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Abstract

We concentrate on investigating the existence of positive solutions for fractional-order differential equations with integral
conditions in this article. The problem is issued by applying Avery-Peterson fixed-point theorem and the properties of Green’s
function. At the same time, we provide an example to make our results clear and easy for readers’ to understand the multiplicity
of solutions. c©2017 All rights reserved.
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1. Introduction

Fractional differential equations are popular in recent years with their wide application in many fields
of science and technology. Since fields of physics, biology, and aerodynamics have a lot to do with the
fractional differential equations, many researchers provided different methods to solve practical problems
once kept us from moving on. Recently, the fractional-order differential equations with integral boundary
value problems have attracted a great deal of attention and interests. The authors used different kinds
of fixed point theorems (Krasnoselskii fixed-point theorem, Leray-Schauder fixed-point theorem, Leggett-
Williams fixed-point theorem, Avery-Peterson fixed-point theorem) to deal with different equations, see
[1, 5–7, 10, 11].

Especially, Ahmada and Nieto investigated the fractional integro-differential equation with integral
boundary conditions in paper [2]:

cD
q
0+x(t) = f(t, x(t), (χx)(t)), t ∈ (0, 1),

αx(0) +βx ′(0) =
∫1

0 q1(x(s))ds,
αx(1) +βx ′(1) =

∫1
0 q2(x(s))ds,
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where 1 < q 6 2, cDq is the standard Caputo fractional derivative, and (χx)(t) =
∫t

0 γ(t, s)x(s)ds.
Ding and Pang considered the three nonnegative solutions for fractional differential equations with

integral boundary conditions: 
cDα0+x(t) + f(t, x(t)) = 0, t ∈ (0, 1),
ax(0) − bx ′(0) = 0, cx(1) + dx ′(1) = 0,
x ′′(0) + x ′′′(0) =

∫1
0 x
′′(τ)dp(τ),

x ′′(1) + x ′′′(1) +
∫1

0 x
′′(τ)dq(τ) = 0,

where 3 < α 6 4 is a real number, a,b, c,d > 0, ρ = ad+ ac+ bc > 0. cDα is the Caputo fractional
derivative and f satisfies three conditions in [9].

In addition, Boucherif and Zhang considered the existence of positive solutions for the second order
differential equation with integral boundary value problem in [4, 12].

Inspired by seniors’ wonderful researches, we are focusing on the existence of multiple positive solu-
tions of fractional differential equations with integral boundary value conditions in this article:

cDα0+u(t) = f(t,u(t),u
′(t)), t ∈ [0, 1],

u ′′(0) = 0,u(3)(0) = 0,
u(0) + au ′(0) =

∫1
0 g1(s)u(s)ds,

u(1) − bu ′(1) =
∫1

0 g2(s)u(s)ds,

(1.1)

where 3 < α < 4,g1(t),g2(t) ∈ C([0, 1], [0,+∞)), and a,b > 0. In addition, cDα denotes the Caputo
fractional derivative, and f : [0, 1]× [0,+∞)× (−∞,+∞)→ [0,+∞) is continuous.

To ensure readability of the passage we assume the following conditions hold:

(H1) b > a > 1;
(H2) f ∈ C([0, 1]× [0,+∞)× (−∞,+∞), [0,+∞));
(H3) g1,g2 ∈ C([0, 1], [0,+∞)), 0 6 σ1 + σ2 < 1, ρ = 1 − σ1 − σ4 + σ1σ4 − σ2σ3 > 0, where

σ1 =

∫ 1

0

b+ s− 1
a+ b− 1

g1(s)ds, σ2 =

∫ 1

0

a− s

a+ b− 1
g1(s)ds,

σ3 =

∫ 1

0

b+ s− 1
a+ b− 1

g2(s)ds, σ4 =

∫ 1

0

a− s

a+ b− 1
g2(s)ds.

The paper is organized in four parts. We recall certain important preliminaries as preparations in
Section 2. Section 3 is arranged to make out the results of multiplicity positive solutions. And in Section
4, an example is given to illustrate main results.

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a function f ∈ (0,∞) → R is
defined as

Iα0+f(t) =
1
Γ(α)

∫t
0
(t− s)α−1f(s)ds,

provided the right side is pointwise defined on (0,∞) where Γ(·) is the Gamma function.

Definition 2.2. For a function f : [0,+∞)→ R the Captuo derivative of fractional order α is defined as

cDα0+f(t) =
1

Γ(n−α)

∫t
0
(t− s)n−α−1f(n)(s)ds, n = [α] + 1,

where [α] denotes the integer part of the real number α.
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Definition 2.3. The Riemann-Liouville fractional derivative of order α for a function f is defined by

Dα0+f(t) =
1

Γ(n−α)

(
d

dt

)n ∫t
0
(t− s)n−α−1f(s)ds, n = [α] + 1,

provided that the right-hand side of the equation is pointwise defined on (0,+∞).

Lemma 2.4 ([5]). Let α > 0, then the fractional differential equation

cDαu(t) = 0

has a unique solution

u(t) =

[α]∑
j=0

u(j)(0)
j!

tj.

Lemma 2.5 ([5]). Let α > 0, then

IαcDαu(t) = u(t) −

[α]∑
j=0

u(j)(0)
j!

tj.

We are ready to find out the exact expression of the Green’s function associated with the fractional-
order differential equation with boundary value conditions:

cDα0+u(t) = y(t), t ∈ [0, 1],
u ′′(0) = 0,u(3)(0) = 0,
u(0) + au ′(0) =

∫1
0 g1(s)u(s)ds,

u(1) − bu ′(1) =
∫1

0 g2(s)u(s)ds.

(2.1)

Lemma 2.6. Let 3 < α < 4. Assume y ∈ C[0, 1] and (H1) holds, then the problem (2.1) has a unique solution u(t)
given by the expression

u(t) =

∫ 1

0
G(t, s)y(s)ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)y(τ)dτds,

where

G(t, s) =


(a+b−1)(t−s)α−1+(t−a)(1−s)α−1+b(α−1)(a−t)(1−s)α−2

(a+b−1)Γ(α) , 0 6 s 6 t 6 1,
(t−a)(1−s)α−1+b(α−1)(a−t)(1−s)α−2

(a+b−1)Γ(α) , 0 6 t 6 s 6 1,

and
R(t, s) =

[(a− t)σ3 + (t+ b− 1)(1 − σ4)]g1(s) + [(a− t)(1 − σ1) + (t+ b− 1)σ2]g2(s)

ρ(a+ b− 1)
.

Proof. According to Lemma 2.5, the general solution of fractional differential equation (2.1) can be written
as

u(t) = Iα0+y(t) + c0 + c1t+ c2t
2 + c3t

3, (2.2)

where ci ∈ R, i = 0, 1, 2, 3, are arbitrary constants. With the condition u ′′(0) = u(3)(0) = 0, we find that
c2 = c3 = 0. Substituting c2 and c3 in the equation (2.2) and using the conditions left in the resulting
equation yields a system of equations:{

c0 + ac1 =
∫1

0 g1(s)u(s)ds,

c0 + (1 − b)c1 =
∫1

0
b(1−s)α−2

Γ(α−1) y(s)ds−
∫1

0
(1−s)α−1

Γ(α) y(s)ds+
∫1

0 g2(s)u(s)ds.
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Solving the system for c0 and c1, we get

c0 =
ab

a+ b− 1

∫ 1

0

(1 − s)α−2

Γ(α− 1)
y(s)ds−

a

a+ b− 1

∫ 1

0

(1 − s)α−1

Γ(α)
y(s)ds

+
b− 1

a+ b− 1

∫ 1

0
g1(s)u(s)ds+

a

a+ b− 1

∫ 1

0
g2(s)u(s)ds,

and

c1 =
1

a+ b− 1

∫ 1

0

(1 − s)α−1

Γ(α)
y(s)ds−

b

a+ b− 1

∫ 1

0

(1 − s)α−2

Γ(α− 1)
y(s)ds

+
1

a+ b− 1

∫ 1

0
g1(s)u(s)ds−

1
a+ b− 1

∫ 1

0
g2(s)u(s)ds.

Therefore, we have the form of u(t) as follows:

u(t) = Iα0+y(t) + c0 + c1t =

∫ 1

0
G(t, s)y(s)ds+

t+ b− 1
a+ b− 1

∫ 1

0
g1(s)u(s)ds+

a− t

a+ b− 1

∫ 1

0
g2(s)u(s)ds.

For convenience, we can get the exact form of u(t) by solving following equation set:

(1 − σ1)

∫ 1

0
g1(s)u(s)ds− σ2

∫ 1

0
g2(s)u(s)ds =

∫ 1

0
g1(s)

∫ 1

0
G(s, τ)y(s)dτds,

(1 − σ4)

∫ 1

0
g2(s)u(s)ds− σ3

∫ 1

0
g1(s)u(s)ds =

∫ 1

0
g2(s)

∫ 1

0
G(s, τ)y(s)dτds,

and ∫ 1

0
g1(s)u(s)ds =

(1 − σ4)
∫1

0 g1(s)
∫1

0 G(s, τ)y(τ)dτds+ σ2
∫1

0 g2(s)
∫1

0 G(s, τ)y(τ)dτds
(1 − σ1)(1 − σ4) − σ2σ3

,∫ 1

0
g2(s)u(s)ds =

σ3
∫1

0 g1(s)
∫1

0 G(s, τ)y(τ)dτds+ (1 − σ1)
∫1

0 g2(s)
∫1

0 G(s, τ)y(τ)dτds
(1 − σ1)(1 − σ4) − σ2σ3

.

Finally, we obtain that

u(t) =

∫ 1

0
G(t, s)y(s)ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)y(τ)dτds,

where

G(t, s) =


(a+b−1)(t−s)α−1+(t−a)(1−s)α−1+b(α−1)(a−t)(1−s)α−2

(a+b−1)Γ(α) , 0 6 s 6 t 6 1,
(t−a)(1−s)α−1+b(α−1)(a−t)(1−s)α−2

(a+b−1)Γ(α) , 0 6 t 6 s 6 1,

and

R(t, s) =
[(a− t)σ3 + (t+ b− 1)(1 − σ4)]g1(s) + [(a− t)(1 − σ1) + (t+ b− 1)σ2]g2(s)

ρ(a+ b− 1)
.

Lemma 2.7. Fix 3 < α < 4, and assume (H1) holds. Let G(t, s) be the Green function related to problem (2.1)
given by the expression above, then we have

(1 − t)G(0, s) 6 G(t, s) 6 G(0, s). (2.3)
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Proof. Denote H(t, s) = G(t,s)
G(0,s) . When 0 6 t 6 s 6 1,

H(t, s) =
b(α− 1)(a− t)(1 − s)α−2 − (a− t)(1 − s)α−1

ab(α− 1)(1 − s)α−2 − a(1 − s)α−1 =
a− t

a
= 1 −

t

a
6 1,

and it is obvious to see that (1 − t) 6 H(t, s) 6 1.
On the other side, when 0 6 s 6 t 6 1,

H(t, s) =
(a+ b− 1)(t− s)α−1 + b(α− 1)(a− t)(1 − s)α−2 − (a− t)(1 − s)α−1

ab(α− 1)(1 − s)α−2 − a(1 − s)α−1 ,

the equality can be simplified as

H(t, s) =
(a+ b− 1)(t− s)α−1

ab(α− 1)(1 − s)α−2 − a(1 − s)α−1 + (1 −
t

a
),

so it is easy to find out H(t, s) > (1 − t).
When differentiate twice H(t, s) with respect to t,

∂2H(t, s)
∂t2

=
(α− 1)(α− 2)(a+ b− 1)(t− s)α−3

ab(α− 1)(1 − s)α−2 − a(1 − s)α−1 > 0, 0 6 s 6 t 6 1.

Hence, maximum value of H(t, s) can be obtained at either t = s or t = 1 as follows

H(s, s) =
b(α− 1)(1 − s)α−1 − (1 − s)α

ab(α− 1)(1 − s)α−2 − a(1 − s)α−1 = 1 −
s

a
6 1,

H(1, s) =
(a+ b− 1)(1 − s)α−1 + b(α− 1)(a− 1)(1 − s)α−2 − (a− 1)(1 − s)α−1

ab(α− 1)(1 − s)α−2 − a(1 − s)α−1

=
ab(α− 1) − [b(α− 1) − b(1 − s)]

ab(α− 1) − a(1 − s)

6
ab(α− 1) − a[(α− 1) − (1 − s)]

ab(α− 1) − a(1 − s)
6
ab(α− 1) − a(1 − s)

ab(α− 1) − a(1 − s)
= 1,

so the result that (1 − t) 6 H(t, s) 6 1 also holds while 0 6 s 6 t 6 1.
Therefore, inequalities (2.3) hold.

Definition 2.8 ([8]). Let E be a real Banach space. A nonempty convex closed set P ⊂ E is said to be a
cone provided that

(i) au ∈ P for all u ∈ P and all a > 0, and
(ii) u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E includes an ordering in E given by x 6 y if y− x ∈ P.

Definition 2.9 ([8]). The map ϕ is defined as a nonnegative continuous concave functional on a cone P of
a real Banach space E provided that ϕ : P → [0,+∞) is continuous and

ϕ(tx+ (1 − t)y) > tϕ(x) + (1 − t)ϕ(y)

for all x,y ∈ P and 0 6 t 6 1. Similarly, we say the map β is a nonnegative continuous convex functional
on a cone P of a real Banach space E provided that β : P → [0,+∞) is continuous and

β(tx+ (1 − t)y) 6 tβ(x) + (1 − t)β(y)

for all x,y ∈ P and 0 6 t 6 1.
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Definition 2.10. An operator is called completely continuous if it is continuous and maps bounded sets
into pre-compact sets.

Let γ and θ be nonnegative continuous convex functionals on P, ϕ be a nonnegative continuous
concave functional on P and ψ be a nonnegative continuous functional on P. Then for positive real
numbers a ′,b ′, c ′, and d ′, we define the following convex sets

P(γ,d ′) = {x ∈ P | γ(x) < d ′},
P(γ,ϕ,b ′,d ′) = {x ∈ P | b ′ 6 ϕ(x),γ(x) 6 d ′},

P(γ, θ,ϕ,b ′, c ′,d ′) = {x ∈ P | b ′ 6 ϕ(x), θ(x) 6 c ′,γ(x) 6 d ′},

and a closed set

R(γ,ψ,a ′,d ′) = {x ∈ P | a ′ 6 ψ(x),γ(x) 6 d ′}.

Theorem 2.11 ([3]). Let P be a cone in a real Banach space E. Let γ and θ be nonnegative continuous convex
functionals on P, ϕ be a nonnegative continuous concave functional on P, and ψ be a nonnegative continuous
functional on P satisfying ψ(λx) 6 λψ(x) for 0 6 λ 6 1, such that for some positive numbers M and d ′,

ϕ(x) 6 ψ(x) and ‖x‖ 6Mγ(x)

for all x ∈ P(γ,d ′). Suppose T : P(γ,d ′) → P(γ,d ′) is completely continuous and there exist positive numbers
a ′,b ′, and c ′ with a ′ < b ′ such that

(S1) {x ∈ P(γ, θ,ϕ,b ′, c ′,d ′) | ϕ(x) > b ′} 6= Φ and ϕ(Tx) > b ′ for x ∈ P(γ, θ,ϕ,b ′, c ′,d ′);
(S2) ϕ(Tx) > b ′ for x ∈ P(γ,ϕ,b ′,d ′) with θ(Tx) > c ′;
(S3) 0 /∈ R(γ,ψ,a ′,d ′) and ψ(Tx) < a ′ for x ∈ R(γ,ψ,a ′,d ′) with ψ(x) = a ′.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ,d ′) such that

γ(xi) 6 d
′ for i = 1, 2, 3; b ′ < ϕ(x1); a ′ < ψ(x2) with ϕ(x2) < b

′; ψ(x3) < a
′.

3. Main results

Denote the operator T : C1[0, 1]→ C1[0, 1] as:

Tu(t) :=

∫ 1

0
G(t, s)f(s,u(s),u ′(s))ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)f(τ,u(τ),u ′(τ))dτds.

While considering the Banach space E = (C1[0, 1], ‖ · ‖) with the maximum norm

‖u‖ = max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u ′(t)|

}
.

Define the cone P ⊂ E by

P =

{
u ∈ E | u(t) > 0 and u(t) is convex on [0, 1]

}
.

And denote a nonnegative continuous concave functional ϕ, the nonnegative continuous convex func-
tionals θ,γ and the nonnegative continuous functional ψ on the cone P as follows:

γ(u) = max
t∈[0,1]

|u ′(t)|, ψ(u) = θ(u) = max
t∈[0,1]

|u(t)|, ϕ(u) = min
t∈[δ,1−δ]

|u(t)| for δ ∈ [0,
1
2
].
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Lemma 3.1. If u ∈ P, then

max
t∈[0,1]

|u(t)| 6
1 + a

1 − σ1 − σ2
max
t∈[0,1]

|u ′(t)|.

Proof. Since u(t) = u(0) +
∫t

0 u
′(s)ds, we have

max
t∈[0,1]

|u(t)| 6 |u(0)|+ max
t∈[0,1]

|u ′(t)| 6 |− au ′(0) +
∫ 1

0
g1(s)u(s)ds|+ max

t∈[0,1]
|u ′(t)|

6 |au ′(0)|+ | max
t∈[0,1]

u(t)

∫ 1

0
g1(s)ds|+ max

t∈[0,1]
|u ′(t)|,

that is,

max
t∈[0,1]

|u(t)|

[
1 −

∫ 1

0
g1(s)ds

]
6 max
t∈[0,1]

|u ′(t)|+ a max
t∈[0,1]

|u ′(t)| = [1 + a] max
t∈[0,1]

|u ′(t)|.

Therefore,

max
t∈[0,1]

u(t) 6
1 + a

1 − σ1 − σ2
max
t∈[0,1]

|u ′(t)|.

Lemma 3.2. For δ ∈ [0, 1
2 ], we have mint∈[δ,1−δ] R(t, s) > δmaxt∈[0,1] R(t, s), where R(t, s) is defined in Lemma

2.6.

Proof. From Lemma 2.6, we have

R(t, s) =
[(1 − σ3 − σ4)g1(s) + (σ1 + σ2 − 1)g2(s)]

(a+ b− 1)ρ
· t

+
[aσ3 + (b− 1)(1 − σ4)]g1(s) + [a(1 − σ1) + (b− 1)σ2]g2(s)

(a+ b− 1)ρ
.

Denote

k(s) =
[(1 − σ3 − σ4)g1(s) + (σ1 + σ2 − 1)g2(s)]

(a+ b− 1)ρ
,

and

d(s) =
[aσ3 + (b− 1)(1 − σ4)]g1(s) + [a(1 − σ1) + (b− 1)σ2]g2(s)

(a+ b− 1)ρ
.

On one hand, when k(s) < 0 with 0 < (1 − σ3 − σ4)g1(s) < (1 − σ1 − σ2)g2(s), so due to monotonicity
of R(t, s), maximum value of R(t, s) is R(0, s) = d(s) > 0 and minimum value is R(1, s) = k(s) + d(s) > 0.
So

mint∈[δ,1−δ] R(t, s)
maxt∈[0,1] R(t, s)

=
R(1 − δ, s)
R(0, s)

=
(1 − δ)k(s) + d(s)

d(s)
=

(1 − δ)k(s)

d(s)
+ 1 > δ. (3.1)

When k(s) < 0 with (1 − σ3 − σ4)g1(s) < 0 < (1 − σ1 − σ2)g2(s). Minimum value of R(t, s) is R(1, s)
and

R(1, s) =
[(a− 1)σ3 + b(1 − σ4)]g1(s) + [(a− 1)(1 − σ1) + bσ2]g2(s)

(a+ b− 1)ρ

>
(1 − σ4)g1(s) + σ2 · 1−σ3−σ4

1−σ1−σ2
g1(s)

(a+ b− 1)ρ
=

g1(s)

(1 − σ1 − σ2)(a+ b− 1)
> 0,

the expression (3.1) also holds.
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On the other hand, when k(s) > 0, that is (1 − σ3 − σ4)g1(s) > (1 − σ1 − σ2)g2(s) > 0. Then minimum
value of R(t, s) is R(0, s) > 0. So

mint∈[δ,1−δ] R(t, s)
maxt∈[0,1] R(t, s)

=
R(δ, s)
R(1, s)

=
δk(s) + d(s)

k(s) + d(s)
> δ.

Therefore, for δ ∈ [0, 1
2 ], we get mint∈[δ,1−δ] R(t, s) > δmaxt∈[0,1] R(t, s).

Lemma 3.3. If u ∈ P, δ ∈ [0, 1
2 ], then mint∈[δ,1−δ] u(t) > δmaxt∈[0,1] u(t) holds.

Proof. From Lemma 3.2 we have

min
t∈[δ,1−δ]

u(t) = min
t∈[δ,1−δ]

{∫ 1

0
G(t, s)y(s)ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)y(τ)dτds

}
> min
t∈[δ,1−δ]

(1 − t)

∫ 1

0
G(0, s)y(s)ds+

∫ 1

0
min

t∈[δ,1−δ]
R(t, s)

∫ 1

0
G(s, τ)y(τ)dτds

> δ
∫ 1

0
max
t∈[0,1]

G(t, s)y(s)ds+ δ
∫ 1

0
max
t∈[0,1]

R(t, s)
∫ 1

0
G(s, τ)y(τ)dτds

> δ max
t∈[0,1]

{∫ 1

0
G(t, s)y(s)ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)y(τ)dτds

}
= δ max

t∈[0,1]
u(t).

Hence, mint∈[δ,1−δ] u(t) > δmaxt∈[0,1] u(t).

Put

M1 = max
{
|
∂R(t, s)
∂t

||t, s ∈ [0, 1]
}

, M2 = max
{
R(t, s)|t, s ∈ [0, 1]

}
,

K =
α(a+ b− 1) + aM1(αb− 1)

(a+ b− 1)Γ(α+ 1)
, L =

δa(αb− 1)
(a+ b− 1)Γ(α+ 1)

,

N = (1 +M2)
a(αb− 1)

(a+ b− 1)Γ(α+ 1)
.

Theorem 3.4. Assume there exist constants 0 < a ′ < b ′ < c ′ < d ′, where c ′ = b ′

δ , and suppose the function
f(t,u(t),u ′(t)) satisfying the conditions:

(A1) f(t,u, v) 6 d ′/K for (t,u, v) ∈ [0, 1]× [0, (1+a)
1−σ1−σ2

d ′]× [−d ′,d ′],
(A2) f(t,u, v) > b ′/L for (t,u, v) ∈ [δ, 1 − δ]× [b ′, b

′

δ ]× [−d ′,d ′],
(A3) f(t,u, v) < a ′/N for (t,u, v) ∈ [0, 1]× [0,a ′]× [−d ′,d ′].

Then the boundary value problem (1.1) has at least three positive solutions u1, u2, and u3 satisfying

max
t∈[0,1]

|u ′i(t)| 6 d
′ for i = 1, 2, 3,

b ′ < min
t∈[δ,1−δ]

|u1(t)|,

a ′ < max
t∈[0,1]

|u2(t)| with min
t∈[δ,1−δ]

|u2(t)| < b
′,

max
t∈[0,1]

|u3(t)| < a
′.

Proof. The BVP (1.1) has a solution u = u(t) if and only if u is the solution of the operator equation

u = Tu(t) :=

∫ 1

0
G(t, s)f(s,u(s),u ′(s))ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)f(τ,u(τ),u ′(τ))dτds.

Since preparations are completed, we start to verify the operator T satisfies the conditions in the
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Avery-Peterson fixed-point theorem in order to find out main results of the problem we are discussing. If
u ∈ P(γ,d ′), then γ(u) = maxt∈[0,1] |u

′(t)| 6 d ′. With Lemma 3.1, we have

max
t∈[0,1]

|u(t)| 6
1 + a

1 − σ1 − σ2
max
t∈[0,1]

|u ′(t)| 6
1 + a

1 − σ1 − σ2
d ′.

With the condition u ∈ P and its non-negativeness on its domain and because of T(u) ∈ P with Tu > 0
and Tu is convex on [0, 1], the maximum value of |Tu ′(t)| is either |Tu ′(0)| or |Tu ′(1)|. Combining with
the assumption (A1), we have

γ(Tu(t)) = max
t∈[0,1]

|(Tu) ′(t)|

= max{|(Tu) ′(0)|, |(Tu) ′(1)|}

6

∣∣∣∣∫ 1

0

[b(α− 1) − (1 − s)](1 − s)α−2

(a+ b− 1)Γ(α)
f(s,u(s),u ′(s))ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

[(a− 1)(α− 1) + (1 − s)](1 − s)α−2

(a+ b− 1)Γ(α)
f(s,u(s),u ′(s))ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

∣∣∣∣∂R(t, s)∂t

∣∣∣∣ ∫ 1

0
G(s, τ)f(τ,u(τ),u ′(τ))dτds

∣∣∣∣
6
d ′

K
· αb− 1
(a+ b− 1)Γ(α+ 1)

+
d ′

K
· α(a− 1) + 1
(a+ b− 1)Γ(α+ 1)

+ aM1 ·
d ′

K

αb− 1
(a+ b− 1)Γ(α+ 1)

=
d ′

K

{
α(a+ b− 1) + aM1(αb− 1)

(a+ b− 1)Γ(α+ 1)

}
6 d ′.

Therefore, T : P(γ,d ′)→ P(γ,d ′).
To confirm the condition (S1) of Theorem 2.11 we choose u(t) ≡ b ′+c ′

2 , 0 6 t 6 1. So

ϕ(u) =
b ′ + c ′

2
> b ′, θ(u) =

b ′ + c ′

2
< c ′, and γ(u) = 0 < d ′.

Consequently, {u ∈ P(γ, θ,ϕ,b ′, c ′,d ′)|ϕ(u) > b ′} 6= Φ. Moreover, if u ∈ P(γ, θ,ϕ,b ′, c ′,d ′), then b ′ 6
u(t) 6 c ′ and |u ′(t)| 6 d ′ hold for t ∈ [δ, 1 − δ].

By using the assumption (A2), we try to check the condition (S1) of Theorem 2.11.

ϕ(Tu(t)) = min
t∈[δ,1−δ]

|(Tu)(t)|

= min
t∈[δ,1−δ]

{∫ 1

0
G(t, s)f(s,u(s),u ′(s))ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)f(τ,u(τ),u ′(τ))dτds

}
> min
t∈[δ,1−δ]

{
(1 − t)

∫ 1

0
G(0, s)f(s,u(s),u ′(s))ds+

∫ 1

0
(1 − s)R(t, s)

∫ 1

0
G(0, τ)f(τ,u(τ),u ′(τ))dτds

}
>
b ′

L
min

t∈[δ,1−δ]

{
(1 − t) +

∫ 1

0
(1 − s)R(t, s)ds

}∫ 1

0
G(0, s)ds

>
b ′

L
δ

∫ 1

0
G(0, s)ds > b ′.

So the condition (S1) is satisfied.
If u ∈ P(γ,ϕ,b ′,d ′) and θ(Tu) > b ′

δ , then

ϕ(Tu) = min
t∈[δ,1−δ]

(Tu)(t) > δ max
t∈[0,1]

(Tu)(t) = δθ(Tu) > δ · b
′

δ
= b ′.
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So condition (S2) of Theorem 2.11 follows.
Finally, we show that the condition (S3) of Theorem 2.11 holds.
Clearly, ψ(0) = 0 < a ′, so 0 /∈ R(γ,ψ,a ′,d ′). While u ∈ R(γ,ψ,a ′,d ′) with ψ(u) = a ′ we have that

0 6 u(t) 6 a ′, t ∈ [0, 1]. With assumption (A3),

ψ(Tu) = max
t∈[0,1]

|Tu(t)|

= max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)f(s,u(s),u ′(s))ds+

∫ 1

0
R(t, s)

∫ 1

0
G(s, τ)f(τ,u(τ),u ′(τ))dτds

∣∣∣∣
6 max
t∈[0,1]

∣∣∣∣∫ 1

0
G(0, s)f(s,u(s),u ′(s))ds

∣∣∣∣+ max
t∈[0,1]

∣∣∣∣∫ 1

0
R(t, s)

∫ 1

0
G(0, τ)f(τ,u(τ),u ′(τ))dτds

∣∣∣∣
6 max
t∈[0,1]

{
[1 +

∫ 1

0
R(t, s)ds]

∫ 1

0
G(0, s)f(s,u(s),u ′(s))ds

}
< (1 +M2) ·

a ′

N

∫ 1

0
G(0, s)ds =

a ′

N
(1 +M2)

a(αb− 1)
(a+ b− 1)Γ(α+ 1)

= a ′.

Therefore, the BVP (1.1) has at least three positive solutions u1, u2, and u3 such that

max
t∈[0,1]

|u ′i(t)| 6 d
′ for i = 1, 2, 3,

b ′ < min
t∈[δ,1−δ]

|u1(t)|,

a ′ < max
t∈[0,1]

|u2(t)| with min
t∈[δ,1−δ]

|u2(t)| < b
′,

max
t∈[0,1]

|u3(t)| < a
′.

The proof of the theorem is completed.

4. Example

Consider the boundary value problem:
cD

7
2
0+u(t) = f(t,u(t),u

′(t)), t ∈ [0, 1],
u ′′(0) = 0,u(3)(0) = 0,
u(0) + u ′(0) =

∫1
0 su(s)ds,

u(1) − 2u ′(1) =
∫1

0 3su(s)ds,

(4.1)

where

f(t,u, v) =

{
t

100 +
u8

8 + 1
12(

v
104 )

3, 0 6 u 6 4,
t

100 +
48

8 + 1
12(

v
104 )

3, u > 4.

Put a ′ = 1,b ′ = 3,d ′ = 104 and δ = 1
6 , by calculating, σ1 = 5

12 ,σ2 = 1
12 ,σ3 = 5

4 ,σ4 = 1
4 , ρ = 1

3 , and M1 =

3,M2 = 6,m1 = 0. In addition, K = 40
21
√
π
≈ 1.0746468,L = 8

105
√
π
≈ 0.0429857, N = 16

5
√
π
≈ 1.8054067.

Then f(t,u, v) satisfies

f(t,u, v) 6
d ′

K
≈ 9305.3827173 for f(t,u, v) ∈ [0, 1]× [0, 4× 104]× [−104, 104],

f(t,u, v) >
b ′

L
≈ 69.7903704 for f(t,u, v) ∈ [

1
6

,
5
6
]× [3, 18]× [−104, 104],

f(t,u, v) 6
a ′

N
≈ 0.5538918 for f(t,u, v) ∈ [0, 1]× [0, 1]× [−104, 104].

The proof shows that all conditions in Theorem 2.11 hold, and equation (4.1) has at least three positive
solutions.
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