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Abstract
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1. Introduction

Fixed point theory in CAT(0) spaces was first studied by Kirk [20, 21] wherein it is shown that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete CAT(0)
space always has a fixed point. It is worth mentioning that the results in CAT(0) spaces can be applied to
any CAT(k) space with k 6 0 since any CAT(k) space is a CAT(m) space for every m > k (see [5], “Metric
spaces of non-positive curvature”).

The concept of ∆-convergence in a general metric space was introduced by Lim [24]. In 2008, Kirk
and Panyanak [22] used the notion of ∆-convergence introduced by Lim [24] to prove in the CAT(0) space
and analogous of some Banach space results which involve weak convergence. Further, Dhompongsa
and Panyanak [11] obtained ∆-convergence theorems for the Picard, Mann and Ishikawa iterations in a
CAT(0) space.

The notion of total asymptotically nonexpansive mapping was first introduced in Banach spaces by
Alber et al. [3] in 2006. It is generalization of the asymptotically nonexpansive mappings introduced by
Goebel and Kirk [12] in 1972 as well as the nearly asymptotically nonexpansive mappings introduced by
Sahu [27] in 2005.

In 2012, Chang et al. [7] studied the demiclosed principle and convergence theorems for total asymp-
totically nonexpansive mappings in CAT(0) spaces. Since then the convergence theorems of several it-
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eration procedures for this class of mappings have been rapidly developed (see e.g., [4, 7, 17, 26, 28–
31, 33, 36–38]).

2. Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle in X
is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is well-known that any complete,
simply connected Riemannian manifold having non-positive sectional curvature is a CAT(0) space.

Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to
y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t ′)) = |t− t ′|
for all t, t ′ ∈ [0, l]. In particular, c is an isometry, and d(x,y) = l. The image α of c is called a geodesic (or
metric) segment joining x and y. We say that X is (i) a geodesic space if any two points of X are joined by a
geodesic and (ii) uniquely geodesic if there is exactly one geodesic joining x and y for each x,y ∈ X, which
we will denote by [x,y], called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X,d) consists of three points in X (the
vertices of 4) and a geodesic segment between each pair of vertices (the edges of 4). A comparison triangle
for the geodesic triangle 4(x1, x2, x3) in (X,d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that
dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [5]).

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy
the following CAT(0) inequality.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle for 4. Then 4 is said to
satisfy the CAT(0) inequality if for all x,y ∈ 4 and all comparison points x,y ∈ 4,

d(x,y) 6 dR2(x,y).

Complete CAT(0) spaces are often called Hadamard spaces (see [18]). If x,y1,y2 are points of a CAT(0)
space and y0 is the midpoint of the segment [y1,y2] which we will denote by (y1⊕y2)/2, then the CAT(0)
inequality implies

d2(x,y0) 6
1
2
d2(x,y1) +

1
2
d2(x,y2) −

1
4
d2(y1,y2). (2.1)

Inequality (2.1) is the (CN) inequality of Bruhat and Tits [6]. The above inequality was extended in [11]
as

d2(z,αx⊕ (1 −α)y) 6 αd2(z, x) + (1 −α)d2(z,y) −α(1 −α)d2(x,y)

for any α ∈ [0, 1] and x,y, z ∈ X.
Let us recall that a geodesic metric space is a CAT(0) space if and only if it satisfies the (CN) inequality

(see [5, p.163]). Moreover, if X is a CAT(0) space and x,y ∈ X, then for any α ∈ [0, 1], there exists a unique
point αx⊕ (1 −α)y ∈ [x,y] such that

d(z,αx⊕ (1 −α)y) 6 αd(z, x) + (1 −α)d(z,y)

for any z ∈ X and [x,y] = {αx⊕ (1 −α)y : α ∈ [0, 1]}.
A subset K of a CAT(0) space X is convex if for any x,y ∈ K, we have [x,y] ⊂ K.
The following are some elementary facts about CAT(0) spaces given in [11].

Lemma 2.1 ([11]). Let X be a CAT(0) space. Then

(i) (X,d) is uniquely geodesic.
(ii) Let p, x,y be points of X and α ∈ [0, 1]. Let n1 and n2 be the points in [p, x] and [p,y], respectively, satisfying

d(p,n1) = αd(p, x) and d(p,n2) = αd(p,y). Then

d(n1,n2) 6 αd(x,y).
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(iii) Let x,y ∈ X, x 6= y and z,w ∈ [x,y] such that d(x, z) = d(x,w). Then z = w.
(iv) Let x,y ∈ X. For each t ∈ [0, 1], there exists a unique point z ∈ [x,y] such that

d(x, z) = t d(x,y) and d(y, z) = (1 − t)d(x,y). (A)

We use the notation (1 − t)x⊕ ty for the unique point z satisfying (A).
(v) For x,y, z ∈ X and t ∈ [0, 1], we have

d((1 − t)x⊕ ty, z) 6 (1 − t)d(x, z) + t d(y, z).

Now, we give some definitions needed in the sequel.

Definition 2.2. Let T be a self-mapping on a nonempty subset C of X. Denote the set of fixed points of T
by F(T) = {x ∈ C : T(x) = x}. We say that T is:

(1) nonexpansive if d(Tx, Ty) 6 d(x,y) for all x,y ∈ C;
(2) asymptotically nonexpansive ([12]) if there exists a sequence {rn} ⊂ [0,∞) with limn→∞ rn = 0 such

that d(Tnx, Tny) 6 (1 + rn)d(x,y) for all x,y ∈ C and n > 1;
(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(Tnx, Tny) 6 Ld(x,y) for all

x,y ∈ C and n > 1;
(4) semi-compact if for a sequence {xn} in C with limn→∞ d(xn, Txn) = 0, there exists a subsequence

{xnk} of {xn} such that xnk → p ∈ C;
(5) total asymptotically nonexpansive mapping ([7]) if there exist non-negative real sequences {µn}, {νn}

with µn → 0, νn → 0 and a strictly increasing continuous function ψ : [0,∞) → [0,∞) with ψ(0) = 0
such that

d(Tnx, Tny) 6 d(x,y) + νnψ(d(x,y)) + µn

for all x,y ∈ C and n > 1.

Remark 2.3. In view of Definition 2.2, it is clear that each nonexpansive mapping is an asymptotically
nonexpansive mapping with the constant sequence {kn} = {1} for all n > 1 and each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive mapping with µn = 0, νn = kn − 1 for all
n > 1, ψ(t) = t, t > 0.

Let C be a nonempty closed subset of a metric space X. Recall that C is said to be a retract of X if there
exists a continuous mapping P : X→ C such that P(x) = x for x ∈ C. A mapping P : X→ C is said to be a
retraction if P2 = P. It follows that if a mapping P is a retraction, then P(y) = y for all y in the range of P.

Definition 2.4 ([8]). Let C be a nonempty closed subset of a metric space X. Let P : X→ C be a nonexpan-
sive retraction of X onto C. A mapping T : C→ X is said to be:

(i) asymptotically nonexpansive if there exists a sequence {rn} ⊂ [0,∞) with limn→∞ rn = 0 such that
d(T(PT)n−1x, T(PT)n−1y) 6 (1 + rn)d(x,y) for all x,y ∈ C and n > 1;

(ii) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(T(PT)n−1x, T(PT)n−1y) 6
Ld(x,y) for all x,y ∈ C and n > 1;

(iii) total asymptotically nonexpansive mapping ([38]) if there exist non-negative real sequences {µn},
{νn} with µn → 0, νn → 0 and a strictly increasing continuous function ψ : [0,∞) → [0,∞) with
ψ(0) = 0 such that

d(T(PT)n−1x, T(PT)n−1y) 6 d(x,y) + νnψ(d(x,y)) + µn

for all x,y ∈ C and n > 1.

We now define the following.
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Definition 2.5. A non-self-mapping T : C → X is said to be total asymptotically nonexpansive mapping
([38]) if there exist non-negative real sequences {µn}, {νn} with µn → 0, νn → 0 and a strictly increasing
continuous function ψ : [0,∞)→ [0,∞) with ψ(0) = 0 such that

d((PT)nx, (PT)ny) 6 d(x,y) + νnψ(d(x,y)) + µn

for all x,y ∈ C and n > 1.

Remark 2.6. If T : C→ X is total asymptotically nonexpansive in light of Definition 2.4 (iii) and P : X→ C is
a nonexpansive retraction, then PT : C→ C is total asymptotically nonexpansive in light of d(Tnx, Tny) 6
d(x,y) + νnψ(d(x,y)) + µn for all x,y ∈ C and n > 1. Indeed by Definition 2.4 (iii), we have

d((PT)nx, (PT)ny) = d(PT(PT)n−1x,PT(PT)n−1y)

6 d(T(PT)n−1x, T(PT)n−1y)

6 d(x,y) + νnψ(d(x,y)) + µn

for all x,y ∈ C and n > 1. Conversely, it may not be true.

Let C be a nonempty closed subset of a CAT(0) space X and let Ti : C → X be total (ν(i)n ,µ(i)n ,ψ(i))-
total asymptotically nonexpansive non-self-mappings for each i = 1, 2. We consider the following iteration
scheme:

x1 ∈ C,
yn = P[(1 −βn)xn ⊕βn(PT1)

nxn],
xn+1 = P[(1 −αn)(PT1)

nxn ⊕αn(PT2)
nyn], n > 1,

(2.2)

where {αn} and {βn} are real sequences in (0,1). This scheme is called modified Agarwal et al. [2] scheme
for two non-self-mappings, where P is same as in Definition 2.4.

Remark 2.7.

(i) If we take T1 = T2 = T and P = I, the identity mapping, then iteration scheme (2.2) reduces to the
modified Agarwal et al. [2] iteration scheme for total asymptotically nonexpansive self-mapping.

(ii) By taking Tn1 = Tn2 = T for all n > 1 and P = I, the identity mapping, then iteration scheme (2.2)
reduces to S-iteration scheme ([2]) for nonexpansive self-mapping.

Let {xn} be a bounded sequence in a closed convex subset C of a CAT(0) space X. For x ∈ X, set

r(x, {xn}) = lim sup
n→∞ d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

It is known that, in a CAT(0) space, A({xn}) consists of exactly one point [10, Proposition 7].
We now recall the definition of ∆-convergence and weak convergence (⇀) in CAT(0) space.

Definition 2.8 ([22]). A sequence {xn} in a CAT(0) space X is said to ∆-converge to x ∈ X if x is the unique
asymptotic center of {xn} for every subsequence {un} of {xn}. In this case we write ∆-limn xn = x and call
x is the ∆-limit of {xn}.
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Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un}) for every subsequence
{un} of {xn}. In the Banach space it is known that, every bounded sequence has a regular subsequence
[13, Lemma 15.2].

Since in a CAT(0) space every regular sequence ∆-converges, we see that every bounded sequence in
X has a ∆-convergent subsequence, also it is noticed that [22, p.3690].

Lemma 2.9 ([1]). Given {xn} ⊂ X such that {xn} ∆-converges to x and given y ∈ X with y 6= x, then

lim sup
n

d(xn, x) < lim sup
n

d(xn,y).

In a Banach space the above condition is known as the Opial property.
Now, recall the definition of weak convergence in a CAT(0) space.

Definition 2.10 ([15]). Let C be a closed convex subset of a CAT(0) space X. A bounded sequence {xn} in C
is said to converge weakly to q ∈ C if and only if Φ(q) = infx∈CΦ(x), where Φ(x) = lim supn→∞ d(xn, x).

Note that {xn} ⇀ q if and only if AC{xn} = {q}.
Nanjaras and Panyanak [25] established the following relation between ∆-convergence and weak con-

vergence in a CAT(0) space.

Lemma 2.11 ([25, Proposition 3.12]). Let {xn} be a bounded sequence in a CAT(0) space X and let C be a closed
convex subset of X which contains {xn}. Then

(i) ∆-limn xn = x implies xn ⇀ x.
(ii) The converse of (i) is true if {xn} is regular.

Lemma 2.12 ([11, Lemma 2.8]). If {xn} is a bounded sequence in a CAT(0) space X with A({xn}) = {x} and {un}

is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn,u)} converges, then x = u.

Lemma 2.13 ([9, Proposition 2.1]). If C is a closed convex subset of a CAT(0) space X and if {xn} is a bounded
sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.14 ([7, Theorem 3.8]). Let C be closed convex subset of a complete CAT(0) space X and let T : C → C

be a total asymptotically nonexpansive and uniformly L-Lipschitzian mapping. Let {xn} be a bounded sequence in
C such that limn→∞ d(xn, Txn) = 0 and ∆− limn→∞ xn = p. Then Tp = p.

Lemma 2.15 ([35]). Suppose that {an}, {bn}, and {rn} are sequences of nonnegative numbers such that an+1 6
(1 + bn)an + rn for all n > 1. If

∑∞
n=1 bn <∞ and

∑∞
n=1 rn <∞, then limn→∞ an exists.

Lemma 2.16 ([7]). Let X be a CAT(0) space and x ∈ X a given point. Suppose that {tn} is a sequence in [a,b] with
a,b ∈ (0, 1) and 0 < a(1 − b) 6 1

2 . If {xn} and {yn} are any sequences in X such that

lim sup
n→∞ d(xn, x) 6 r, lim sup

n→∞ d(yn, x) 6 r,

and
lim
n→∞d((1 − tn)xn ⊕ tnyn, x) = r

for some r > 0, then limn→∞ d(xn,yn) = 0.

In 2013, Yang and Zhao [38] established the following existence theorem besides results on convexity
and closedness of a fixed point set in a CAT(0) spaces in respect of total asymptotically nonexpansive
non-self-mappings.

Theorem 2.17 ([38]). Let X be a complete CAT(0) space and C be a nonempty bounded closed and convex subset
of X. If T : C → X is a uniformly L-Lipschitzian and ({νn}, {µn},ψ)-total asymptotically nonexpansive non-self-
mapping, then T has a fixed point in C and the set of fixed points is closed and convex.

Recently, Imdad and Dashputre established the following result.

Theorem 2.18 ([16, Theorem 2.17]). Let C be a nonempty closed and convex subset of a complete CAT(0) space
X, T : C → X a uniformly L-Lipschitzian and ({νn}, {µn},ψ)-total asymptotically nonexpansive non-self-mapping.
If {xn} is a bounded sequence in C which ∆-converges to x and limn→∞ d(xn, Txn) = 0, then x ∈ C and x = Tx.
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3. Main results

In this section, we establish ∆-convergence and strong convergence theorems of newly defined it-
eration scheme (2.2) for (ν

(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive non-self-mappings for each

i = 1, 2 in the setting of CAT(0) spaces. Let F = F(T1) ∩ F(T2) be the set of common fixed points of the
mappings T1 and T2.

Theorem 3.1. Let C be a nonempty closed convex and bounded subset of a complete CAT(0) space X. Let Ti : C→ X

be uniformly Li-Lipschitzian and (ν
(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive non-self-mappings for each

i = 1, 2 satisfying the following conditions:

(i)
∑∞
n=1 ν

(i)
n <∞,

∑∞
n=1 µ

(i)
n <∞, i = 1, 2;

(ii) there exist constants Mi > 0, M∗i > 0 such that ψ(i)(λ) 6M∗i λ for all λ >M, i = 1, 2;
(iii) there exist constants a1,a2 ∈ (0, 1) with 0 < a1(1 − a2) 6 1

2 such that 0 < a1 6 αn,βn 6 a2 < 1.

Suppose that {xn} is defined by (2.2). If F = F(T1)∩ F(T2) 6= ∅, then the following hold:

(1) limn→∞ d(xn,q) exists for each q ∈ F;
(2) limn→∞ d(xn, T1xn) = 0 and limn→∞ d(xn, T2xn) = 0;
(3) the sequence {xn} ∆-converges to a common fixed point of T1 and T2.

Proof.

(1) Using (ii) and strictly increasing function ψ(i) for i = 1, 2, we obtain

ψ(i)(λ) 6 ψ(i)(Mi) + λM
∗
i for i = 1, 2.

Set νn=max{ν(1)
n ,ν(2)

n }, µn=max{µ(1)
n ,µ(2)

n }, L = max{L1,L2}, M = max{M1,M2}, M∗ = max{M∗1 ,M∗2 },
and ψ = max{ψ(1),ψ(2)}. Since

∑∞
n=1 ν

(i)
n < ∞,

∑∞
n=1 µ

(i)
n < ∞, i = 1, 2, we know that

∑∞
n=1 νn < ∞,∑∞

n=1 µn < ∞. Since Ti (i = 1, 2) are total asymptotically nonexpansive non-self-mappings, by Lemma
2.1 (v) and (2.2), for each q ∈ F, we have

d(yn,q) = d(P((1 −βn)xn ⊕βn(PT1)
nxn),P(q))

6 d((1 −βn)xn ⊕βn(PT1)
nxn,q)

6 (1 −βn)d(xn,q) +βnd((PT1)
nxn,q)

6 (1 −βn)d(xn,q) +βn[d(xn,q) + νnψ(d(xn,q)) + µn]
6 (1 −βn)d(xn,q) +βn[d(xn,q) + νnψ(M) + νnM

∗d(xn,q) + µn]
6 (1 + νnM

∗)d(xn,q) +βnνnψ(M) +βnµn

(3.1)

and

d(xn+1,q) = d(P((1 −αn)(PT1)
nxn ⊕αn(PT2)

nyn),P(q))
6 d((1 −αn)(PT1)

nxn ⊕αn(PT2)
nyn,q)

6 (1 −αn)d((PT1)
nxn,q) +αnd((PT2)

nyn,q)
6 (1 −αn)[d(xn,q) + νnψ(d(xn,q)) + µn]
+αn[d(yn,q) + νnψ(d(yn,q)) + µn]

6 (1 −αn)[d(xn,q) + νnψ(M) + νnM
∗d(xn,q) + µn]

+αn[d(yn,q) + νnψ(M) + νnM
∗d(yn,q) + µn]

= (1 −αn)[(1 + νnM
∗)d(xn,q) + νnψ(M) + µn]

+αn[(1 + νnM
∗)d(yn,q) + νnψ(M) + µn]

= (1 −αn)(1 + νnM
∗)d(xn,q) + νnψ(M) + µn +αn(1 + νnM

∗)d(yn,q).

(3.2)
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Inserting (3.1) into (3.2), we get

d(xn+1,q) 6 (1 −αn)(1 + νnM
∗)d(xn,q) + νnψ(M) + µn

+αn(1 + νnM
∗)[(1 + νnM

∗)d(xn,q) +βnνnψ(M) +βnµn]

6 (1 −αn)(1 + νnM
∗)2d(xn,q) + νnψ(M) + µn

+αn(1 + νnM
∗)2d(xn,q) +αnβnνn(1 + νnM

∗)ψ(M) +αnβnµn(1 + νnM
∗)

= (1 + νnM
∗)2d(xn,q) + (νnψ(M) + µn)× [1 +αnβn(1 + νnM

∗)]

6 (1 + νnR
∗)d(xn,q) + θn,

(3.3)

where θn = (νnψ(M) + µn)[1 + αnβn(1 + νnM
∗)] and for some R∗ > 0. Since

∑∞
n=1 νn < ∞ and∑∞

n=1 µn < ∞, it follows that
∑∞
n=1 θn < ∞. Hence by Lemma 2.15, limn→∞ d(xn,q) exists for each

q ∈ F. This completes the proof of part (1).

(2) We show that

lim
n→∞d(xn, Tixn) = 0, i = 1, 2.

From the proof of part (1), we obtain limn→∞ d(xn,q) exists. We may assume that

lim
n→∞d(xn,q) = l > 0. (3.4)

Taking the limsup on both sides in (3.1), we have

lim sup
n→∞ d(yn,q) 6 l. (3.5)

Since

d((PT1)
nxn,q) 6 d(xn,q) + νnψ(d(xn,q)) + µn

6 d(xn,q) + νnψ(M) + νnM
∗d(xn,q) + µn

= (1 + νnM
∗)d(xn,q) + νnψ(M) + µn,

we have that

lim sup
n→∞ d((PT1)

nxn,q) 6 l. (3.6)

Hence

lim sup
n→∞ d((PT2)

nyn,q) 6 lim sup
n→∞ [(1 + νnM

∗)d(yn,q) + νnψ(M) + µn] 6 l.

Since

lim
n→∞d(xn+1,q) = lim

n→∞d(P((1 −αn)(PT1)
nxn ⊕αn(PT2)

nyn),q)

6 lim
n→∞[(1 + νnR

∗)d(xn,q) + θn] 6 l.

It follows from Lemma 2.16 that

lim
n→∞d((PT1)

nxn, (PT2)
nyn) = 0. (3.7)

From (2.2) and (3.7), we have

d(xn+1, (PT1)
nxn) = d(P((1 −αn)(PT1)

nxn ⊕αn(PT2)
nyn), (PT1)

nxn)

= d((1 −αn)(PT1)
nxn ⊕αn(PT2)

nyn, (PT1)
nxn)

6 αnd((PT1)
nxn, (PT2)

nyn)

6 a2d((PT1)
nxn, (PT2)

nyn)

→ 0 as n→∞.

(3.8)
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Now

d(xn+1, (PT2)
nyn) 6 d(xn+1, (PT1)

nxn) + d((PT1)
nxn, (PT2)

nyn),

so that from (3.7) and (3.8), we have

lim
n→∞d(xn+1, (PT2)

nyn) = 0. (3.9)

Also,

d(xn+1,q) 6 d(xn+1, (PT2)
nyn) + d((PT2)

nyn,q)
6 d(xn+1, (PT2)

nyn) + (1 + νnM
∗)d(yn,q) + νnψ(M) + µn,

using (3.9), which gives that

l 6 lim inf
n→∞ d(yn,q). (3.10)

Using (3.5) and (3.10), we obtain

l = lim
n→∞d(yn,q) = lim

n→∞d(P((1 −βn)xn ⊕βn(PT1)
nxn),q). (3.11)

From (3.4), (3.6), (3.11), and Lemma 2.16, we obtain

lim
n→∞d(xn, (PT1)

nxn) = 0. (3.12)

Observe that

d(xn+1, (PT2)
nxn) 6 d(xn+1, (PT2)

nyn) + d((PT2)
nyn, (PT2)

nxn)

6 d(xn+1, (PT2)
nyn) + d(xn,yn) + νnψ(d(xn,yn)) + µn

6 d(xn+1, (PT2)
nyn) + d(xn,yn) + νnψ(M) + νnM

∗d(xn,yn) + µn
= d(xn+1, (PT2)

nyn) + (1 + νnM
∗)d(xn,yn) + νnψ(M) + µn,

(3.13)

where

d(xn,yn) = d(xn,P((1 −βn)xn ⊕βn(PT1)
nxn)) 6 βnd(xn, (PT1)

nxn) 6 a2d(xn, (PT1)
nxn).

It follows from (3.12) that

lim
n→∞d(xn,yn) = 0. (3.14)

Thus, from (3.9), (3.13), and (3.14), we have

lim
n→∞d(xn+1, (PT2)

nxn) = 0. (3.15)

In addition, since

d(xn+1, xn) 6 d(xn+1, (PT1)
nxn) + d((PT1)

nxn, xn), (3.16)

using (3.8) and (3.12) in (3.16), we obtain

lim
n→∞d(xn+1, xn) = 0. (3.17)

Again note that

d(xn, (PT2)
nxn) 6 d(xn, xn+1) + d(xn+1, (PT2)

nxn).
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Using (3.15) and (3.17) in the above inequality, we obtain

lim
n→∞d(xn, (PT2)

nxn) = 0. (3.18)

Finally, since Ti (i = 1, 2) is uniformly Li-Lipschitzian, we have

d(xn, T1xn) 6 d(xn+1, xn) + d(xn+1, (PT1)
n+1xn+1) + d((PT1)

n+1xn+1, (PT1)
n+1xn)

+ d((PT1)
n+1xn, T1xn)

6 (1 + L)d(xn+1, xn) + d(xn+1, (PT1)
n+1xn+1) + Ld((PT1)

nxn, xn).

(3.19)

Using (3.12) and (3.17) in (3.19), we obtain

lim
n→∞d(xn, T1xn) = 0. (3.20)

Similarly, since

d(xn, T2xn) 6 d(xn+1, xn) + d(xn+1, (PT2)
n+1xn+1)

+ d((PT2)
n+1xn+1, (PT2)

n+1xn) + d((PT2)
n+1xn, T2xn)

6 (1 + L)d(xn+1, xn) + d(xn+1, (PT2)
n+1xn+1) + Ld((PT2)

nxn, xn).

Using (3.17) and (3.18) in (3.20), we obtain

lim
n→∞d(xn, T2xn) = 0. (3.21)

This completes the proof of part (2).

(3) Now, we show that the sequence {xn} ∆-converges to a common fixed point of T1 and T2.
Let Ww(xn) :=

⋃
A({un}) where the union is taken over all subsequences {un} of {xn}. We can com-

plete the proof by showing that Ww(xn) ⊆ F and Ww(xn) consists of exactly one point. Let u ∈Ww(xn),
then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma 2.13, there exists a sub-
sequence {vn} of {un} such that ∆− limn vn = v ∈ C. In view of (3.20) and (3.21), limn→∞ d(xn, T1xn) = 0
and limn→∞ d(xn, T2xn) = 0. It follows from Theorem 2.18 that v ∈ F = F(Tl) ∩ F(T2), so by part (1) of
Theorem 3.1, the limn→∞ d(xn, v) exists. By Lemma 2.12, u = v ∈ F. This implies that Ww(xn) ⊆ F.

To show that {xn} ∆-converges to a point in F, it is sufficient to show that Ww(xn) consists of exactly
one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) = {x}. Since w ∈ Ww(xn) ⊆ F
and by part (1) of Theorem 3.1, limn→∞ d(xn,w) exists. Again by Lemma 2.12, we have x = w ∈ F. This
implies that Ww(xn) consists of exactly one point. This shows that {xn} ∆-converges to a common fixed
point of T1 and T2. This completes the proof of part (3).

Remark 3.2. Theorem 3.1 extends the corresponding results of Chang et al. [7], Khan and Abbas [19], and
Yang and Zhao [38] to the case of modified Agarwal et al. iteration scheme [2] and two total asymptotically
nonexpansive non-self-mappings.

We can get the following corollary for the self-mappings.

Corollary 3.3. Let C and X be the same as in Theorem 3.1 and let Ti : C → C be uniformly Li-Lipschitzian and
(ν

(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive mappings for each i = 1, 2. If F = F(T1) ∩ F(T2) 6= ∅ and the

conditions (i)-(iii) in Theorem 3.1 are satisfied, then the sequence {xn} defined by

x1 ∈ C,
yn = (1 −βn)xn ⊕βnTn1 xn,

xn+1 = (1 −αn)T
n
1 xn ⊕αnTn2 yn, n > 1,

(3.22)

is ∆-convergent to a common fixed point of T1 and T2.
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Proof. Since Ti, i = 1, 2 is a self-mapping from C into C, take P = I (the identity mapping on C), then
(PTi)

n = Tni for i = 1, 2. The conclusion of Corollary 3.3 will be obtained from part (3) of Theorem 3.1.
This completes the proof.

Next, we prove some strong convergence theorems via newly proposed iteration scheme (2.2) for
(ν

(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive non-self-mappings for each i = 1, 2.

Theorem 3.4. Let C and X be the same as in Theorem 3.1 and let Ti : C → C be uniformly Li-Lipschitzian and
(ν

(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive non-self-mappings for each i = 1, 2. If F = F(T1) ∩ F(T2) 6= ∅

and the conditions (i)-(iii) in Theorem 3.1 are satisfied, then the sequence {xn} defined by (2.2) converges strongly
to a common fixed point of T1 and T2 if and only if lim infn→∞ d(xn, F) = 0.

Proof. Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F) = 0. From (3.3), we have

d(xn+1, F) 6 (1 + νnR
∗)d(xn, F) + θn, n > 1.

By Lemma 2.16, limn→∞ d(xn, F) exists. Thus by hypothesis limn→∞ d(xn, F) = 0.
It is well-known that (1 + t) 6 et for all t > 0, from (3.3), we obtain

d(xn+m,q) 6 (1 + R∗νn+m−1)d(xn+m−1,q) + θn+m−1

6 eR
∗νn+m−1d(xn+m−1,q) + θn+m−1

6 eR
∗νn+m−1 [eR

∗νn+m−2d(xn+m−2,q) + θn+m−2] + θn+m−1

6 e[R
∗νn+m−1+R

∗νn+m−2]d(xn+m−2,q) + eR
∗νn+m−1 [θn+m−1 + θn+m−2]

...

6
(
eR
∗∑n+m−1

j=n νj
)
d(xn,q) +

(
eR
∗∑n+m−1

j=n νj
)n+m−1∑

j=n

θj

6 Q
[
d(xn,q) +

n+m−1∑
j=n

θj

]
for each q ∈ F and m,n > 1, where Q = eR

∗∑n+m−1
j=n νj > 0. As, R∗ > 0 and

∑∞
n=1 νn < ∞, so

Q∗ = eR
∗∑∞

n=1νn > Q = eR
∗∑n+m−1

j=n νj. Let ε > 0 be arbitrarily chosen. Since limn→∞ d(xn, F) = 0
and
∑∞
n=1 θn <∞, there exists a positive integer N0 such that

d(xn, F) <
ε

4Q∗
and

n+m+1∑
j=N0

θj <
ε

6Q∗
for n > N0.

In particular, inf{d(xN0 ,q) : q ∈ F} < ε
4Q∗ . Thus there must exist z ∈ F such that

d(xN0 , z) <
ε

3Q∗
.

Hence for n > N0, we have

d(xn+m, xn) 6 d(xn+m, z) + d(z, xn) 6 2Q∗
[
d(xN0 , z) +

∞∑
j=N0

θj

]
< 2Q∗

( ε

3Q∗
+

ε

6Q∗
)
= ε.

Hence {xn} is a Cauchy sequence in closed subset C of a complete CAT(0) space X, which implies that
{xn} must be convergent. Assume that limn→∞ xn = q∗. Since C is closed, therefore q∗ ∈ C. Next, we
show that q∗ ∈ F. Since limn→∞ d(xn, F) = 0 we get d(q∗, F) = 0, closedness of F gives that q∗ ∈ F. Thus
{xn} converges strongly to a point in F. This completes the proof.

Recall the following definition.
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Definition 3.5 ([34]). A mapping T from a subset C of a metric space (X,d) into itself with F(T) 6= ∅ is
said to satisfy condition (A) if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(t) > 0 for all t ∈ (0,∞) such that f(d(x, F(T))) 6 d(x, Tx) for all x ∈ C.

Now, we generalize the above definition for two mappings T1 and T2.

Definition 3.6. Two mappings T1 and T2 from a subset C of a metric space (X,d) into itself with F = F(T1)∩
F(T2) 6= ∅ are said to satisfy condition (A∗) if there exists a nondecreasing function f : [0,∞)→ [0,∞) with
f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that f(d(x, F)) 6 [A1d(x, T1x) +A2d(x, T2x)] for all x ∈ C,
where A1 and A2 are positive real numbers such that A1 +A2 = 1.

Remark 3.7. If T1 = T2 = T , then condition (A∗) reduces to condition (A) ([34]).
As an application of Theorem 3.4, we establish another strong convergence result employing condition

(A∗).

Theorem 3.8. Let C and X be the same as in Theorem 3.1 and let Ti : C → C be uniformly Li-Lipschitzian and
(ν

(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive non-self-mappings for each i = 1, 2. Suppose F = F(T1) ∩

F(T2) 6= ∅ and the conditions (i)-(iii) in Theorem 3.1 are satisfied and T1 and T2 satisfy the condition (A∗). Then the
sequence {xn} defined by (2.2) converges strongly to a common fixed point of the mappings T1 and T2.

Proof. By part (2) of Theorem 3.1, we have limn→∞ d(xn, Tixn) = 0 for i = 1, 2. Further, by condition (A∗),
f(d(xn, F)) 6 [A1d(xn, T1xn) +A2d(xn, T2xn)], so that limn→∞ f(d(xn, F)) = 0. Since f is a non-decreasing
function and f(0) = 0, it follows that limn→∞ d(xn, F) = 0. Therefore, Theorem 3.4 implies that {xn}

converges strongly to a point in F. This completes the proof.

For our next result, we need the following definition.

Definition 3.9. A mapping T : C → X is said to be demi-compact if for any sequence {xn} in C such that
d(xn, Txn) = 0 as n → ∞, there exists a subsequence {xnk} ⊂ {xn} such that {xnk} converges strongly to
some point q ∈ C.

Theorem 3.10. Let C and X be the same as in Theorem 3.1 and let Ti : C → C be uniformly Li-Lipschitzian and
(ν

(i)
n ,µ(i)n ,ψ(i))-total asymptotically nonexpansive non-self-mappings for each i = 1, 2. Let F = F(T1)∩ F(T2) 6= ∅

and the conditions (i)-(iii) in Theorem 3.1 are satisfied. If one of T1 and T2 is demi-compact, then the sequence {xn}
defined by (2.2) converges strongly to a common fixed point of the mappings T1 and T2.

Proof. By part (2) of Theorem 3.1, we know that limn→∞ d(xn, Tixn) = 0 for i = 1, 2, and one of T1 and
T2 is demi-compact, there exists a subsequence {xnk} ⊂ {xn} such that {xnk} converges strongly to some
point p ∈ C. Moreover, by the uniform continuity of T1 and T2, for each i = 1, 2, we have

d(Ti(p),p) 6 d(Ti(p), Ti(xnk)) + d(Ti(xnk), xnk) + d(xnk ,p)→ 0 as k→∞.

This implies that p ∈ F = F(T1) ∩ F(T2). Again by part (1) of Theorem 3.1, limn→∞ d(xn,p) exists, thus p
is the strong limit of the sequence {xn}, that is, {xn} converges strongly to a common fixed point of the
mappings T1 and T2. This completes the proof.

Corollary 3.11. Under the assumptions of Corollary 3.3, if one of T1 and T2 is demi-compact, then the sequence
{xn} defined by (3.22) converges strongly to a common fixed point of the mappings T1 and T2.

Remark 3.12.

(i) In view of Remark 2.3, Theorems 3.1, 3.4, and 3.8 extend the corresponding results of Chidume
et al. [8] from Banach spaces to CAT(0) spaces. They also extend the corresponding results of
Dhompongsa et al. [11] from the class of nonexpansive mappings to the class of total asymptotically
nonexpansive non-self-mappings.

(ii) Theorems 3.1, 3.4, and 3.8 extend Lemmas 3.1, 3.2, and Theorems 3.1, 3.3, 3.4 of Saluja [30] from
Banach spaces to CAT(0) spaces.
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(iii) Theorems 3.1, 3.4, and 3.8 extend Lemma 3.1, 3.3, and Theorems 3.2, 3.4, 3.5, 3.9 of Saluja [28] for
asymptotically nonexpansive non-self-mappings.

(iv) Our results also extend and improve the corresponding results contained in [4, 7, 16, 19, 23, 32, 36, 38]
and many others from the existing literature.

Now, we give some examples in support of our result.

Example 3.13 ([14]). Let X = R be the real line with the usual metric d(x,y) = |x− y|, C = [−1, 1] and P
be the identity mapping. For each x ∈ C, define two mappings T1, T2 : C→ C by

T1(x) =

{
−2 sinx2 , if x ∈ [0, 1],
2 sinx2 , if x ∈ [−1, 0), and T2(x) =

{
x, if x ∈ [0, 1],
−x, if x ∈ [−1, 0).

In [14], the authors proved that both T1 and T2 are asymptotically nonexpansive mappings with kn = 1
for all n > 1. Therefore, they are total asymptotically nonexpansive mappings with µn = νn = 0.
Additionally, they are uniformly L-Lipschitzian mappings with L = supn>1(kn). It is clear that F(T1) = 0
and F(T2) = {0 6 x 6 1}, that is, the unique common fixed point set F = F(T1)∩ F(T2) = {0}. Set αn = n

2n+1
and βn = n

3n+1 . Thus, the conditions of Theorem 3.4 are fulfilled. Hence the iterative sequence {xn}

defined by (2.2) converges strongly to 0.

Example 3.14. Let X = C = [0, 1] with the usual metric d(x,y) = |x− y|, {xn} = { 1
n }, {unk} = { 1

kn } for all
n,k > 1 are sequences in C. Then A({xn}) = {0} and A({unk}) = {0}. This shows that {xn} ∆-converges
to 0, that is, ∆− limn→∞ xn = 0. The sequence {xn} also converges strongly to 0, that is, |xn − 0| → 0 as
n→∞. Also it is weakly convergent to 0, that is, xn ⇀ 0 as n→∞, by Lemma 2.11. Thus, we conclude
that

strong convergence ⇒ ∆-convergence ⇒ weak convergence,

but the converse is not true in general.

The following example shows that, if the sequence {xn} is weakly convergent, then it is not ∆-
convergent.

Example 3.15 ([25]). Let X = R, d be the usual metric on X, C = [−1, 1], {xn} = {1,−1, 1,−1, . . . }, {un} =
{−1,−1,−1, . . . }, and {vn} = {1, 1, 1, . . . }. Then A({xn}) = AC({xn}) = {0}, A({un}) = {−1}, and A({vn}) =
{1}. This shows that {xn} ⇀ 0 as n→∞ (⇀ means weakly) but it does not have a ∆-limit.

4. Conclusion

In this paper, we proposed and studied a new two-step iteration scheme for two total asymptotically
nonexpansive non-self-mappings in CAT(0) spaces and established a ∆-convergence and some strong
convergence results for said scheme and mappings in the setting of CAT(0) spaces. Our results extend,
improve, and generalize the corresponding results of [4, 7, 8, 11, 16, 19, 23, 28, 30, 32, 36, 38] and many
others.
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