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Abstract
In this paper, we investigate the existence of common fixed points of monotone Lipschitzian semigroup in Banach spaces

under the natural condition that the images under the action of the semigroup at certain point are comparable to the point.
In particular, we prove that if one map in the semigroup is a monotone contraction mapping, then such common fixed point
exists. In the case of monotone nonexpansive semigroup we prove the existence of common fixed points if the Banach space is
uniformly convex in every direction. This assumption is weaker than uniform convexity.
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1. Introduction

Existence of fixed points for contractions and nonexpansive mappings acting in Banach spaces, as well
as of common fixed points for semigroups of such mappings, has been intensely studied for more than
half a century. Following the publication of the work of Ran and Reurings [18], a new research direction
was developed where the Banach space is endowed with a partial order and the Lipschitzian assumption
is only made for some comparable (in the order sense) elements. Such assumptions are generally much
weaker and they make sense from the applications point of view. For example, in financial mathematics,
incomparable elements may be interpreted as belonging to different markets and hence a Lipschitz type
condition for such incomparable elements is meaningless. For more information on the recent status of
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the monotone fixed point theory the reader is referred to the survey article by Bachar and Khamsi [3], see
also [1].

The theory of common fixed points for semigroups of monotone contractions and monotone nonex-
pansive mappings is still in its infancy. The theory is interesting both from the purely theoretical point
of view and because of nontrivial applications to various domains including differential and integral
equations, and dynamical systems, see [2, 13, 16, 17]. In [2] Bachar and Khamsi proved some results on
approximate fixed point sequences for such semigroups, while Kozlowski [13] demonstrated existence
of common fixed points for monotone contractive and monotone nonexpansive semigroups. The current
paper generalizes the existence results of [13].

Since this work deals with the metric fixed point theory, we recommend the books [9, 11].

2. Preliminaries

Throughout this work, (X, ‖ · ‖) is a Banach vector space partially ordered by �. We will assume that
order intervals are closed and convex. Recall that an order interval is any of the subsets

[a,→) = {x ∈ X;a � x}, (←,b] = {x ∈ X; x � b}, or [a,b] = [a,→)∩ (←,b]

for any a,b ∈ X. We will say that two elements x,y ∈ X are comparable if x � y or y � x.
Next we give the definition of monotone Lipschitzian mappings.

Definition 2.1. Let C be a nonempty subset of X. A map T : C→ X is said to be

(a) monotone if T(x) � T(y) whenever x � y;

(b) monotone Lipschitzian if T is monotone and there exists K > 0 such that

‖T(x) − T(y)‖ 6 K ‖x− y‖

for any comparable elements x,y ∈ C.

If K < 1 (resp. K = 1), then T is said to be a monotone contraction (resp. monotone nonexpansive
mapping). A point x is a fixed point of T if T(x) = x. The set of all fixed points of T will be denoted by
Fix(T).

Remark 2.2. Note that if T : C → C is a monotone contraction mapping, then any two comparable fixed
points of T are equal. Indeed, let z1 and z2 be two fixed points of T which are comparable. Since T is a
monotone contraction mapping, there exists K < 1 such that

‖z1 − z2‖ = ‖T(z1) − T(z2)‖ 6 K ‖z1 − z2‖.

This will clearly force z1 = z2.
Definition 2.1 is extended to the case of a one parameter semigroup of mappings.

Definition 2.3. Let C be a nonempty subset of X. A one-parameter family F = {T(t); t > 0} of mappings
from C into C is said to be a monotone semigroup if F satisfies the following conditions:

(i) T(0)x = x for x ∈ C;
(ii) T(t+ s) = T(t) ◦ T(s) for t, s ∈ [0,∞);

(iii) for each t > 0, T(t) is a monotone mapping.

Definition 2.4. A monotone semigroup F is called a monotone Lipschitzian semigroup if there exists
K > 0 such that

‖T(t)x− T(t)y‖ 6 K ‖x− y‖
for any comparable elements x,y ∈ C and any t > 0. If K < 1, then F will be called a monotone contractive
semigroup . Similarly, if K = 1, then F will be called a monotone nonexpansive semigroup.

The set of all common fixed points of F is defined by Fix(F) =
⋂
t>0

Fix(T(t)).
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3. The monotone contraction case

Our first result generalizes Theorem 3.1 [13], where the author assumed C to be weakly compact.

Theorem 3.1. Let C be a closed convex nonempty subset of X. Let F = {T(t)}t>0 be a monotone semigroup defined
on C. Assume that there exists t0 > 0 such that T(t0) is a monotone contraction mapping. Moreover, assume there
exists x0 ∈ C such that x0 � T(t)x0 (resp. T(t)x0 � x0), for any t > 0. Then there exists a common fixed point
z ∈ Fix(F) such that x0 � z (resp. z � x0). Moreover, if C is bounded, then we have lim

t→∞ ‖T(t)x0 − z‖ = 0.

Proof. Without loss of generality, we assume x0 � T(t)x0 for any t > 0. Since T(t0) is a monotone
contraction, then {Tn(t0)x0} is a Cauchy sequence. Since C is a closed subset of a Banach space, there exists
z ∈ C such that lim

n→∞ Tn(t0)x0 = z. Since order intervals are closed, then z is a fixed point of T(t0). Indeed,

the sequence {Tn(t0)x0} is monotone increasing. Hence we have Tm(t0)x0 ∈ [Tn(t0)x0,→) for any n ∈ N

and m > n. Since order intervals are closed, we conclude that z ∈ [Tn(t0)x0,→), i.e., Tn(t0)x0 � z for any
n ∈ N. Since T(t0) is a monotone contraction, there exists K < 1 such that ‖T(t0)x− T(t0)y‖ 6 K ‖x− y‖
for any comparable elements x,y ∈ C. In particular, we have

‖Tn+1(t0)x0 − T(t0)z‖ 6 K ‖Tn(t0)x0 − z‖

for any n ∈N. Clearly, this will force T(t0)z = z as claimed. Let us prove that z is a common fixed point
of F. Note that we have

Tn(t0) ◦ T(t) = T(nt0 + t) = T(t) ◦ Tn(t0)

for any n ∈N and t > 0. Hence

Tn(t0)(T(t)z) = T(t)(T
n(t0)z) = T(t)z,

i.e., T(t)z is also a fixed point of T(t0). Next, we prove that z � T(t)z. Indeed, we have

Tn(t0)x0 � Tn(t0)(T(t)x0) = T(t)(T
n(t0)x0) � T(t)z

for any n ∈ N. Since (←, T(t)z] is closed and {Tn(t0)x0} converges to z, we conclude that z � T(t)z as
claimed. Using Remark 2.2, we conclude that T(t)z = z as claimed. Finally, assume C is bounded. Set
δ(C) = diam(C). Since t0 > 0, then for any t > 0, there exists a unique n ∈N such that t = nt0 + ε, with
0 6 ε < t0. Hence

T(t)x0 − z = T(t)x0 − T(t)z = T(nt0)(T(ε)x0) − T(nt0)(T(ε)z),

which implies ‖T(t)x0 − z‖ 6 Kn‖T(ε)x0 − T(ε)z‖, since T(ε) is monotone and x0 � z. Therefore, we have
‖T(t)x0 − z‖ 6 Kn δ(C). Note that n→∞ if and only if t→∞, which implies lim

t→∞ ‖T(t)x0 − z‖ = 0.

In the next section, we will discuss the case of monotone nonexpansive semigroups. Note that the
nonexpansive condition complicates the existence of a fixed point drastically and necessitates geometric
conditions satisfied by the underlined space [5–7, 10, 12, 14, 15, 19, 20].

4. Monotone nonexpansive semigroups in Banach spaces

The main tool used to prove the existence of a common fixed point for a monotone nonexpansive
semigroup is the existence and uniqueness of a minimum point of a real-valued convex function. In order
to obtain such minimum point, we will need the Banach space to have a nice geometric property.

Definition 4.1 ([8, 21]). Let (X, ‖ · ‖) be a Banach space. Fix ε ∈ (0, 2] and z ∈ X such that ‖z‖ = 1. Consider
the set

Dz,ε =
{
(x,y) ∈ X×X; ‖x‖ 6 1, ‖y‖ 6 1, x− y = ±‖x− y‖ z, and ‖x− y‖ > ε

}
.

We say that a Banach space (X, ‖.‖) is uniformly convex in the direction z ∈ X if δ(ε, z) > 0, where

δ(ε, z) = inf
{

1 −

∥∥∥∥x+ y2

∥∥∥∥ ; (x,y) ∈ Dz,ε

}
.
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This property was initiated by Garkavi [8] while studying the concept of Chebyshev centers. In
the work of Zizler [21], it is shown that any separable Banach space has an equivalent norm which is
uniformly convex in every direction. This result is crucial since uniformly convex Banach spaces are
super-reflexive [4]. Hence the class of uniformly convex Banach spaces is a lot smaller that the class of
Banach spaces which are uniformly convex in every direction. Moreover, it is easy to check that if (X, ‖ · ‖)
is uniformly convex in every direction, then (X, ‖ · ‖) is strictly convex [4], i.e., if for any x,y ∈ X and
α ∈ [0, 1], we have ‖z− x‖ 6 (1 −α) ‖x− y‖ and ‖z− y‖ 6 α ‖x− y‖, then z = α x+ (1 −α) y.

The following technical lemma will be crucial to the proof of the main result of this section.

Lemma 4.2. Assume (X, ‖ · ‖) is uniformly convex in every direction. Let C be a weakly compact convex nonempty
subset of X. Let F = {T(t)}t>0 be a monotone nonexpansive semigroup defined on C. Let K be a nonempty closed
convex subset of C. Fix x0 ∈ C. Define the function ϕ : K→ [0,+∞) by

ϕ(x) = lim sup
t→∞ ‖T(t)x0 − x‖ = inf

s>0

(
sup
t>s
‖T(t)x0 − x‖

)
.

Then there exists a unique z ∈ K such that ϕ(z) = inf
x∈K

ϕ(x).

Proof. First, let us discuss some of the properties satisfied by ϕ.

(a) For any s ∈ [0,∞) and x,y ∈ K, we have

sup
t>s

‖T(t)x0 − x‖ 6 sup
t>s

‖T(t)x0 − y‖+ ‖x− y‖,

which implies |ϕ(x) − ϕ(y)| 6 ‖x − y‖. In other words, ϕ is uniformly continuous. In a similar
fashion, we have

‖x− y‖ 6 ϕ(x) +ϕ(y)

for any x,y ∈ K.
(b) For any s1, s2 ∈ [0,∞), x,y ∈ K, and α ∈ [0, 1], set s = max{s1, s2}, then we have

sup
t>s

‖T(t)x0 − (α x+ (1 −α) y)‖ 6 α sup
t>s1

‖T(t)x0 − x‖+ (1 −α) sup
t>s2

‖T(t)x0 − y‖,

which implies

ϕ(α x+ (1 −α) y) 6 α sup
t>s1

‖T(t)x0 − x‖+ (1 −α) sup
t>s2

‖T(t)x0 − y‖.

Since s1 and s2 are arbitrarily positive numbers, we get

ϕ(α x+ (1 −α) y) 6 α ϕ(x) + (1 −α) ϕ(y),

i.e., ϕ is convex.

Set ϕ0 = inf
x∈K

ϕ(x). For any n > 1, the set Kn = {x ∈ K; ϕ(x) 6 ϕ0 + 1/n} is a closed and convex

nonempty subset of K. Since C is weakly compact and K is closed, we conclude that K∞ =
⋂
n>1

Kn is

nonempty. Clearly, for any z ∈ K∞, we have ϕ(z) = ϕ0. Therefore, ϕ attains its minimum. Next, we prove
that K∞ is reduced to one point. It follows from (a) above that if ϕ0 = 0, then K∞ is reduced to one point.
Assume otherwise that ϕ0 > 0 and z1, z2 ∈ K∞ with z1 6= z2. Set z = (z1 − z2)/‖z1 − z2‖. Since (X, ‖ · ‖) is
uniformly convex in every direction, for any ε > 0, there exists δ(ε, z) > 0 such that∥∥∥∥x+ y2

∥∥∥∥ 6 1 − δ(ε, z) (UCED)
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for any x,y ∈ X such that

‖x‖ 6 1, ‖y‖ 6 1, x− y = α z, and ‖x− y‖ > ε.

Let η < ϕ0. Then by definition of ϕ, there exists s0 > 0 such that

sup
t>s0

‖T(t)x0 − zi‖ < ϕ0 + η

for i = 1, 2. Fix any t > s0. Set

x =
T(t)x0 − z1

ϕ0 + η
and y =

T(t)x0 − z2

ϕ0 + η
.

Then we have ‖x‖ 6 1 and ‖y‖ 6 1. Moreover, we have

y− x =
z1 − z2

ϕ0 + η
z and ‖y− x‖ = ‖z1 − z2‖

ϕ0 + η
>
‖z1 − z2‖

2ϕ0
.

Using (UCED), we get ∥∥∥∥x+ y2

∥∥∥∥ 6 1 − δ

(
‖z1 − z2‖

2ϕ0
, z
)

,

which implies ∥∥∥∥T(t)x0 −
z1 + z2

2

∥∥∥∥ 6 (ϕ0 + η)

(
1 − δ

(
‖z1 − z2‖

2ϕ0
, z
))

.

Since t was chosen arbitrarily larger than s0, we get

sup
t>s0

∥∥∥∥T(t)x0 −
z1 + z2

2

∥∥∥∥ 6 (ϕ0 + η)

(
1 − δ

(
‖z1 − z2‖

2ϕ0
, z
))

,

which implies

ϕ

(
z1 + z2

2

)
6 (ϕ0 + η)

(
1 − δ

(
‖z1 − z2‖

2ϕ0
, z
))

.

If we let η→ 0, we get

ϕ0 6 ϕ

(
z1 + z2

2

)
6 ϕ0

(
1 − δ

(
‖z1 − z2‖

2ϕ0
, z
))

< ϕ0.

This contradiction proves that K∞ is reduced to one point. Therefore, ϕ has a unique minimum in K as
claimed.

Now we are ready to state the main result of this section. This theorem generalizes Kozlowski’s result
in [13] from the uniform convex case to the case of X being uniformly convex in every direction. As de-
scribed at the beginning of this section, such a generalization is non-trivial and of significant importance.

Theorem 4.3. Assume (X, ‖ · ‖) is uniformly convex in every direction. Let C be a weakly compact convex nonempty
subset of X. Let F = {T(t)}t>0 be a monotone nonexpansive semigroup defined on C. Assume there exists x0 ∈ C
such that x0 � T(t)x0 (resp. T(t)x0 � x0) for any t > 0. Then there exists a common fixed point z ∈ Fix(F) such
that x0 � z (resp. z � x0).

Proof. Without loss of generality, we assume x0 � T(t)x0 for any t > 0. First notice that

K =
⋂
t>0

(
[T(t)x0,→)∩C

)
is a nonempty closed convex subset of C. Since order intervals are convex and closed, the statement is
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true if we prove that K is nonempty. For this, we will use the weak compactness of C. It is enough
to only prove that

⋂
i∈{1,··· ,n}

(
[T(ti)x0,→) ∩ C

)
6= ∅ for any arbitrary numbers t1, · · · , tn ∈ [0,+∞). Set

x = T(t1 + · · · + tn)x0 ∈ C. Since the semigroup is monotone and x0 � T(t)x0 for any t > 0, then
T(s)x0 � T(s+ t)x0 for any s, t > 0. This will imply T(ti)x0 � x for any i = 1, · · · ,n, i.e.,

x ∈ [T(ti)x0,→)∩C, i = 1, · · · ,n.

Hence
⋂

i∈{1,··· ,n}

(
[T(ti)x0,→)∩C

)
6= ∅ holds. Next, we consider the function ϕ : K→ [0,+∞) defined by

ϕ(x) = lim sup
t→∞ ‖T(t)x0 − x‖ = inf

s>0

(
sup
t>s

‖T(t)x0 − x‖
)

.

Using Lemma 4.2, there exists a unique z ∈ K such that ϕ(z) = inf
x∈K

ϕ(x). We claim that z is a common

fixed point of the semigroup F. Let x ∈ K and s, t > 0. If t > s, the inequality T(t− s)x0 � x implies
T(t)x0 � T(s)x. Otherwise, assume t < s. Set ε = s− t. Since x0 � x, we get x0 � T(ε)x0 � T(ε)x, which
implies T(t)x0 � T(t) ◦ T(ε)x = T(t+ ε)x = T(s)x. Therefore, we have T(t)x0 � T(s)x for any t, s > 0,
which implies T(s)x ∈ K for any s > 0. In other words, K is invariant by the semigroup F. Fix s,η > 0
and let t > s+ η. Since T(t− s)x0 � z, we get

‖T(s) ◦ T(t− s)x0 − T(s)z‖ 6 ‖T(t− s)x0 − z‖ 6 sup
t̄>η

‖T(t̄)x0 − z‖,

which implies ‖T(t)x0 − T(s)z‖ 6 sup
t̄>η

‖T(t̄)x0 − z‖ for any t > s+ η. Hence

ϕ(T(s)z) 6 sup
t>s+η

‖T(t)x0 − T(s)z‖ 6 sup
t̄>η

‖T(t̄)x0 − z‖.

Since η was taken arbitrarily positive, we get ϕ(T(s)z) 6 ϕ(z). Lemma 4.2 will force T(s)z = z by the
uniqueness of the minimum point in K. Since s was taken arbitrarily positive, we conclude that z ∈ Fix(F)
as claimed. Since x0 � z, the proof of Theorem 4.3 is complete.

Remark 4.4. In fact, the common fixed point set Fix(F) has a nice geometrical property. Indeed, let z1, z2 ∈
Fix(F) be comparable. Fix α ∈ [0, 1]. Let us prove that z = α z1 + (1 − α) z2 ∈ Fix(F). Assume z1 � z2.
Then we have z1 � z � z2. Since F is monotone nonexpansive, we get

‖T(t)z− z1‖ = ‖T(t)z− T(t)z1‖ 6 ‖z− z1‖ = (1 −α) ‖z1 − z2‖,

and similarly ‖T(t)z− z2‖ 6 α ‖z1 − z2‖ for any t > 0. Since (X, ‖.‖) is uniformly convex in every direction,
then (X, ‖.‖) is strictly convex. Therefore, we must have T(t)z = α z1 + (1 − α) z2 = z, i.e., z ∈ Fix(T(t))
for any t > 0 as claimed. This result was known for a single map [6, 7].
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