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Abstract

Let a, b, and r be nonnegative integers with max{3,v+1} < a < b—r, let G be a graph of order n, and let g and f be two
integer-valued functions defined on V(G) with max{3,r+1} < a < g(x) < f(x) —r < b —r for any x € V(G). In this article, it is

a+b—3)(a+b—5)+1 . (a+b—3)(n—1)
P and bind(G) 2 (-1 (o753

proved that if n > ( L then G admits a Hamiltonian (g, f)-factor.
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1. Introduction

Many real-world networks can conveniently be modeled by graphs or networks. Examples include a
railroad network with nodes presenting railroad stations, and links corresponding to railways between
two stations, or a communication network with nodes and links modeling cities and communication
channels, or the world wide web with nodes presenting web pages, and links corresponding to hyperlinks
between web pages, respectively. In our daily life, many problems on network design and optimization,
e.g., scheduling problems, the file transfer problems on computer networks, building blocks, coding
design and so on, are related to the factors and factorizations in graphs [1]. For example, file transfer
problem in computer networks can be converted into factorizations of graphs. The problem on telephone
network design can be converted into 1-factors (or P2-factors, or K2- factors) in graphs. Many other
applications in this field can be found in a current survey [1]. It is well-known that a graph can represent
a network. Vertices and edges of the graph model nodes and links between the nodes in the network.
Henceforth we use the term graph instead of network.

In this article, we consider finite undirected graphs which have neither multiple edges nor loops. Let
G = (V(G), E(G)) be a graph, where V(G) and E(G) denote its vertex set and edge set, respectively. For a
vertex x of G, we use dg(x) to denote the degree of x in G. For any set S of vertices of G, we use Ng(S)
to denote the set of vertices in G which are adjacent to vertices in S; we denote by G[S] the subgraph of G
induced by S and write G — S = G[V(G) \ S]. The minimum degree of G is denoted by 5(G). The binding
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number bind(G) of G is denoted by

bind(G) = min { 'N|GX(|X)| 0 £ X C V(G),Ng(X) # V(G)} .

Let g and f be two integer-valued functions defined on V(G) satisfying 0 < g(x) < f(x) for any
x € V(G). We define a (g, f)-factor of G a spanning subgraph F of G such that g(x ) dr(x) < f(x) for any
x € V(G). A (g, f)-factor F of a graph G is said to be a Hamiltonian (g, f)-factor if F includes a Hamiltonian
cycle. A Hamiltonian (g, f)-factor is called a Hamiltonian [a, b]-factor if g(x) = a and f(x) = b hold for
any x € V(G). For convenience, we write f(S) = } | .5 f(x) for any function f defined on V(G) and
f(0) =0.

Factors and factorizations in graphs have been investigated by many authors [3-7, 9, 11, 13, 14, 16—
18]. Matsuda [10] showed a degree condition for a Hamiltonian graph G to have a Hamiltonian [a, b]-
factor. Zhou [15] studied the existence of Hamiltonian [a, b]-factors in Hamiltonian graphs depending
on toughness. Cai and Liu [2] gave a binding number condition for a graph to have a Hamiltonian
(g, f)-factor. The following results on Hamiltonian factors are known.

Theorem 1.1 ([12]). Let G be a graph with bind(G) > % Then G has a Hamiltonian cycle (or a Hamiltonian
2-factor).

Theorem 1.2 ([2]). Let G be a connected graph of order n, and a, b be mtegers with 4 < a < b. Let g
and f be znteger valued functions deﬁned on V(G) satisfying a < g(x) < f(x) < b for every x € V(G). If

n> M , bind(G) > (a+b—5)(n , and for any non-empty independent subset X of V(G), [INg(X)| >

(a—2)n— 3(a+b 5
(b—3) +(2 +2b 9)|X]
T +§—5 , then G contains a Hamiltonian (g, f)-factor.

In the following, we give our main result in this article, which is an extension of Theorem 1.1 and an
improvement of Theorem 1.2.

Theorem 1.3. Let a,b and r be nonnegative integers with max{3,v+1} < a < b—r, and let G be a graph
of order n with n > (a+b—z)£;1++rt> ML Tet g and f be integer-valued functions defined on V(G) such that

a < g(x) < f(x) =T <b—7 forany x € V(G). Ifbind(G) > o2l o
f)-factor.

then G admits a Hamiltonian

Since a Hamiltonian graph is 2-edge-connected, we obtain the following corollary by Theorem 1.3.

Corollary 1.4. Let a,b, and r be nonnegative integers with max{3,v+1} < a < b —, and let G be a graph
of order n with n > (a+b—z)£;1::) L Lot g and f be integer-valued functions defined on V(G) such that
a<gx) < f( )—1 < b—rforany x € V(G). Ifbind(G) > (a_((llirb) 3)&1“? 37 then G contains a 2-edge-
connected (g, f)-factor.

If r = 0 in Theorem 1.3, then we get the following corollary.

Corollary 1.5. Let a,b be nonnegative integers with 3 < a < b, and let G be a graph of order n with n >
(a+b—3)(a+b—5)+1

1 . Let g and f be integer-valued functions defined on V(G) such that a < g(x) < f(x) < b for
any x € V(G). If bind(G) > (Cfff)b 3()c5.+b 37/ then G includes a Hamiltonian (g, f)-factor.
According to 3 < a < b, we may verify that (at+b 25) > (a+bff’1)_(?+b =5) and © a;):i ggiwb )5) >
(a+b—-3)(n—1)

(o T _(aib 3]/ and so, the lower bounds for n and bmd(G) required by Corollary 1.5 are weaker than
that of Theorem 1.2. Moreover, Theorem 1.2 has an extra hypothesis on the neighborhoods of independent
sets. Hence, the result of Theorem 1.2 is an immediate consequence of Corollary 1.5. Thus, Theorem 1.2

is a special case of Theorem 1.3. Furthermore, the author poses the following problem.

Problem 1.6. Is it possible to weaken the binding number condition in Theorem 1.3?
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2. The proof of Theorem 1.3

The proof of Theorem 1.3 relies heavily on the following lemma, which is a special case of Lovédsz
(g, f)-factor theorem.

Lemma 2.1 ([8]). Let G be a graph, and let g and f be two positive integer-valued functions defined on V(G)
satisfying g(x) < f(x) for any x € V(G). Then G has a (g, f)-factor if and only if

5g(S,T) =f(S)+dg—s(T) —g(T) 2 0
for all disjoint vertex subsets S and T of G.

Lemma 2.2 ([12]). Let ¢ be a positive real, and let G be a graph of order n with bind(G) > c. Then §(G) >

_n—1
n c -

Proof of Theorem 1.3. We easily prove that bind(G) > 0 af?if}ﬁﬁ’;;ﬂm > % by max{3,r+1} <a<b-—r.

Then by Theorem 1.1, G admits a Hamiltonian cycle C. Let G’ = G — E(C). Clearly, G has a Hamiltonian
(g, f)-factor if and only if G’ has a (g —2,f — 2)-factor. Hence, we need only to verify that G’ admits
a (g —2,f—2)-factor. For convenience, set g’(x) = g(x) —2 and f’(x) = f(x) —2. It is easy to see that
a—2<g'(x) < f'(x) —r < b—2—r for any x € V(G’). By contradiction, we assume that G’ has no
(g’, f')-factor. Then by Lemma 2.1, there exist two disjoint vertex subsets S and T of G’ satisfying

5Gl(S,T) :f/(S)—ng/fS(T)—g/(T) < —1. (21)

We choose such vertex subsets S and T so that [T| is minimum. Obviously, T # ) by (2.1). We now verify
the following claims.

Claim 1. dg/—s(x) < g’(x) —1<b—3—rforany x € T.

Proof. Assume that dg/_s(x) > g’(x) for some x € T. Then the vertex subsets S and T \ {x} satisfy (2.1),
which contradicts the choice of S and T. Hence, we have

dgr—s(x) <g'(x)—1<b—-3—r
for any x € T. This completes the proof of Claim 1. O
Claim 2. dg_s(x) < dg/—s(x)+2<b—-1—rforanyx € T.
Proof. Note that G’ = G — E(C). Thus, we have
dg-s(x) < dg/—s(x) +2
for any x € T. Combining this with Claim 1, we obtain
dg-s(x) <dg—s(x)+2<b—-1-7r
for any x € T. This completes the proof of Claim 2. O

Note that T # (). Define
h=min{dg_s(x) :x € T}
In terms of Claim 2, we obtain
0<hg<b—-1-r.

We use p := bind(G) to simplify the notation below, and choose u € T with dg_s(u) = h. Thus, we
obtain
8(G) < dg(u) < dg-s(u)+I[S|=h+]S§],
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that is,
IS| > 8(G) —h. (2.2)

Combining this with Lemma 2.2, we have

S| > n—np_l—h. (2.3)

In the following, we shall consider three cases by the value of h and derive a contradiction in each
case.

Casel1l. h=0.
Claim 3. p<a+b—3.

Proof. Let p > a+ b —3. Then by Lemma 2.2, we have

n—1_ (a+b—4)n+1
>n— : 2.4
G Zn———>"— 3 @4)

On the other hand, we obtain by (2.1), (2.2), Claim 2, and |S|+ [T| < n that

—1>06/(S,T)=f"(S)+dg—s(T)—g'(T)
>(a—14+71)|S|+dg_s(T)=2T|—(b—=3—1)|T]|

> (a=1+71)S|—(b—1—=")[T|
z(a=1+7)[§|=(b—1—r)(n—[S])
=(a+b-2)IS|—(b—1—1In>=(a+b—-2)8(G)—(b—1—1)n,
which implies
(b—1—7n—1
<
3(6) < a+b—-2 '
which contradicts (2.4) since 3 < a < b — . The proof of Claim 3 is complete. O

We write X ={x:x € T,dg_s(x) = 0}. Clearly, X # 0 and Ng(V(G)\ S) N X = (. Thus, we have
ING(V(G)\S)I < n—[X|.

Combining this with the definition of bind(G), we obtain

< ING(V(G)\S)| < n—IXII
IVIG)\ S| n—|S|

which implies

—1 X
(p )n+LJ
p
In terms of (2.1), (2.5), Claim 2, Claim 3, S| + [T| < n, and the assumptions of Theorem 1.3, we have

IS| = (2.5)

0>8¢/(S,T)=f(S)+dg—s(T)—g'(T)
> (a—14+71)IS[+dg_s(T) =2[T| = (b—3—1)[T|
> (a—14+7)[S[+[T]—[X]—(b—1—71)[T|
= (a—1+71)S|—(b—2—1)T|—|X|
> (a—14+71)S|=(b—2—71)(n—IS[) = [X]
= (a+b—3)S|—(b—2—1)n—|X|
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- X
> (a+ o= B o2 nn—ix
a—14+7r)p—(a+b—-3)n a+b—3
I Jo—( n 1
p Y
2((a—l+r)p—(a+b—3))n+a+b—3_1
P p
>(a1+r)n(a+b_s)(n_1)(a+b3)>0,
which is a contradiction.
Case 2. h=1.
It follows from (2.1), (2.3), |S| + |T| < n, and Claim 2 that
0>d8g/(S,T)=f"(S)+dg—s(T) —g'(T)
2 (a—1+7)S[+dg-s(T) =2[T[—(b—3—7)[T|
> (a—=14+7)S[+[T[—(b—1—7)[T|
=(a—1+71)|S|—(b—2—71)|T|
> (a=1+7)S|=(b—2—71)(n—IS])
=(a+b—-3)IS|—(b—2—71)n
n—1
>(a+b—3)(n—T—1) (b—2—1)n
—3)n—1
—(a—1+1n—(at+b—3)—a*P s)(“ ),
which implies
(a+b—-3)(n—1)
p< ,
(a—1+1)n—(a+b—3)
which contradicts bind(G) > a_(il:rl’)j’_)g;é)_s)
Case3. 2<h<gb—-1-—r.
In view of (2.1), (2.3), |S| 4+ [T| < n, Claim 2, and the assumptions of Theorem 1.3, we obtain
—1>8¢g/(S,T) =1'(S) +dg/—s(T) —g'(T)
> (a—=1+7)S|+dc_s(T) =2[T|—(b—3—1)[T|
> (a—14+71)IS|+hT|—(b—1—1)[T|
=(a—14+71)|S|—(b—1—1—"h)|T]|
>(a—1+71)S|I—(b—1—1—h)(M—|S)])
=(a+b—2—h)|S|—(b—1—1—h)n
>(at+b—2— h)(n—npl—h) (b—1—1—hn
S (a+b-2-h)n e tHrn=(a+b=3)
a+b—3
:(a+b—2—h)((b2b;) +1—h)—(b—1—r1—h)n,
that is,
(b—2—1)n
1> —2-h)(—=———"4+1-h)—(b—1—7T—h)n. .
1> (a+b—2—-h)( T — +1—-h)—(b—1—7r—h)n (2.6)
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Set F(h) = (a+b—2— h)((ba_ff_jéTL +1—h)—(b—1—7—h)n. Thenby n > (a+b_i)£?::’_5)+l, we may
calculate

dF(h) (b—2—1)n
=— 1—h)— b—2—h
an = Uayoos TioM-lat J+mn
_(a=1+7)n
(a+b—3)(a+b—-5)+1 1
P 4— —1)=——— ,
a+b—3 Fa-larb=l)= g3 >0
and so F(h) attains its minimum value at h = 2. Hence, we obtain
F(h) > F(2).
Combining this with (2.6), we have
(b—2—1)n (a—1+71)n
-1> > — (= 1)—(b—3— = —
1>Fh)>F2) =(a+b—4)( T — 1)—(b—3—1)n P — (a+b—4),
which implies
< (a+b—3)(a+b—5)
h a—1+r ’
which contradicts that n > (¢+2=3Larb=9)+1 Thjg completes the proof of Theorem 1.3. O
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