k2=l+1A2k2+1∏4s+3

k1=0A2k1+1 + u1u5
∑4s+3
l=0 B2l+1

∏4s+3
k2=l+1A2k2+1

,

which leads to

x8n = x0

n−1∏
s=0

∏4s+1
k1=0A2k1+1 + x−4x0

∑4s+1
l=0 B2l+1

∏4s+1
k2=l+1A2k2+1∏4s+3

k1=0A2k1+1 + x−4x0
∑4s+3
l=0 B2l+1

∏4s+3
k2=l+1A2k2+1

. (3.21)

For j = 6 and n = 0, (3.14) becomes |u6| = exp(H6) exp(− ln |V2|), i.e., exp(H6) = |u6||V2|. However, setting
j = 6 in the same equation, we get

|u8n+6| = exp(H6) exp(− ln |V2|+ ln |V6|− ln |V10|+ · · ·+ ln |V8n−2|− ln |V8n+2|).

We have

u8n+6 = u6

n−1∏
s=0

V8s+6

V8s+10
.

The reader can verify that

u8n+6 = u6

n−1∏
s=0

∏4s+2
k1=0A2k1 + u0u4

∑4s+2
l=0 B2l

∏4s+2
k2=l+1A2k2∏4s+4

k1=0A2k1 + u0u4
∑4s+4
l=0 B2l

∏4s+4
k2=l+1A2k2

,

which gives

x8n+1 = x1

n−1∏
s=0

∏4s+2
k1=0A2k1 + x−5x−1

∑4s+2
l=0 B2l

∏4s+2
k2=l+1A2k2∏4s+4

k1=0A2k1 + x−5x−1
∑4s+4
l=0 B2l

∏4s+4
k2=l+1A2k2

.

Since x1 = x−1x−5
x−3(a0+b0x−1x−5)

, we have

x8n+1 =
x−1x−5

x−3(a0 + b0x−1x−5)

n−1∏
s=0

∏4s+2
k1=0A2k1 + x−5x−1

∑4s+2
l=0 B2l

∏4s+2
k2=l+1A2k2∏4s+4

k1=0A2k1 + x−5x−1
∑4s+4
l=0 B2l

∏4s+4
k2=l+1A2k2

. (3.22)

For j = 7, (3.14) becomes

|u8n+7| = exp(H7) exp(− ln |V3|+ ln |V7|− ln |V11|+ · · ·+ ln |V8n−1|− ln |V8n+3|).

By setting n = 0 and j = 7 in (3.14), we get |u7| = exp(− ln |V3|) exp(H7) so that exp(H7) = |u7||V3|. Hence

u8n+7 = u7

n−1∏
s=0

V8s+7

V8s+11
.
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After replacing Vi’s with their appropriate expressions as done before, we get

u8n+7 = u7

n−1∏
s=0

∏4s+2
k1=0A2k1+1 + u1u5

∑4s+2
l=0 B2l+1

∏4s+2
k2=l+1A2k2+1∏4s+4

k1=0A2k1+1 + u1u5
∑4s+4
l=0 B2l+1

∏4s+4
k2=l+1A2k2+1

,

which implies that

x8n+2 = x2

n−1∏
s=0

∏4s+2
k1=0A2k1+1 + x−4x0

∑4s+2
l=0 B2l+1

∏4s+2
k2=l+1A2k2+1∏4s+4

k1=0A2k1+1 + x−4x0
∑4s+4
l=0 B2l+1

∏4s+4
k2=l+1A2k2+1

.

Since x2 = x0x−4
x−2(a1+b2x0x−4)

, we have

x8n+2 =
x0x−4

x−2(a1 + b1x0x−4)

n−1∏
s=0

∏4s+2
k1=0A2k1+1 + x−4x0

∑4s+2
l=0 B2l+1

∏4s+2
k2=l+1A2k2+1∏4s+4

k1=0A2k1+1 + x−4x0
∑4s+4
l=0 B2l+1

∏4s+4
k2=l+1A2k2+1

.

Remark 3.1. It is important to make sure that the denominators in the expressions for x8n+j where
j = −5,−4, · · · , 2 are non-zero so that the solution is well-defined.

4. The case when Aj and Bj are 2-periodic sequences

We assume that {Aj}j>0 = {A0,A1,A0, · · · } where A0 6= A1, and {B}j>0 = {B0,B1,B0,B1, · · · } with
B0 6= B1. Then after substitution, (3.16), (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22) become

x8n−5 = x−5

n−1∏
s=0

A4s
0 + x−5x−1B0

∑4s−1
j=0 A

j
0

A4s+2
0 + x−5x−1B0

∑4s+1
j=0 A

j
0

, x8n−4 = x−4

n−1∏
s=0

A4s
1 + x−4x0B1

∑4s−1
j=0 A

j
1

A4s+2
1 + x−4x0B1

∑4s+1
j=0 A

j
1

,

x8n−3 = x−3

n−1∏
s=0

A4s+1
0 + x−5x−1B0

∑4s
j=0A

j
0

A4s+3
0 + x−5x−1B0

∑4s+2
j=0 A

j
0

, x8n−2 = x−2

n−1∏
s=0

A4s+1
1 + x−4x0B1

∑4s
j=0A

j
1

A4s+3
1 + x−4x0B1

∑4s+2
j=0 A

j
1

,

x8n−1 = x−1

n−1∏
s=0

A4s+2
0 + x−5x−1B0

∑4s+1
j=0 A

j
0

A4s+4
0 + x−5x−1B0

∑4s+3
j=0 A

j
0

, x8n = x0

n−1∏
s=0

A4s+2
1 + x−4x0B1

∑4s+1
j=0 A

j
1

A4s+4
1 + x−4x0B1

∑4s+3
j=0 A

j
1

,

x8n+1 = x1

n−1∏
s=0

A4s+3
0 + x−5x−1B0

∑4s+2
j=0 A

j
0

A4s+5
0 + x−5x−1B0

∑4s+4
j=0 A

j
0

, x8n+2 = x2

n−1∏
s=0

A4s+3
1 + x−4x0B1

∑4s+2
j=0 A

j
1

A4s+5
1 + x−4x0B1

∑4s+4
j=0 A

j
1

,

where x1 = x1x−5
x−3(A0+B0x−1x−5)

and x2 = x0x−4
x−2(A1+B1x0x−4)

.
The solution is only valid when the denominator in each of the solution equations above is non-zero.

To state this precisely, define h(s, j, i), for i = 0, 1, as follows:

h(s, j, i) =


A

4s+j−1
i (1−Ai)
Bi(1−A4s+j+1

i )
, Ai 6= 1,

1
Bi(4s+j+1) , Ai = 1.

Thus the solution is well-defined if

x−2x−3

(
x−4x0 +

A1

B1

)(
x−1x−5 +

A0

B0

) 4∏
j=1

(x−4x0 + h(s, j, 1))(x−1x−5 + h(s, j, 0)) 6= 0,

for all s = 1, 2, · · · ,n− 1.
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5. The case where Aj and Bj are 1-periodic sequences

In this setting we assume that Aj = A0, and Bj = B0 for all j. The solution is found by replacing A1
and B1 with A0 and B0, respectively in the solution equations for Section 4. We find the following solution
equations:

x8n−5 = x−5

n−1∏
s=0

A4s
0 + x−5x−1B0

∑4s−1
j=0 A

j
0

A4s+2
0 + x−5x−1B0

∑4s+1
j=0 A

j
0

, x8n−4 = x−4

n−1∏
s=0

A4s
0 + x−4x0B0

∑4s−1
j=0 A

j
0

A4s+2
0 + x−4x0B0

∑4s+1
j=0 A

j
0

,

x8n−3 = x−3

n−1∏
s=0

A4s+1
0 + x−5x−1B0

∑4s
j=0A

j
0

A4s+3
0 + x−5x−1B0

∑4s+2
j=0 A

j
0

, x8n−2 = x−2

n−1∏
s=0

A4s+1
0 + x−4x0B0

∑4s
j=0A

j
0

A4s+3
0 + x−4x0B0

∑4s+2
j=0 A

j
0

,

x8n−1 = x−1

n−1∏
s=0

A4s+2
0 + x−5x−1B0

∑4s+1
j=0 A

j
0

A4s+4
0 + x−5x−1B0

∑4s+3
j=0 A

j
0

, x8n = x0

n−1∏
s=0

A4s+2
0 + x−4x0B0

∑4s+1
j=0 A

j
0

A4s+4
0 + x−4x0B0

∑4s+3
j=0 A

j
0

,

x8n+1 = x1

n−1∏
s=0

A4s+3
0 + x−5x−1B0

∑4s+2
j=0 A

j
0

A4s+5
0 + x−5x−1B0

∑4s+4
j=0 A

j
0

, x8n+2 = x2

n−1∏
s=0

A4s+3
0 + x−4x0B0

∑4s+2
j=0 A

j
0

A4s+5
0 + x−4x0B0

∑4s+4
j=0 A

j
0

,

where x1 = x1x−5
x−3(A0+B0x−1x−5)

and x2 = x0x−4
x−2(A0+B0x0x−4)

.
We also notice that the solution is well-defined if

x−2x−3

(
x−4x0 +

A0

B0

)(
x−1x−5 +

A0

B0

) 4∏
j=1

(x−4x0 + h(s, j, 0))(x−1x−5 + h(s, j, 0)) 6= 0

for all s = 1, 2, · · · ,n− 1, where the definition of h(s, j, i) is given in the previous section.

5.1. The case of Aj = Bj = −1
In this case, set A0 = B0 = −1 in the above equations. This yields the following solution equations,

which appear in [9, Theorem 5.1].

x8n−5 = x−5, x8n−4 = x−4, x8n−3 = x−3,
x8n−2 = x−2, x8n−1 = x−1, x8n = x0,

x8n+1 =
x1x−5

x−3(−1 − x−1x−5)
, x8n+2 =

x0x−4

x−2(−1 − x0x−4)
.

5.2. The case of Aj = −1 and Bj = 1
This case yields the following solution equations which appear in [9, Theorem 3.1].

x8n−5 = x−5, x8n−4 = x−4, x8n−3 = x−3,
x8n−2 = x−2, x8n−1 = x−1, x8n = x0,

x8n+1 =
x1x−5

x−3(−1 + x−1x−5)
, x8n+2 =

x0x−4

x−2(−1 + x0x−4)
.

5.3. The case of Aj = 1 and Bj = −1
Our general solution yields the following solution equations which appear in [9, Theorem 4.1].

x8n−5 = x−5

n−1∏
s=0

1 − x−5x−14s
1 − x−5x−1(4s+ 2)

, x8n−4 = x−4

n−1∏
s=0

1 − x−4x04s
1 − x−4x0(4s+ 2)

,

x8n−3 = x−3

n−1∏
s=0

1 − x−5x−1(4s+ 1)
1 − x−5x−1(4s+ 3)

, x8n−2 = x−2

n−1∏
s=0

1 − x−4x0(4s+ 1)
1 − x−4x0(4s+ 3)

,
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x8n−1 = x−1

n−1∏
s=0

1 − x−5x−1(4s+ 2)
1 − x−5x−1(4s+ 4)

, x8n = x0

n−1∏
s=0

1 − x−4x0(4s+ 2)
1 − x−4x0(4s+ 4)

,

x8n+1 = x1

n−1∏
s=0

1 − x−5x−1(4s+ 3)
1 − x−5x−1(4s+ 5)

, x8n+2 = x2

n−1∏
s=0

1 − x−4x0(4s+ 3)
1 − x−4x0(4s+ 5)

,

where x1 = x1x−5
x−3(1−x−1x−5)

and x2 = x0x−4
x−2(1−x0x−4)

.

5.4. The case of Aj = Bj = 1
This case yields the following solution equations which appear in [9, Theorem 2.1].

x8n−5 = x−5

n−1∏
s=0

1 + x−5x−14s
1 + x−4x0(4s+ 2)

, x8n−4 = x−4

n−1∏
s=0

1 + x−4x04s
1 + x−4x0(4s+ 2)

,

x8n−3 = x−3

n−1∏
s=0

1 + x−5x−1(4s+ 1)
1 + x−5x−1(4s+ 3)

, x8n−2 = x−2

n−1∏
s=0

1 + x−4x0(4s+ 1)
1 + x−4x0(4s+ 3)

,

x8n−1 = x−1

n−1∏
s=0

1 + x−5x−1(4s+ 2)
1 + x−5x−1(4s+ 4)

, x8n = x0

n−1∏
s=0

1 + x−4x0(4s+ 2)
1 + x−4x0(4s+ 4)

,

x8n+1 = x1

n−1∏
s=0

1 + x−5x−1(4s+ 3)
1 + x−5x−1(4s+ 5)

, x8n+2 = x2

n−1∏
s=0

1 + x−4x0(4s+ 3)
1 + x−4x0(4s+ 5)

,

where x1 = x1x−5
x−3(1+x−1x−5)

and x2 = x0x−4
x−2(1+x0x−4)

.

6. Conclusion

In this paper, by using a symmetry based method, we have obtained a solution of a more general form
of the difference equations considered in [9]. Thus we studied difference equations of the form

xn+1 =
x−1xn−5

xn−3(An +Bnxn−1xn−5)
,

and obtained their solutions. It should be noted that Khaliq and Elsayed [9] considered the cases with
all possible combinations of An ∈ {−1, 1} and Bn ∈ {−1, 1}, and our case goes beyond the ±1 setting by
generalizing the situation to (Bn) and (An) being non-zero sequences of real numbers.
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