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Abstract
The solution to fuzzy differential equation is very important for solving the uncertainly practical problems in the real world.

In this paper, the definition of solution for periodic problems of fuzzy differential equations based on the theory of differential
inclusions is given. Using the theory of differential inclusions, function analysis and Kakutani Fixed point theorem, an existence
theorem of periodic solutions to first order uncertain dynamical systems is obtained in a more general set. c©2017 All rights
reserved.
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1. Introduction

Fuzzy differential equations can be studied in three senses:

(1) Hukuhara derivatives (H-derivatives) and Bede’s generalized derivatives which are the generaliza-
tion of H-derivatives (see [2, 5, 9–12, 14, 16, 18]);

(2) Zadeh’s Extension Principle (see [19, 20]);

(3) differential inclusions (see [6–8, 13–15]).

In addition, we know that the theories of fuzzy differential equations are different under these three senses
(see [1, 7, 15]). Usually, when one studies practical problems such as uncertain periodic control systems
and neural networks with uncertainty, one often needs to consider the following periodic problem of
fuzzy differential equation: {

x ′ = f(t, x),
x(0) = x(T),

(1.1)
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where f : [0, T ]× E1 → E1 has at least one fuzzy (non-real) value, i.e., there exists t0 ∈ [0, T ] such that
f(t0, x(t0)) ∈ E1 \ R.

From the results of [4, 7, 15], we know that there are no periodic solution to fuzzy differential equations
in the sense of H-derivatives, so fuzzy differential equations in the senses of H-derivatives cannot be
used to describe periodic phenomena in the real world. In this paper, following with [7] and [8], we
apply the methods of differential inclusion, functional analysis, set-valued analysis and Kakutani fixed
point theorem to consider a periodic problem of fuzzy differential equation in the sense of differential
inclusion, i.e., the formula (1.1) holds under the conditions f : [0, T ]× Ec → Ec and Ec ⊂ E1, and the
periodic behavior of first order uncertain dynamical system can be seen as:{

ξ ′ ∈ f(t, ξ),
ξ(0) = ξ(T),

where f : [0, T ]×R→ Ec and for η ∈ R, u ∈ Ec, η ∈ u means that the membership function of u satisfies
µu(η) > 0.

The rest of this paper is organized as follows. In Section 2, preliminaries are given. In Section 3, the
conditions to existence of solutions to the periodic problem of first order uncertain dynamical systems are
figured out, which is simpler and more widely used than previous research work.

2. Preliminaries

In this section we recall some facts, which will be used in this paper.
Let D1 be the set of upper semicontinuous normal fuzzy sets with compact supports in R and E1 be

the set of fuzzy convex subsets of D1. For u ∈ D1 or E1, denote

[u]α = {ξ ∈ R|u(ξ) > α}, (0 < α 6 1), [u]0 = cl{ξ ∈ R|u(ξ) > 0},

(see [9]).

Theorem 2.1 ([9]). Let {Aα ⊂ R| 0 6 α 6 1} be a class of nonempty compact sets satisfying

(i) Aβ ⊂ Aα, (0 6 α 6 β 6 1);

(ii) Aα =
∞⋂
n=1

Aαn for any nondecreasing sequence {αn} in [0, 1] satisfying αn → α.

Then there exists v ∈ D1 such that [v]α = Aα (0 6 α 6 1). Especially v ∈ E1 if Aα is convex. The level set [v]α

satisfies (i) and (ii) above, if v ∈ D1. [v]α is convex, if v ∈ E1.

Lemma 2.2. Let Ec = {u ∈ E1| u1(α) = min[u]α, u2(α) = max[u]α are continuous on [0, 1]}, i.e., u ∈ Ec
satisfies the following conditions (i)-(v):

(i) u is normal, i.e., there exists m ∈ R such that u(m) = 1;

(ii) [u]0 is bounded in R;

(iii) u is fuzzy convex in R;

(iv) u is upper semicontinuous on R;

(v) u1(α),u2(α) are continuous on [0, 1].

We call that u ∈ Ec is a continuous fuzzy number (fuzzy number in abbreviation).

Lemma 2.3 ([7]). If u ∈ Ec, the following (1)-(3) hold:
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(1) u1(α),u2(α) are continuous on [0, 1];

(2) u1(α) is monotone increasing and u2(α) is monotone decreasing;

(3) u1(α) 6 u2(α).

Conversely, if i(α), s(α) : [0, 1]→ R, satisfy (1)-(3) above, denote

u(ξ) =

{
sup{α ∈ [0, 1] | i(α) 6 s(α), ξ ∈ [i(0), s(0)]},
0, ξ 6∈ [i(0), s(0)].

Then there exists u ∈ Ec, such that [u]α = [i(α), s(α)], u1(α) = i(α), u2(α) = s(α), α ∈ [0, 1].

For u ∈ Ec, we directly adopt the following parametric representation:

u = (u1,u2), or u = (u1(α),u2(α)), α ∈ [0, 1].

In this way, a fuzzy number u ∈ Ec can be directly considered as a point in C[0, 1]×C[0, 1] or a continuous
curve {(u1(α),u2(α)) ∈ R2|α ∈ [0, 1]} in R2.

Based on operations ⊕,	, and ⊗ of Zadeh’s extension principle for u = (u1,u2), v = (v1, v2) ∈ Ec,
k ∈ R, we have

(1) u⊕ v = (u1 + u2, v1 + v2);

(2) u	 v = (u1 − u2, v1 − v2);

(3) k⊗ u =

{
(ku1,ku2), k > 0,
(ku2,ku1), k < 0.

Lemma 2.4 ([7]). Ec is a closed convex cone in Banach space X, and then it is a complete metric space.

Let ‖ · ‖p be Puri’s norm on Ec, then we have ‖u‖ = ‖u‖p = D(u, 0), u ∈ Ec, where D(·, ·) is the usual
Hausdorff metric on E1 (see [23]).

Definition 2.5 ([7]). Let f : [0, T ]→ Ec, t0 ∈ [0, T ]. If

∀ε > 0, ∃δ > 0, such that ‖f(t) − f(t0)‖ < ε whenever t ∈ [0, T ], and |t− t0| < δ,

then we say that f is continuous at t0. If f is continuous at each point of [0, T ], we say that f is continuous
on [0, T ].

Lemma 2.6. Let f : [0, T ]→ Ec, f(t) = (f1(t,α), f2(t,α)) where fi(t,α) = fi(t)(α), i = 1, 2,α ∈ [0, 1], then f(t)
is continuous on [0, T ] if and only if f1(t,α) and f2(t,α) are continuous on [0, T ]× [0, 1].

Definition 2.7 ([7]). Let f : [0, T ]→ Ec, t0 ∈ [0, T ], η ∈ Ec. If

∀ε > 0, ∃δ > 0, s.t. ‖f(t) − f(t0)

t− t0
− η‖ < ε, when 0 < |t− t0| < δ and ∀t ∈ [0, T ],

then we say that f is relatively derivable at t0, denoted by f ′(t0) = η or d
dtf(t0) = η. Especially if

f ′(t0) ∈ Ec, then f is derivable at t0. If f is relatively derivable at each point of [0, T ], we say f is that
relatively derivable on [0, T ].

Lemma 2.8. Let f : [0, T ]→ Ec be relatively derivable on [0, T ] and f(t) = (f1(t,α), f2(t,α)), then

f ′(t) = (
∂

∂t
f1(t,α),

∂

∂t
f2(t,α)), ∀α ∈ [0, 1].
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Definition 2.9 ([7]). Let f : [0, T ] → Ec. If for any partition ∆ of [0, T ] : 0 = t0 < t1 < · · · < tn−1 < tn = T ,
and for all τk ∈ [tk−1, tk] (k = 1, 2, · · · ,n), we have lim

λ(∆)→0

∑n
k=1 f(τk)∆tk = J, where

λ(∆) = max
16k6n

∆tk,∆tk = tk − tk−1, (k = 1, 2, · · · ,n),

then we say that f is integrable on [0, T ] and denote J =
∫T

0 f(t)dt.

Lemma 2.10. Let f : [0, T ]→ Ec be integrable on [0, T ], f(t) = (f1, f2), then∫T
0
f(t)dt = (

∫T
0
f1(t,α)dt,

∫T
0
f2(t,α)dt), ∀α ∈ [0, 1],

and
∫T

0 f(t)dt ∈ Ec.

Lemma 2.11. Let f : [0, T ]→ Ec be continuous on [0, T ], then f is integrable on [0, T ], and

‖
∫T

0
f(t)dt‖ 6

∫T
0
‖f(t)‖dt.

Lemma 2.12 ([7]). Let f : [0, T ]→ Ec be continuous on [0, T ], then

(

∫t
0
f(τ)dτ) ′ = f(t), t ∈ [0, T ].

3. Periodic problems of first order nonlinear uncertain dynamical systems

In this section, we study the following periodic problem to first order nonlinear uncertain dynamical
system: {

ξ ′(t) ∈ f(t, ξ(t)),
ξ(0) = ξ(T),

(3.1)

where I = [0, T ] (T > 0), f : I×R → Ec. Here for η ∈ R, u ∈ Ec, η ∈ u means u(η) = µu(η) > 0, where
µu(η) is the membership function of u.

Consider the following periodic problems of differential inclusions:{
ξ ′(t) ∈ [f(t, ξ(t))]α,
ξ(0) = ξ(T).

(3.2)

Definition 3.1. Let f : I×R → Ec. For any fixed α ∈ [0, 1], if ξ(t) is absolutely continuous, ξ(0) = ξ(T)
and ξ ′(t) ∈ [f(t, ξ(t))]α a.e. on I, then we call that ξ(t) is a solution of (3.2) and∑

α

(I; t) = {ξ(t) | ξ(t) is a solution of (3.2)}, (0 6 α 6 1),

is the set of solutions of (3.2). If there exists v : I → D1 such that [v(t)]α =
∑
α(I; t) (t ∈ I, 0 6 α 6 1),

then we call that v(t) (t ∈ I) is a solution of (3.1).

Definition 3.2 ([3]). Let Y and Z be Hausdorff topological spaces. We say that the set-valued mapping
G : Y → 2Z \ {∅} is upper semicontinuous, if for any nonempty closed subset C of Z, the set

G−(C) = {y ∈ Y|G(y)∩C 6= ∅},

is a closed subset of Y.
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LetW1,1(I, R) be the Sobolev space with the norm ‖x‖W1,1 =
∫b
a |x(t)|dt+

∫b
a |x
′(t)|dt for x ∈W1,1(I, R),

then W1,1(I, R) is a Banach space and W1,1(I, R) can be compactly embedded into L1([a,b], R) (see [17]).

Lemma 3.3. Let W1,1
p (I, R) = {ξ ∈ W1,1(I, R) | ξ(0) = ξ(T)}. We define a linear operator L : W1,1

p (I, R) →
L1(I, R) as L(ξ) = ξ ′ − ξ, then L is invertible.

Lemma 3.4. L−1 : L1(I, R)→ L1(I, R) is a compact operator.

Lemma 3.5 ([22]). Suppose that K is the nonempty compact convex subset of X, and F : K → Pkc(K) is upper
semicontinuous, then F has a fixed point, i.e., there exists x∗ ∈ K such that x∗ ∈ F(x∗).

Lemma 3.6 ([21]). Let {fn}
∞
n=1 ⊂ Lp(Ω, Y), f ∈ Lp(Ω, Y), fn

w→ f and fn(x) ∈ G(x)µ−a.e. on Ω, where
G(x) ∈ Pwk(Y)µ−a.e. on Ω, then f(x) ∈ conv(w− lim{fn(x)}n > 1})µ−a.e. on Ω.

Lemma 3.7 ([22]). Let AC([a,b], R) be the set of absolutely continuous functions on [a,b], then x ∈ AC([a,b], R)
if and only if x ∈W1,1([a,b], R).

Lemma 3.8 ([22]). Let B be a separable normed linear space. Then any bounded set in B∗ is weakly* sequentially
compact.

Denote
A = {ξ(·) ∈ C(I, R) | ξ ′(·) ∈ L∞(I, R), I = [0, T ]}.

Theorem 3.9. Suppose that f : I×R −→ Ec satisfies

(1) f(t, ξ) is continuous on T ×R;

(2) there exists M > 0 such that ‖f(t, ξ)‖ 6M;

(3) there exists L > 0 such that
‖f(t, ξ) − f(t, ζ)‖ 6 L|ξ− ζ|,

for ξ, ζ ∈ R, t ∈ T , 0 < L < 1.

Then the set of solutions
∑
α(I; t) to (3.2) is nonempty.

Proof. First consider the case α = 0, i.e., consider the following problem:{
ξ ′(t) ∈ F(t, ξ(t)),
ξ(0) = ξ(T),

(3.3)

where F(t, ξ(t)) = [f(t, ξ)]0.
Define the operator U :W1,1

p (I, R)→ 2L
1(I,R)w as

U(ξ) = {ζ ∈W1,1
p (I, R)w | ζ(t) ∈ F(t, ξ(t)) a.e. on I},

where L1(I, R)w denotes L1(I, R) endowed with the weak topology.
First, let

V(ξ) = U(ξ) − ξ,

we will show that for all ξ ∈W1,1
p (I, R), V(ξ) is nonempty compact convex set.

For any ξ ∈W1,1(I, R), there exists a sequence of simple functions {ηn} such that ηn(t)→ ξ(t) a.e. on I
and ‖ηn‖ 6 ξ(t) a.e. on I. By condition (1), F(t,ηn(t)) admits a measurable selection ηn(t) (n = 1, 2, · · · ).
By condition (2), ηn(t) is uniformly integrable for all n ∈ N, together with Dunford-Pettis theorem, there
exists a subsequence of {ηn}, which is weakly convergent in L1(I, R). Without loss of generality, suppose
that ηn(t)

w→ η ∈ L1(I, R), by Lemma 3.6 and condition (1), we have

η(t) ∈ conv lim{ηn(t)} ⊂ conv limF(t,ηn(t)) ⊂ F(t, ξ(t)).

So η(t) ∈ U(ξ), then we define η(t) − ξ(t) = ϕ(t) ∈ V(ξ), so V(ξ) is nonempty.
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For all ϕ1(t),ϕ2(t) ∈ V(ξ), then there exist η1(t), η2(t) ∈ U(ξ) such that

ϕ1(t) = η1(t) − ξ(t), ϕ2(t) = η2(t) − ξ(t),

and η1(t) ∈ F(t, ξ(t)), η2(t) ∈ F(t, ξ(t)), then λη1(t) + (1 − λ)η2(t) ∈ F(t, ξ(t)), therefore

λϕ1(t) + (1 − λ)ϕ2(t) = λη1(t) + (1 − λ)η2(t) − ξ(t) ∈ V(ξ),

i.e., V(ξ) is convex.
For all ϕ(t) ∈ V(ξ), then there exists η ∈ U(ξ) such that ϕ(t) = η(t) − ξ(t) and η ∈ F(t, ξ(t)),

‖η‖ = dH(F(t, ξ(t)), 0) = dH([f(t, ξ(t))]0, 0) = D(f(t, ξ), 0) = ‖f(t, ξ)‖ 6M.

Since ξ(t) is continuous on I, then ξ(t) is bounded on I, so there exists M
′
> 0 such that ‖ξ(t)‖ 6M ′

,
then ‖ϕ‖ = ‖η(t) − ξ(t)‖ 6M+M

′
, so V(ξ) is uniformly bounded.

For all ϕ(t) ∈ V(ξ), there exists η ∈ U(ξ) such that ϕ(t) = η(t) − ξ(t) and η ∈ W1,1(I, R), then by
Lemma 3.7, η is absolutely continuous on I, i.e.,

∀ε > 0, ∃δ > 0, ∀t1, t2 ∈ I, when |t1 − t2| < δ, we have ‖η(t1) − η(t2)‖ <
ε

2L
,

and f(t, ξ(t)) is continuous on [0, T ]× [−M,M], and further uniformly continuous, i.e.,

‖f(t1, ξ(t1)) − f(t2, ξ(t1))‖ <
ε

2
,

from ξ ∈W1,1(I, R), so ‖ξ(t1) − ξ(t2)‖ < ε
2L , then we have

‖η(t1) − η(t2)‖ 6 dH(F(t1, ξ(t1)), F(t2, ξ(t2))) = dH([f(t1, ξ(t1))]
0, [f(t2, ξ(t2))]

0)

= D(f(t1, ξ(t1)), f(t2, ξ(t2))) = ‖f(t1, ξ(t1)) − f(t2, ξ(t2))‖
6 ‖f(t1, ξ(t1)) − f(t2, ξ(t1))‖+ ‖f(t2, ξ(t1)) − f(t2, ξ(t2))‖

<
ε

2
+ L|ξ(t1) − ξ(t2)| = ε,

and
‖ϕ(t1) −ϕ(t2)‖ = ‖η(t1) − ξ(t1) − η(t2) + ξ(t2)‖ 6 ‖η(t1) − η(t2)‖+ ‖ξ(t1) − ξ(t2)‖ < 2ε,

so V(ξ) is equicontinous.
For any ϕn(t) ∈ V(ξ) and ϕn(t)→ ϕ(t) ∈ L1(I, R), then there exists ηn(t) ∈ U(ξ) such that

ϕn(t) = ηn(t) − ξ(t), ηn(t)→ ξ(t) +ϕ(t) = η(t),

and ηn(t) ∈ F(t, ξ(t)), then η(t) ∈ convlim{ηn(t)} ⊂ F(t, ξ(t)), thus η(t) ∈ U(ξ), so ϕ(t) = η(t) − ξ(t) ∈
V(ξ), this means V(ξ) is closed.

Following the above proved, we know that for all ξ ∈ W1,1
p (I, R), V(ξ) is nonempty compact convex

set.
Second, we show that L−1V :W1,1(I, R)→ Pkc(W

1,1(I, R)) is uppercontinuous.
Let K be a nonempty weakly closed subset of L1(I,R). By Definition 3.2, we need only to show

U−(K) = {ξ ∈ L1(I,R)|U(ξ)
⋂
K 6= ∅} is a closed subset of L1(I,R).

For all {ξn(t)} ⊂ U−(K), then U(ξn)
⋂
K 6= ∅ and ξn(t) ∈ L1(I,R). Suppose ξn(t) → ξ(t) as n → ∞

a.e. on I. On the other hand, taking ηn ∈ U(ξn)
⋂
K, by U(ξn) = {ϕ(t) ∈ L1(I,R)w|ϕ(t) ∈ F(t, ξn(t))} a.e.

on I, we have ηn(t) ∈ F(t, ξn(t)), then there exists a subsequence of {ηn}, which is weakly convergent in
L1(I,R). Without loss of generality, suppose ηn(t)

w→ η(t) ∈ L1(I, R), by Lemma 3.6 and condition (1),

η(t) ∈ conv limηn(t) ⊂ conv limF(t, ξn(t)) ⊂ F(t, ξ(t)) a.e. on I.



Y. Z. Wang, Q. Liu, Q. S. Feng, J. Nonlinear Sci. Appl., 10 (2017), 6288–6297 6294

So η(t) ∈ U(ξ), K is closed set and further η(t) ∈ U(ξ)∩K, then ξ(t) ∈ U−(K), i.e., U : L1(I,R)→ 2L(I,R)w
is upper semicontinuous, thus V(ξ) = U(ξ) − ξ is also upper semicontinuous and maps any bounded set
into sequentially compact set.

By Lemma 3.3 and Lemma 3.4, we know that L−1 : L1(I,R) → L1(I,R) is linear compact operator, and
V is upper semicontinuous, so L−1V is also semicontinuous.

Third, we only need to show that for all ξ ∈W1,1(I,R), V(ξ) is the subset of W1,1(I,R).
For all ϕ(t) ∈ V(ξ), there exists η(t) ∈ U(ξ), such that η(t) ∈ W1,1(I,R) i.e., for all ε > 0, there exists

δ > 0, for any limited disjoint open interval (ai,bi) (i = 1, 2, · · · ,m) satisfies
∑m
i=1 |bi − ai| < δ, we have

|η(bi) − η(ai)| <
ε

2m , and |ξ(bi) − ξ(ai)| <
ε

2m , then

m∑
i=1

|ϕ(bi) −ϕ(ai)| =

m∑
i=1

|(η(bi) − ξ(bi)) − (η(ai) − ξ(ai))|

6
m∑
i=1

|η(bi) − η(ai)|+

m∑
i=1

|ξ(bi) − ξ(ai)| < ε,

thus ϕ(t) is absolutely continuous on [0, T ], i.e., ϕ(t) ∈W1,1(I, R), so V(ξ) ⊂W1,1(I, R), that is V(ξ) is also
absolutely continuous.

Thus, since L−1V :W1,1(I, R)→ Pkc(W
1,1(I, R)) is uppercontinuous, and V(ξ) is the nonempty convex

subset of W1,1(I, R), then by Kakutani fixed point theorem (Lemma 3.5), L−1V has a fixed point, that is
when x∗ ∈ V(ξ), we have x∗ ∈ L−1V(x∗), i.e., L(x∗) ∈ V(x∗). Thus L(x∗) = (x∗(t)) ′ − x∗ ∈ V(x∗) =
U(x∗) − x∗, so (x∗(t)) ′ ∈ U(x∗), this means (x∗(t)) ′ ∈ F(t, x∗(t)), and x∗(0) = x∗(T), {x∗(t)} is absolutely
continuous, therefore x∗(t) is the solution of (3.3), i.e.,

∑
0(I; t) 6= ∅.

In the same way, we can prove that
∑
α(I; t) 6= ∅ (0 < α 6 1).

Theorem 3.10. Suppose that f : I×R −→ Ec satisfies

(1) f(t, ξ) is continuous on I×R;

(2) there exists M > 0 such that ‖f(t, ξ)‖ 6M;

(3) there exists L > 0 such that
‖f(t, ξ) − f(t, ζ)‖ 6 L|ξ− ζ|

for ξ, ζ ∈ R, t ∈ T , 0 < L < 1.

Then the set of solutions
∑
α(I; t) to (3.2) is uniformly bounded (0 6 α 6 1).

Proof. First consider the case α = 0, i.e., prove that the set of solutions
∑

0(I, t) to (3.3) is uniformly
bounded.

By Lemma 3.7, it is obvious that

Σ0(I, t) = {ξ ∈W1,1
p (I,R) | ξ(t) ∈ L−1V(ξ)}

for all x ∈ Σ0(I, t), x ∈ L−1V(x), that is L(x) = x ′ − x ∈ V(x) = U(x) − x, so x ′(t) ∈ U(x), then there exists
y(t) ∈ U(x) such that x ′(t) = y(t) and y(t) ∈ F(t, x(t)), then ‖y(t)‖ 6 dH(F(t, x(t)), 0) = ‖f(t, x(t))‖ 6M,
since x(t) − x(t0) =

∫t
t0
x ′(t)dt =

∫t
t0
y(s)ds, then ‖x(t)‖ = ‖x(t0)‖+ |

∫t
t0
y(s)ds| 6 ‖x(t0)‖+MT 6 M ′,

i.e., Σ0(I, t) is uniformly bounded.
In the same way, we can show that Σα(I, t) is uniformly bounded (0 < α 6 1).

Theorem 3.11. Suppose that f : I×R −→ Ec satisfies

(1) f(t, ξ) is continuous on I×R;

(2) there exists M > 0 such that ‖f(t, ξ)‖ 6M;
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(3) there exists L > 0 such that
‖f(t, ξ) − f(t, ζ)‖ 6 L|ξ− ζ|

for ξ, ζ ∈ R, t ∈ T , 0 < L < 1.

Then there exists a solution v : I→ D1 of (3.1) such that [v(t)]α =
∑
α(I; t) (t ∈ I),α ∈ [0, 1], and v(0) = v(T).

Proof. By Theorem 3.9, we know
∑
α(I; t) 6= ∅. Since f(t, ξ) ∈ Ec, we have

∑
α(I; t) ⊂

∑
0(I; t) (0 6 α 6 1).

On the other hand, from Theorem 3.10, we obtain that there exists M > 0, such that

∀ξ ∈
∑
α

(I; ·), ‖ξ(t)‖ 6M(t ∈ I), α ∈ [0, 1].

From ξ ′(t) ∈ [f(t, ξ(t))]α a.e. on I and f is continuous on [0, T ]× [−M,M], there exists M ′ > 0 such that
|ξ ′(t)| 6M ′ a.e. on I (0 6 α 6 1). For the sake of simplicity, we denote

∑
α =
∑
α(I; ·) (0 6 α 6 1).

Obviously, {ξ(t) | ξ ∈
∑
α} is uniformly bounded and equicontinuous on [0, T ] and {ξ ′|ξ ∈

∑
α} is

bounded in L∞(I, R).
Since L1(I, R) is a separable Banach space and (L1(I, R))∗ = L∞(I, R), together with Lemma 3.8, {ξ ′|ξ ∈∑
α} ⊂ L∞(I, R) is weakly∗ sequentially compact.
For arbitrarily chosen {ξn} ⊂

∑
α, then there exists a subsequence of {ξn}, which is weakly∗ conver-

gent. Without loss of generality, we assume ξ ′n
w∗→ ζ ∈ L∞(I, R), i.e., for all h ∈ L1(I, R), we have∫T

0
h(t)ξ ′n(t)dt→

∫T
0
h(t)ζ(t)dt.

By Ascoli-Arzelá theorem, there exists a subsequence {ξnk} of {ξn}, ξ ∈ C(I, R) such that

max
t∈I

|ξnk(t) − ξ(t)|→ 0.

Taking h ∈ L1(I, R) as

h(s) =

{
1, s ∈ [0, t],
0, s 6∈ [0, t], t ∈ I,

then
∫t

0 ξ
′
nk

(s)ds→
∫t

0 ζ(s)ds (t ∈ I).
As ξn(t) is absolutely continuous on I (n = 1, 2, · · · ), we have ξnk(t)−ξnk(0)→

∫t
0 ζ(s)ds, and further

ξnk(t)→ ξ(0) +
∫t

0
ζ(s)ds, (t ∈ I).

Therefore, ξ(t) = ξ(0) +
∫t

0 ζ(s)ds (t ∈ I), i.e., ξ(t) is absolutely continuous on I and ξ ′ = ζ ∈ L∞(I, R),
and further ∫T

0
h(t)ξ ′nk(t)dt→

∫T
0
h(t)ξ ′(t)dt.

By ξ ′nk(t) ∈ [f(t, ξnk(t))]
α a.e. on I, Lemma 2.10 and Lemma 2.11, for all [a,b] ⊂ I, we have∫b

a

ξ ′nk(t)dt ∈
∫b
a

[f(t, ξnk(t))]
αdt, (n = 1, 2, · · · ).

After suitably choosing h ∈ L1(I, R), we can get
∫b
a ξ
′
nk

(t)dt→
∫b
a ξ
′(t)dt, and it is obvious that∫b

a

ξnk(t)dt→
∫b
a

ξ(t)dt.
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Therefore, by the continuity of f and Lemma 2.8, we have∫b
a

ξ ′(t)dt ∈
∫b
a

[f(t, ξ(t))]αdt.

Then for any t ∈ [0, T ] and t+4t ∈ [0, T ] (4t > 0) we get

1
4t

∫t+4t
t

ξ ′(s)ds ∈ 1
4t

∫t+4t
t

[f(s, ξ(s))]αds.

By the absolute continuity of ξ(t) on I, and the continuity of f, letting 4t → 0+ we obtain ξ ′(t) ∈
[f(t, ξ(t))]α a.e. on I. In view of ξnk(0) = ξnk(T) (n = 1, 2, · · · ), it is obvious that ξ(0) = ξ(T) and so
ξ ∈
∑
α. Then for any {ξn} ⊂

∑
α, there exists a subsequence {ξnk} of {ξn} and ξ ∈

∑
α such that

max
t∈I

|ξnk(t) − ξ(t)|→ 0, ξ ′nk
w∗→ ξ ′.

As L1(I, R) is separable, without loss of generality, suppose that there exists {hk} ⊂ L1(I, R) such that
{hk} = L

1(I, R) and hk 6= 0 (k = 1, 2, · · · ). On A, we introduce the following norm || · ||∗:

||ξ||∗ = max
t∈I

|ξ(t)|+

∞∑
k=1

1
2k||hk||1

∣∣∣∣∣
∫T

0
hk(t)ξ

′(t)dt

∣∣∣∣∣ , ∀ξ ∈ A.

Then it is easy to show that (A, || · ||∗) is a normed linear space and
∑
α is bounded subset of A. It is

obvious that if {ξn} ⊂ A, ξ ∈ A and {ξ ′n} is bounded in L∞(I, R), ||ξn − ξ||∗ → 0 if and only if

max
t∈I

|ξn(t) − ξ(t)|→ 0, ξ ′n
w∗→ ξ ′.

Therefore, from the argument above,
∑
α is a compact subset of A (0 6 α 6 1).

For f : I×R → Ec, it is obvious that
∑
β ⊂

∑
α (0 6 α 6 β 6 1). By the continuity of f = (f1, f2) on

I×R and Lemma 2.8, it is immediate to get
∞⋂
n=1

∑
αn

=
∑
α, where {αn} ⊂ (0, 1] is monotone increasing

and αn → α ∈ (0, 1].
Then by the Stacking Theorem (Lemma 2.2) on Banach spaces,

∑
α is the α-level set of some fuzzy set∑

on A. In the same way, for each t ∈ I,
∑
α(I; t) is the α-level set of some fuzzy set on R, i.e., there exists

v : I → D1 such that [v(t)]α =
∑
α(I; t) (t ∈ I), α ∈ [0, 1]. Therefore there exists a solution v(t) (t ∈ I) of

(3.1) with v(0) = v(T).

Example 3.12. In Theorem 3.11, take I = [0, 1], f(t, ξ) = etu0 −
1
2ξ, u0 ∈ Ec and [u0]

α = [1+α, 3−α], α ∈
[0, 1]. Then f satisfies the conditions in Theorem 3.11. So there exists a periodic solution v : [0, 1]→ D1 to
(3.1) with v(0) = v(1). Furthermore, when f(t, ξ) = etu0 −

1
2ξ, (3.2) becomes{

ξ ′(t) ∈ [etu0 −
1
2ξ(t)]

α,
ξ(0) = ξ(1),

α ∈ [0, 1],

i.e., {
ξ ′(t) ∈ et[u0]

α − 1
2ξ(t),

ξ(0) = ξ(1),
α ∈ [0, 1].

Obviously, the solution to equation{
ξ ′(t) = βet − 1

2ξ(t),
ξ(0) = ξ(1),

β ∈ [u0]
α, α ∈ [0, 1],
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is ξ(t) = 2
3β · e

− 1
2t( e−1

1−e−
1
2
+ e

3
2t), β ∈ [u0]

α, α ∈ [0, 1]. Therefore a solution of (3.1) is

v(t) =
2
3
· e−

1
2t(

e− 1

1 − e−
1
2
+ e

3
2t)⊗ u0, (0 6 t 6 1),

with v(0) = v(1) = 2
3
e2−e

1
2

1−e
1
2
⊗ u0. It is obvious that v(t) is a nonconstant periodic solution to the example.
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