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Abstract

We perform a full Lie point symmetry analysis of difference equations of the form

UnUn g
7
Un42(An + BnunlUnya)

Unt6 =

where the initial conditions are non-zero real numbers. Consequently, we obtain four non-trivial symmetries. Eventually, we get
solutions of the difference equation for random sequences (A ) and (Bn ). This work is a generalization of a recent result by
Khaliq and Elsayed [A. Khaliq, E. M. Elsayed, J. Nonlinear Sci. Appl., 9 (2016), 1052-1063]. (©2017 All rights reserved.
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1. Introduction

In the past years, after the work of Lie [12] on differential equations, several researchers became
interested in symmetries. Lie studied the group of mappings which leaves the differential equations
invariant. The notion of symmetry is linked to conservation laws and the link between them has sparked
great interest in researchers following the work of Noether [14]. It is a clear fact that as long as the
symmetries and first integrals are related through the condition of invariance, one can execute the double
reduction of the differential equations [13, 16]. The symmetry method has been used to find traveling
wave solutions. For more on traveling waves, refer to [2, 17, 18] and [19]. The idea of symmetry method
has been extended to difference equations and we refer the reader to [3-6, 11, 15] and references therein.
Hydon [6] came up with a symmetry based procedure which makes it possible for one to find solutions of
difference equations without trial and error. Much as Hydon, in his book [6], put emphasis on difference
equations of second order, his algorithm works for any order. Unfortunately in such higher-order cases,
computations are usually cumbersome and so certain assumptions are made to ease the computation.
When this method is employed, we expect single solutions with fewer constraints on initial conditions.
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Our work is inspired by the results of Khaliq and Elsayed [9] where the following difference equation
was studied

Xn—1Xn-5 (1.1)

it = Xn—3(£1 £ xn_1xn_5)’

where x_5, x_4, X_3, X_2, x_1 and xq are initial conditions and are positive real numbers. It is clear that
(1.1) is specific case of a general form
Xn—1Xn—5
, (1.2)
Xn—3(an +bnXxn_1Xn_s)

Xn41 =

where (a,) and (by ) are real sequences. Our goal is to use a symmetry based method to solve the more
general difference equation (1.2). For definiteness, we study the equation

UnUn 44
un—l—Z(An + Bnunun+4) ’

Unt6 =

instead.
For related work, refer to [1, 7, 8] and [10].

2. Preliminaries
In this section, we follow definitions and notation from [6].
Definition 2.1. A parameterized set of point transformations,
Ie x> R(x;¢),

where x =x4,1=1,---,p are continuous variables, is a one-parameter local Lie group of transformations
if the following conditions are satisfied:
1. Tp is the identity map if X = x when ¢ = 0.
2. Tqly =Tq4p for every a and b sufficiently close to 0.
3. Each ¥X; can be represented as a Taylor series (in a neighborhood of ¢ = 0 that is determined by x),
and therefore

Xi(x:e) =xi+e&i(x)+0(e?), i=1,---,p.
Given the p-th-order difference equation
Un+tp = W(Un, - run—i—p—l) (2.1)

for some function w. We confine ourselves to symmetries where i, depends on n and u,, only. Suppose
that the point transformations take the following shape:

A=n, Un =un +eQ(n,up). (2.2)
Thus the symmetry condition is defined as
ﬁn—o—p - (U(Tl, an/ﬂn+1r o /ﬁn+pfl)/ (23)
whenever (2.1) is true. Performing a substitution of Lie point symmetries (2.2) into the condition (2.3)
results in the symmetry condition
SPIQ —Xw =0, (2.4)
whenever (2.1) holds, in which S is the shift operator, that is, S : n — n 4 1. With the following known
infinitesimal symmetry generator

d d C
X — ’ - S , e Sneril , ~ . 7
Q(n un) aun + Q(Tl un)aun+1 + + Q(n Un)aun+p_1

it is important to take the canonical coordinate into consideration

dun
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3. Symmetries and exact solutions

Considering the sixth-order difference equation of the form

UnUn 4
u = . 3.1
e un+2(An + Bnunun+4) ( )
Imposing the symmetry condition (2.4) and with a bit of simplification, we get
Anun
n+6,u — n+4,u
Q( n+6) un+2(Bnunun+4 + An)2 Q( n+4)
Unl Anu (32)
+ nontd QM +2,Un42) — nonid SQ(n,un) =0.

un+22(Bnunun+4 +An) Un42 (Bnunun+4 +An)

In solving for the characteristic function, differentiate (3.2) with respect to u, (keeping w fixed) and
consider u, 7 as a function of un, Uy 4 and w. This yields

0
Bnun+4unun+2mQ (M+2,unq2) — Bnun+4unun+2WQ (M, un)
n—+ n

- Bnun+4unQ (Tl +2, un+2) + BnununJrZQ (Tl +4, un+4)
(3.3)

+ 2Bnun+4un+2Q (Tl, un) +AnUng2 Q (Tl +2, un+2)

OUn 2

0
- Anun—i—ZTQ (M un) —AnQM+2,uny2) +

aTL n

Anun+2

Q(m,un)=0.

We now proceed by differentiating (3.3) with respect to u,, twice (keeping u, 1, fixed) and obtain

33 3 2

An
—B — —An—— on ,
L 2An D

2AL
") EQ (M, un) + uTQ (m,un) =0.

n

The equation above is solved by separation of variables in powers of shifts of u,. Thus we have

Un44: _BnunQ(S) =0,
A 2A
1:_AnQ(3)+u7nQ(2)_ n (1)

2
n n

2AL

T =0,
+ N Q
which has the solution

Q=QMmun) = (Xnuvnz + Pnun, (3.4)

where «;, and 3,, are some functions of n. We then substitute (3.4) in (3.2) and split the result so that the
following is obtained:

un+42un2un+22 i Bnony2 =0,
Unt4”Un®Uni2t Bn(Bni2+ Bnis) =0,
un+42unun+2 D Anongg =0,
un+4un2un+2 D Anon =0, (3.5)
un+4unun+22 D Anong2 =0,
un+42un2 D onte =0,
Un4UnUn42 - An (*E’n + Bn+2 - Bn+4 + Bn+6) =0.
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The system above (3.5) has solutions

on =0, and

Bn:<—\2[—l\[> 1+<—\/>+ f) C2+<\[— f) C3+<\[+ \2[> Cq

for some arbitrary constants ¢;, i = 1,---,4. So we obtain four characteristics and their corresponding
generators are as follows:

X1 =(-1)" B unoun — (_1)nﬁn+1un+1aun+1 + (_1)nﬁn+2un+zaun+2
— (—D)™B™ P un 30w, + (DM B 40, — (D) B P Un 50w,
X2 =(—1)nf_5nunaun - (_1)nr~)’n+1un+laun+1 + (_1)an+2un+Zaun+2

— (=)™ B P 130w, s+ (D)™ B U 40, — (D) B U 504, s,

5] 5] 1 an+2 an+3
X3 =P undun + B 10w, + B Un 20w, + B P Un 30w,

+ Bn+4 Bn+5

un+4aun+4 + un+5aun+5’

+1 +2 +3
Xy =B unOun + B Un 100, F BT T UR1 20w, + B U300,

4 5
+ Bn+ BT‘-+ un+56un+5/

Un+4 aun+4 +

in which B = exp (Zt).
Now, utilizing X4, we introduce the canonical coordinate

du -
Sn = J (5“1:1 = B™In [unl.

Set
Vi =B *sn a4 B"sn,
and
Vil = exp{—Va),
ie., Vo = £1/(unun44) but we choose Vi, = 1/(unun44). Using (3.1), one can check that

Vn+2 = Anvn + Bn/

and thus
n—1
Vonix = Vi H Aokivk | + Z Boryk H Aok |, k=01 (3.6)
k1=0 1=0 ko=1+1
We have that
lun| =exp{p™sn}
=expp" <c6 +i%cy 4+ (1) g+ (—1) "o + ~ { Z T, i Z kzrkz
n—1 n—1
INEETLE S0} ISER U e +D
k3=0 kq=0 (3.7)
1 n—1 n—1
=exp g™ <C6 +i%cr + (—1)"eg + (—1)cg + ~ 1 |:kZO Bkl ln\Vk [+1i™ kZO kzﬁkz 1n|Vk |
1 2

n—1 n—1

D™ Y (DSBS I Vg + ()T Y (055 In |vk4|D,

k3=0 ky=0
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n—1
[un| = exp (; S [+ (D™ FRe(y(n, k) In [Vig |+ Bles + (—B) e + (~1)"BTes + B“C9>, (38)
k1=0

where Vy is given in (3.6) with y(n, k) = B™B¥. Observe that cg, c7, cg and co satisfy

c6 +c7+cg+c9 = Inug), (3.9)
Bee —PBez —Pes + Pey = Inhuyl, (3.10)
B%ce + B2c7 + BPcs + Bco = In [y, (3.11)
B3ce — Bc7 — B3cs + Bco = Infug|. (3.12)

Equations (3.7), (3.8), (3.9), (3.10), (3.11), (3.12) give the solutions of (3.1).
The function y(n, k) = B™pX is such that
v(0,1) =B, v(0,2)=—1, v(0,3)=-B, v(1,0)=B, v(1,2)=B, v(1,3)=—i, v(2,0) =4,
v(2,1)=8, v(23)=8, v(3,0=-B, v(31)=1i v(32) =4 vynn =1, (3.13)
v(n+4,k) =—y(nk), v(nk+4)=—y(nk), v@nk)=v(0k), v(n=8k)=1y(n,0).
From (3.13), we note that

8n+j—1

1

[Ugn+j| = exp (HJ—+2 ) [1+(1)“+‘<1]Re(v(n,km1nvk1), (3.14)
k1=0

Where . . . . . .
Hj = Bles+ (—1) B cr + (—1) B cs + Beo.

For j =0, we have

n—1
V,
\ugnl—exp(Ho—l—lnlvol—ln|V4|+1n|V8|—ln|V12|+ -+ In|Vgn— 8|_1n|v8n 4| = exp H0 H ‘V8884
s=0 s+

One can show that there is no need for the absolute values by using the fact that

1

Vi = .
Uilliy4

(3.15)

To find exp(Hp), we set n = 0 in (3.14) and observe that [ug| = exp(Hop). Thus

Clearly, 8s =2(4s) 4+ 0 so that i = 0 and n = 4s in (3.6). From (3.6), we obtain

4s—1 4s—1 4s—1
Vgs = Vo (H Az, + Vo Z Bu [] AZkz)

ko=1+1

4s—1 4s—1 4s—1
A u B A ,
= o H 2k, T Uolly Z 21 H 2k,

- Ko=1+1

using (3.15). Similarly, we have

4541 4541 4s—1
Ves+a = H Aok, +Uguy Z Boy H A, |

ko=1+1
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so that aen
T TS 2o Aok +uous Yo' Ba sz 1+1 A2k,

4s+1 4S+1
oo TTe 0 Az, +uous Y10 B [Tt 0 Az,

Ugn = Uo

Hence
n—1 4s—1 4s—1 4s—1
[Tk, =0 A2k, + x—5% 13 129 Ba[ [, 1+1 A2k,

Xgn—5 = X—5 Is71 ) (3.16)
il ] DO 0 A% + Xsx 12150 Ba sz 141 AZkz
For j =1, (3.14) becomes
lugn41l = exp(Hq) exp(In [Vi| —In|Vs| + In[Vo| — In[Viz| + - - - + In [Vgn 7| — In [Ven_3l).
However, using (3.14) with j =1,n =0, [u;| = exp(Hy). Thus
V8s+1
Ugn+1 = U1
nr H o Vasis
By (3.6), we have
4s—1 4s—1 4s—1
Vest1 =Va [ [ Az + - Vi Z Basr [ Aok,
k=0 Ky=1+1
1 4s—1 4s—1 4s—1
=Iu H Azk; 41 + U5 Z Basr || Azkas1 |,
L ko=1+1
and similarly,
1 4s+1 4541 4541
Ves+5 = — H A2k, 41 + U5 Z Bar1 [ Azt
1H5 Ka—1+1
Now 1 774s—1 4s—1 451
" " T Tl Zo Aakg 1 Hwus 3150 Bavvn [T —141 A2kt
8n+1 — W1 4 1 ’
S=0 Hiﬁi}; Aok 1 +urus Y158 Bor [Tiolii1 Azt
which implies that
ot Hiﬁ T A1 T xaxo Y 0 "Baiia sz 1+1 A2k, +1
Xgn—4 = X_4 1571 (3.17)

o0 TTe 20 A1 +x—ax0 X150 Bovn [Tio 11 Azt
For j = 2, we find that (3.14) becomes
[ugn42| = exp(Hz) exp(In|Va| —In [Vg| +In [Vig| — - - - + In|Vgn 6| — In [Van_2).
Similar to the earlier cases, setting n = 0 and j = 2 yields the equation [u,| = exp(H2). So we have

V8s+2
Ugn+2 = U2 H
V8s+6

The expressions for Vgs 2 and Vgs4 are obtained from (3.6), by setting n =4s +1, i = 0 and
n =4s+3, i =0, respectively. They are as follows:

Ves+2=Vo HA2k1 Vo Zle H A2k,

k1=0 ko=1+1
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! H Az, +UOU4Z Boy H A, |
K1=0

U

ko=1+1
and
4542 4542
Vosto=Vo | [T Az, + Z Ba H A2k,
k1=0 Ko=1+1
4542 4542 4s42
" H Aok, +Uoly Z Boy H Aok,
oy k1 =0 ko=1+1
Hence

n—1 4s 4s 4s
[Ti;—0 A2y +uousa 3 12 Bar [T = 1+1 Ak,
s 2 4s+2
o T 0 Asy +uous Y 507 B [T Asky

Ugn42 = Uz

which gives
n—1 4s 4s
Hk1 0 A2k, tx5x1) 129Ba [ [, 1+1 Aok,

=0 Hksl+0 Ak, +X—5X_1 P o Bt Hk2 1+1 Az,
For j = 3, we find that (3.14) becomes
lugn+3l = exp(Hz) exp(In|Vs| —In V7| + In|Vi1| — - - + In[Ven 5] — In [Vgn—1).
Setting n = 0 and j = 3, we find that [uz| = exp(Hs), hence
" Vasis
Ugn+3 = U3 .
n H v85+7
Following a similar approach as was done in the earlier cases (j =0, 1,2), the reader can verify that
—1 4s A 4s B 4s A
u u Hklzo 2k +1 Hwus 2120 Borr [ [ig— 141 A2k
gn+3 = U3 .
o0 [Tt A1 +wius X150 Bor [Tt 1 Azig 1
Thus
Xn_2 = X_o Hkl —0 A2k 1+ X—4X0 Zl 0 Bo111 sz l+1 A2k, 41 (3.19)

4s+2
s—o T 20 A2k 1 +x—ax0 Zl 0 “Boy1 sz L1 A2k2+1

For j =4, (3.14) becomes
[ugn 14l = exp(Hy) exp(—In[Vo| + In [Vy| —In [Vg| + - - - 4+ In [V 4| — In [Vgn|).

Setting j = 0 and n = 0 in (3.14) yields [uy| = exp(H4) exp(—In|Vyl), so that exp(H4) = [u4l|Vo|. Thus

n—1
B Vg4
Ugn 4 = Ug | | :

As before, similar steps can be carried out and one obtains

n—1 4s+1 +1
TTE50 As +uows 150 B TT0 M1 Aok,
4s+3 4543
oo Thet0 Az, +uous X507 Ba [T 5011 Az,

Ugn+4 = U4
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which yields

n—1 4s+1 +1
[T550 Anky +x5xq Y150 B [T 1+1 A2k,
Xgn—1 = X1 45+3

s (3.20)
oo TTE 0 Ay +xosx1 Y000 B Tt Asky,

For j =5, (3.14) becomes
[ugn+sl = exp(Hs) exp(—In[Vi| 4+ In|V5| —In [Vo| 4 - - - +In[Vgn 3| — In [Vgn 1))

But setting n = 0 and j = 5 in the same equation (3.14), we get |us| = exp(—In|V1|) exp(Hs) so that
exp(Hs) = [us]|Vi]. Thus

" Vasis
Ugn+5 = Us H

o Vasto
After performing similar substitutions as before, we get
n—1 yr4s+1 4s+1 4s+1
K —0 A2k, +1 +wius 3 120 Borpr [T Z141 Azko 1
Ugn+5 = Us 1s+3

1513 1573 /
s—0 L[, —0 A2k 41 +waus 3 120" Bar [ [ 2111 A2k

which leads to

n—1 4s+1
[Tk, 20 A2iy 11 +x—4%0 S o "B sz 1+1 A2k, 41

4s+3 :
o i 2o A2k +1 +x—ax0 Zl -0 > Bors sz 11 A2kt 1

Forj =6 and n =0, (3.14) becomes lugl = exp(He) exp(—1In|Va]), i.e., exp(Hg) = [ug|[Vo|. However, setting
j = 6 in the same equation, we get

(3.21)

Xgn = X

[ugn 6l = exp(He) exp(—In|Va| + In|Vs| — In|Vip| + - - - + In [V o] — In [Vgn 12]).
We have

V85+6
Ugn 16 = Us H

The reader can verify that

n—1 4542 4s+2
[ Tx, 20 A2iy +uous 3 124" By sz 1+1 A2k,
4s+4 4s+4
s—o0 1 [k —0 A2k, +uoua 3 17 Bay sz 1+1 AZkz

Ugn46 = Up

which gives
n—1 4s+2 +2
[T, 20 A2iy +x5%— DIt 0 Bay sz 141 A2k,
4s+4
oo TToo Az +x5% 1 050 Ba [ 1601 Ak,

7, we have

Xgn+1 = X1

X_1X_5
x_3(ap+box_1x_5

Since x1 =

(3.22)

n—1 4s+42 4s+2
X_1X_5 [T 5 Ag, +x5x1 X150 B [T 741 Aok,
Xgn+1 = H

x—3(ap +box_1x_5) 0 H4S+4 Aok, +X_5X_1 Zl 04 Bt Hisz A{Jrl A2k2.
For j =7, (3.14) becomes
lugn+7| = exp(Hz) exp(—In V3| +In[V7| = In V1| + - - + In|Vgn 1| — In[Vsn 13]).

By setting n =0 and j =7 in (3.14), we get [uy| = exp(—In[V3|) exp(H7) so that exp(H7) = |[uy|[V3|. Hence

V85+7
Ugn47 = u7Hv8 0
s+
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After replacing V;i’s with their appropriate expressions as done before, we get

n—1 4s+2 4s+2 4s+42
K —0 A2k +1 s 3 120" Bar [T 2111 A2k
Ugn+7 = U7 Isi4

ist4 ist4
soo T Zo A2k 1 +waus 2 120" Barr [ [, Z11 A2k 1

7

which implies that

n—1 4542
[ Tk, 20 A2iy 1 +x—4%0 Zl 0 B sz 1+1 Ak, +1

4s+4
s—0 1 Lo —0 A2k +1 +X—a%0 Y i Baa sz 1+1 Adkyt1

Xgn+2 = X2

. o X0X_4
Since X2 = X (a1 +baxox_a)’ we have
n—1 4542 4s+2 4542
N X0X_4 H K0 A2k 41+ X4X0 D 1= o Bov1 [ [i— 1+1 A2k, +1
8n+2 —

4s+4
x—a(ar +bixox—a) 35 550 Ao, 1+ X—4x0 S U Boa [Tio i Askart

Remark 3.1. It is important to make sure that the denominators in the expressions for xgn ; where
j=—5,—4,---,2 are non-zero so that the solution is well-defined.
4. The case when A; and B; are 2-periodic sequences

We assume that {Aj}j>0 = {AO, Al,Ao,- . } where Ao 75 Al, and {B}j>0 = {Bo, B], Bo,Bl,- . } with
Bg # B1. Then after substitution, (3.16), (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22) become

OAS + xosx_1Bo X (%, A) AT X axoBr X% A
Xgn 5 = X_ 51_[ Xgn 4 = X_ 4H
A4s—|—2 + x_5%x_1By Z4s+1 A4S+2+X 1xoB1 Z4s+1
n-l A4S+1+X,5X_1Bo Z]- OA] n-l A4S+1+X_4X081 Z)- OA]
Xgn—3 = X— 31_[ Xgn—2 = X— 2H
A4s+3 +X_5%_ 1Bo Z4s+2 A4s+3+x 4X0B1 Z4s+2
n— 1A4s+2 +x_5%_ 1BO Z4S+l n— 1A4S+2—|—X 4XOBl Z4s+1
Xgn—1 = X— 1]._[ L AB 0 ox 1By Z4S+3 Xgn _XOH L ABH 5 xoBy Z4s+3
n— 1A4S+3+X sX_ 1B0 Z4s+2 . n— 1A4ts—0—3_i_X 4XOBl Z4s+2
Xgn+1 = X1 H Xgn+2 = X2 H
A4S+5+X 5X— 1Bo Z4S+4 A4S+5+X 4XOBl Z4S+4
X1X_5 X0X_4

where x1 = and x, =

x—3(Ao+Box-1x5) x2(A1+Bixox_4)°
The solution is only valid when the denominator in each of the solution equations above is non-zero.

To state this precisely, define h(s,j, 1), for i = 0,1, as follows:
A%Sﬂ»j*l (17A1) .
h(s,j,i) = { Bi1=AFT)” Ai#1,
1 j—
Bi(dsHj+1)’ Ai=1.

Thus the solution is well-defined if

4
A .
X_2X_3 <X4X() + Bl> (x 1X_5+ > | | X_4x0 + h(s,j, 1)) (x_1x_5+h(s,j,0)) #0,
1
j=1

foralls=1,2,--- ,n—1.
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5. The case where A; and Bj are 1-periodic sequences

In this setting we assume that A; = Ag, and B; = By for all j. The solution is found by replacing A4
and B; with Ay and By, respectively in the solution equations for Section 4. We find the following solution
equations:

AR+ xsx1Bo X%y AJ
4542 4s+1
s—0 A § + X_ 5X_— 1BOZ
n—1 A4S+1+X 5X_ 18021 OA]
Xgn—3 = X—3 H
A4S—|—3 +x_ 5X_ lBO Z4S+2 A)

n— 1A4s+2 +X_5X_ 1BO Z4s+1 A)

Xgn—5 = X—5

7

7

AR Hx_axoBo X% AJ
4542 4s+1
S— OA s+ +x_ 4XOBOZ
n—1 A4s+1 +x_ 4XOBO Z) OA]
Xgn—2 = X— 2H
A4s+3+x 4XOBO Z4s+2

n— 1A4S+2+X 4XOBO Z4s+1 A]

Xgn—4 = X—4

7

7

Xgn = X0 H

n— 1A4s+3+x 4x0Bo Z4s+2
Xgn 12 = X2 H
A4s+5 +x_ 4XOBO Z4s+4 AJ

Xgn—1 = X— 1HA4S+4+X X 1Boz4s+3 ’

n— 1A4s+3 +X_5x_ 1BO Z4s+2
Xgn+1 = X1 H
A4S—|—5 +x_ 5X_ 1BO Z4S+4 A)

X1X_5 and x, = XoX 4
x_3(Ao+Box_1Xx_5) 2 = X (Ao+Boxox_4) "
We also notice that the solution is well-defined if

where x1 =

4

A A ) .

X_2X_3 <X4X0 + BO> (X 1X—5 + BO) H(sz;Xo +h(s,j,0))(x—1x_5 +h(s,j,0)) #0
0 0

foralls =1,2,--- ,n—1, where the definition of h(s,j, 1) is given in the previous section.

5.1. The case of Aj = Bj = —1
In this case, set Ag = Bg = —1 in the above equations. This yields the following solution equations,

which appear in [9, Theorem 5.1].

Xgn—5 = X—5, Xgn—4 = X4, Xgn—3 = X3,

Xgn—2 = X2, Xgn—1 = X—1, Xgn = Xo,

X1X_—5
x—3(—1—x_1x_s5)’

X0X—4
Xx—2(—1—xox_4)

Xgn+1 = Xgn+2 =

5.2. The case of Aj = —1 and B; =1
This case yields the following solution equations which appear in [9, Theorem 3.1].

Xgn—5 = X_5, Xgn—4 = X_4, Xgn—3 = X_3,

Xgn—2 = X—2, Xgn—1 = X—1, Xgn = Xo,

X1X_5
3(—1+x_1x_5)"

X0X—4
—o(=1+x0x_4)

Xgn+1 = Xgn+2 = X

5.3. The case of Aj =1 and B; = —1
Our general solution yields the following solution equations which appear in [9, Theorem 4.1].

— X_5X_ 145

1—x_ 4X04S
Xen—5 = X 5H1—X 5X_— 14S+2)

Xon—4 = X 41_[ 1—x_ 4X0 4S+2)

1—x_5x_1(4s+1)
Xgn-3 = X_ 3H

X . Hl—x 4X04S+1)
1—x_5x_1(4s+3)’ fn—2 =72

1—x_4xp(4s+3)’
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X ‘. 1—[ 1—x_ 5X_ 14S+2) X X H 1—x_ 4X0 4S+2)
fn—1="-1 1—x_5x_1(4s +4)’ fn = %0 1—x_4xo(4s +4)’

1—x_5x_1(4s+3) 1 —x_4xo(4s+3)
XgnH_XlH 1—x_5x_1(4s+5)’ X8n+2—X2H1 X_4%0(4s +5)’

X1X_5
x_3(1—=x_1x_5)

XX _4

and xp = 2 (xox3)"

where x1 =

5.4. The case of A; = B; =1
This case yields the following solution equations which appear in [9, Theorem 2.1].

n—1 n—1
1+ x_5x_14s 1+ x_4x0p4s
XSns_XSl—[l—Fx axo(4s +2)’ X8n4_X4H1+x axo(4s +2)’
1+X_5X 14S+1) 1+X 4X0 4S+1)
Xen—3 = X— 3H 14+x_ 5X_— 14S+3) Xon—2 = X ZH 1+x_ 4X0 4S+3)’
1+x_5x_1(4s+2) 14+ x_gx0(4s +2)
Xen—1 = X 1H1+x sx_1(4s+4) XOH1+X axp(4s +4)’
X X H1+X 5X_—1 4S+3) X X H1+X 4X0 4S+3)
fn+l =M 14+x_ 5X_—1 4S+5) fntz =2 1+x_ 4X0 4S+5)
X1X_5 X0X—4

where x1 = and x; =

x_3(1+x_1x_5) X o (1+x0x_4)"

6. Conclusion

In this paper, by using a symmetry based method, we have obtained a solution of a more general form
of the difference equations considered in [9]. Thus we studied difference equations of the form

X 1Xn—5
7
-3 (An + annflxn—S)

Xn41 =

and obtained their solutions. It should be noted that Khaliq and Elsayed [9] considered the cases with
all possible combinations of A, € {—1,1} and B, € {—1,1}, and our case goes beyond the +1 setting by
generalizing the situation to (B ) and (Ay,) being non-zero sequences of real numbers.
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