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Abstract
In this paper, we present the best possible parameters «i,3; (i = 1,2,3) and oy, s € (1/2,1) such that the double
inequalities
1Q(a,b) + (1 —0q)C(a,b) < Tg,c(a,b) < B1Q(a,b) + (1—p1)C(a,b),
Q*(a,b)C'"*(q,b) < T,cla,b) < QP>(a,b)C'F2(a,b)
Q(e,b)C(a, b) Q(a,b)C(a,b)
<T ,b) < ,
2Q(a,b) + (1—a3)Cla b) ~ @€)< g o b+ (1—Ba)Cla b)

c (\/oc4a2 +(1- ag)b2 /(1 - ag)a? + oc4b2) <Toclab)<C (\/B4a2 +(1-Ba)b?, /(1 Bya? + |34b2)

’

hold for all a,b > 0 with a # b, where Q(a,b), C(a,b), and T(a,b) are the quadratic, contraharmonic, and Toader means,
respectively, and Tg c(a,b) = T[Q(a, b), C(a, b)]. As consequences, we provide new bounds for the complete elliptic integral of
the second kind.
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1. Introduction

For p € R and a,b > 0 with a # b, the pth power mean M (a,b) [7, 9, 17, 18, 22, 32, 35, 37, 38],
pth Lehmer mean L;(a,b)[27, 34], harmonic mean H(a,b), geometric mean G(a,b), arithmetic mean
A(a,b), Toader mean T(a,b) [10, 14, 16, 28], centroidal mean C(a, b)[6, 36], quadratic mean Q(a, b)[19],
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contraharmonic mean C(a, b)[5, 13] are, respectively, defined by

[ UaP+DbP)/21/P, p#£0, a4 prtt
Mp(a,b) - { \/R, p= 0, ’ Lp(a/b) - aP + bP 7
2ab b
H(a,b) = —22,  G(a,b) = Vab, Ala,b) = 222,
a+b 2
2 “/2\/ 5 — 2(a? + ab +b?) (1)
T == 2 cos2 2. _
(a,b) nJ;) a%cos? 0 + b%sin“0d0, C(a,b) 3(a 1 b) ,
a2 4 b2 a’ + b?
Q(a,b) = B C(a,b) = e

It is well-known that M, (a,b) and L,(a,b) are continuous and strictly increasing with respect to
p € R for fixed a,b > 0 with a # b, the following inequality chain

H(a,b) =M_1(a,b) =L _1(a,b) < G(a,b) =My(a,b) =L_1,5(a,b)
< A(a,b) =M;(a,b) =Ly(a,b) < T(a,b) < C(a,b) (1.2)
< Q(a,b) =Mz(a,b) < C(a,b) =L1(a,b)

holds for all a,b > 0 with a # b.
The Toader mean T(a,b) has been well known in the mathematical literature for many years (see
[20, 21, 24]), which is related to the complete elliptic integral of the second kind &(r) = S[ / 2(1 —

r2sin? 0)1/2d0(r € (0,1))[12, 15, 25, 30, 31, 33, 39, 40] and it can be rewritten as

2a€(y/1—(b/a)?)/m, a>Db,

2be(/T— (a/b)?)/m, a<b. (1.3)

T(a,b) :{

Letr € (0,1) and ' = V1 —1?, then the complete elliptic integral of the first kind is given by K(r) =
ST / 2(1 —12sin?0)"1/2d0. We clearly see that K(r) is strictly increasing from (0,1) onto (7/2,400) and
&(r) is strictly decreasing from (0,1) onto (1,7t/2). Moreover, X(r) and £(r) satisfy the following Landen

identities and derivatives formulas (see [2, Appendix E, p.474-475])
W2
K(Z\/?):(l—kr)fK(r), 8(2\/?):28(r) T .'K(r),

1+r 1+ 1+
dX(r)  &(r) — 12K (r) dé(r)  &(r) —XK(r)
dr /2 ’ dr T ’
dlE(r) — 2K (1)] dX(r)—&(r)]  r&€(r)
dr = (), dr Tz

The special values K ( v2/2) and &(+/2/2) will be used later, which can be expressed as (see [4, Theorem

1.7])
I2(1/4) 4T2(3/4) +T2(1/4)
K (v2/2) = =1.854--. E(V2/2) = =1.350---
(Varz) == 77 = 1854, (v2n2) N 350
where I'(x) = || 80 t*~le~tdt is the classical Euler’s gamma function.
The special bivariate mean Tx y(a, b) derived from Toader mean for any bivariate means X(a, b) and
Y(a,b) of positive numbers a, b is given by

Tx v(a,b) =T[X(a,b),Y(a,b)], (1.4)

which is called a Toader-type mean. We denote the pairs of means {X, Y} the generating means of the
Toader-type mean defined in (1.4).
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Recently, the Toader mean has been the subject of intensive research. Vuorinen [29] conjectured that
the inequality
T(a/b) > M3/2(a/b)

holds for all a,b > 0 with a # b. This conjecture was proved by Qiu and Shen [26], and Barnard et al. [3],
respectively.
Alzer and Qiu [1] presented a best possible upper power mean bound of the Toader mean as follows

T(a,b) < MlogZ/(logn—logZ) (a,b)
for all a,b > 0 with a # b.
Chu and Wang [11] prove the double inequality
Ly(a,b) <T(a,b) <L4(a,b)

holds for all a,b > 0 with a # b if and only p < 0 and q > 1/4.

Very recently, optimal bounds for Ta,c(a,b) and Ta g(a,b) by several convex combinations of their
generating means were established. Li et al. [23] presented the best possible parameters «; and 3; with
i=1,2,3,4 such that the double inequalities

oiAla,b)+ (1 —04)C(a,b) < Ta,cla,b) < B1A(a,b) +(1—-p1)C(a,b),

(a
A% (a,b)C™*2(a,b) < Ta,c(a,b) < AP2(q,b)C'"F2(q,b),
o3 1— a3 1 B3 1—B3
(a
(a

Ala,b) " Cla,b) ~Tacla,b) ~ Ala,b) ~ Cla,b)’
Cloya+ (I —oy)b,oub+ (1 —ay)a) < Ta,cla,b) < C(Bga+ (1—B4)b,Psb+ (1—B4)a)
hold for all a,b > 0 with a # b.
In [8], the authors found the best possible parameters Ay, p1, Az, u2 € (1/2,1) such that the double
inequalities
Q(a,b;xl) < TA,Q(a/b) < Q(alb/ Hl)l
C(Cl,b,')\Z) < TA,Q(a/b) < C(a/b; H2)
hold for all a,b > 0 with a # b, where M(a,b;p) = M[pa+ (1 —p)b,pb + (1 —p)al is the one-parameter

mean of a and b. Besides, another expression of optimal bounds for Ta,q(a, b) was given by Zhao et al.
[41]. Explicitly, they proved the double inequality

[(T)AT(a,b) + (1 — a(r))Q"(a,b)]*" < Ta,(a,b) < [B(r)AT(a,b) + (1 —B(1))Q"(a, b)]*/T

holds for all r < 1 and a,b > 0 with a # b if and only if &(r) > 1/2 and B(r) < A(r), where A(r) is defined
by A(r) = [1— (26(v/2/2)/7)"1/[1 — (v2/2)"] (v # 0) and A(0) = log[2&(v/2/2)/n]/ log(v/2/2).
From (1.1) and (1.2) together with the properties of a mean, we clearly see that

Q(a,b) < Tg,c(a,b) < C(a,b). (1.5)

forall a,b > 0 with a # b.
Motivated by inequality (1.5) and the results of [8], it is natural to ask what are the best possible
parameters o, Bi (1 =1,2,3) and a4, B4 € (1/2,1) such that the double inequalities
«1Q(a,b) + (1 —aq)C(a,b) < Tg,cla,b) < B1Q(a,b) + (1 —p1)C(a,b),
Q% (a,b)C'™*2(q,b) < Tq,cla,b) < QP2(a,b)C'P2(a,b),
Q(a,b)C(a,b) Q(a,b)C(a,b)
x3Q(a,b) + (1 —o3)C(a, b) B3Q(a,b) + (1—P3)C(a,b)’

C (\/oc4a2 +(1—ag)b?, /(1 - og)a? + oc4b2> <Tgclab)<C <\/[54a2 +(1-Bab? /(1 Ba)a® + [54b2)

<Tq,cla,b) <

hold for all a,b > 0 with a # b? The main purpose of this paper is to answer this question.
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2. Lemmas

In order to prove the desired theorem, we need several lemmas which we present in this section.

Lemma 2.1 ([2, Theorem 1.25]). For —c0 < a < b < oo, let f, g : [a,b] — R be continuous on [a,b], and be
differentiable on (a,b), let g'(x) # 0 on (a,b). If f'( ) is increasing (decreasing) on (a,b), then so are

f(x) —fla f(x) —f(b
509~ 9((a)) " 98 B )
IfFf/( ) is strictly monotone, then the monotonicity in the conclusion is also strict.
Lemma 2.2.
(1) [K(r) — &(r)]/7? is strictly increasing on (0,1);
(2) [X(r)—E&(r)l/log(1/r’) is strictly decreasing from (0,1) onto (1,7/2);
(3) r'€E(r) is strictly increasing on (0,1) if and only if ¢ < —1/2.

Proof. Parts (1)-(3) follow from [2, Exercise 3.43 (11) and (15), Theorem 3.21 (8)]. O
Lemma 2.3. Let & =2[m—2&(v/2/2)]/(2—+/2)t =0.4785- - - and
fr) = 1 —28(1”)/7[,
1—v1—12

then f(r) is strictly decreasing from (0, V2/2) onto (81,1/2).

Proof. Let f1(r) = 1—2&(r)/m and fo(r) = 1— /1 —12. Then we clearly see that f1(0) = f»(0) = 0 and
f(r) = f1(r)/fa(r).
Taking the derivative of fi(r) and f(r) yields
f1(r) 2 K(r)—£&(r) r'log(1/r')
fi(r)  m  log(1l/r/) 1—r2

2.1)

An easy calculation yields

, , on n 2 /
dlr 1og(1/(;2/(1 ) (v )(1+_(er;2 Jlog™ _ (2.2)

forr’ € (0,1).

It follows from (2.2) together with the monotonicity of ' = v/1 — 12 that v’ log(1/r') /(1 —1'?) is strictly
decreasing on (0, 1) with respect to . This conjunction with (2.1) and Lemma 2.2 (2) implies that f{(r) /f5(r)
is strictly decreasing on (0,1). Therefore, Lemma 2.3 follows from Lemma 2.1 and the limiting values
f(07) =1/2 and f(%2 ) = &.

O

Lemma 2.4. Let 6, = Zlog[n/(ZS(ﬁ/Z))]/logz — 0.435698 - - - and

2[log(2/m) +log £(r)]

9(r) = log(1—1?)

then g(r) is strictly decreasing from (0, V2/2) onto (87,1/2).

Proof. Let g1(r) = 2[log(2/7) +log &(r)] and g(r) = log(1 —12), then it is easy to see that g;(0) = g»(0) =
0,9(r) = g1(r)/g2(r) and
g1(r) _ gul(r)
g3(r)  gaa(r)’
where g11() = (1 —12)[K(r) — E(r)] and gz (1) = 2E(7).

(2.3)
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Observe that g11(0) = g22(0) = 0. Taking the derivative of g11(r) and go(r) yields

g () 3E(M—2K(r) . 1
gp(r) — 3&(r) —K(r) =1 3E(T)/K(r)—1" (2.4)

It follows from (2.4) and the monotonicity of €(r)/K(r) that g{,(r)/g3,(r) is strictly decreasing on (0,1).
This conjunction with (2.3) and Lemma 2.1 implies that g(r) is strictly decreasing on (0, 1).

The proof of Lemma 2.4 is completed from the limit values g(0*) = 1/2 and g(%i) =0,. O
Lemma 2.5. Let 63 = [vV2&(v/2/2) —/2]/ (V2 —1)&(v/2/2) = 0.606488 - - - and
/(1) —1/V1—12

1-1/vV1-12 '
then h(r) is strictly increasing from (0, V2/2) onto (1/2,83).

Proof. Let hy(r) = m/[2&(r)] —1/vV1—12 and hy(r) = 1—1/v1—1?, then we clearly see that hy(0) =
hy(0) = 0, h(r) = hy(r)/hy(r) and

h(r) =

h) o K -] 1
h(r) - 2 1—172 e (2.5)

Lemma 2.2 (3) and (2.1) together with the proof of Lemma 2.3 lead to the conclusion that 1/[r'~1€(r)]?
and v/ [K(r) — &(7)] /(1 —1'2) are strictly decreasing on (0,1). This conjunction with (2.5) implies that
h{(r)/hy(r) is strictly increasing on (0, 1).

Therefore, Lemma 2.5 follows immediately from Lemma 2.1 and the limiting values h(0") = 1/2 and

h(¥%2 ) = 5. 0

Lemma 2.6. The function @(t) = [1 —12/4 — 28(r)/m /vt is strictly increasing from (0, V2/2) onto (3/64,7/2 —
8&(v2/2)/m).

Proof. Let @1(r) =1 —12/4—2€&(r)/mand @a(r) =14, then @1(0) = @2(0) =0, @(r) = @1(1)/@2(r), and

Qf(r) _ K(r) — E(r) — /4
ol ~ gy . (2.6)
Taking the derivate of (2.6) yields
dlei(m)/@s(r)]  u(r)
dr ©2mr5 (1 —r2)’ @7)

where
w(r) = (4—3r2)&(r) + (1 — r?)[m — 4% (r)].

An easy calculation leads to
w(v2/2) =1.23926---, p'(r) = rl7K(r) —9&(r) — 2711 < r[7K(V2/2) —9E(V2/2) —2m] < =51 (2.8)

for r € (0,v/2/2). It follows from (2.8) that pu(r) > 0 for r € (0,/2/2). This conjunction with (2.7) implies
that @{(r)/@4(r) is strictly increasing on (0,v/2/2).
Therefore, Lemma 2.6 follows from Lemma 2.1 together with the limit values ¢(0%) = 3/64 and

©(L2 ) =7/2—-88(v/2/2)/m. 0

Notice that 7/2 — 8&(v/2/2)/m = 0.0606--- < 1/8, then from Lemma 2.6 we can get the following
corollary directly.
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Corollary 2.7. The double inequality

LT

f 2 2 3rt
4 8

holds for v € (0,+/2/2).

Lemma 2.8. Let 64 = [ﬁ\/282(\ﬁ/2) — 2 /4| /€2(\/2/2) =1.87157---, A € (0,2] and

V1A =T —Arr!

0}
A(T) o ,
then the following statements are true:

@) d)\/i(r) <1—72/4—1*/4 holds for r € (0, V2/2);

(2) Os,(r)>1 —12/4 holds for v € (0,17/25);

(3) 2&(r)/m+1/2 is strictly increasing on (0, V2/2);

(4) s, (1) +1/2 is strictly decreasing on (17/25,/2/2).
Proof.

(1). We first claim that

R
\/1—2r2+2r4f>1—1~2+E+E (2.9)
for v € (0,/2/2). Indeed, it follows easily from
4 6 8
1—2r% 21t — <1T2+;+ T2> = Tz(l—rz)(err?)) >0

for v € (0,v/2/2). From (2.9), we clearly see that

2 4\? V/ 7 o 2 42
2 T 1—-v1-2r +2T_ oo
®lr) (1 1 4) - 12 =373
2t 2 2 ™2 +1)
<1_2_2_G_4_4> 1 <Y

This completes the proof of Lemma 2.8 (1).

(2). In order to prove that ®@s,(r) > 1— r2/4 for r € (0,17/25), by squaring both sides of the inequality
and simplifying, it suffices to show that

52 2 2
\/1—5§r2(1—r2) <1-Ap2 (1T 2.10)
2 3
holds for r € (0,17/25).

We consider the difference of both sides squares of (2.10) as follows

52 2\ oar
1—8212(1—2)— [1 -2 (1 —__4 2.11
o (1—17) [1 o7 1 102411(1‘)/ (2.11)

where
N(r) = 85r% — 16831° + 96531* — 2565517 — 64551% + 25657 — 512.
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An easy calculation yields
n(17/25) = 6.9982---, n'(r) = —8r[63(4 —1?)° 4+ 16] < 0. (2.12)

It follows from (2.12) that n(r) > 0 for r € (0,17/25). This conjunction with (2.11) completes the proof of
Lemma 2.8 (2).

(3). It suffices to determine the sign of the derivate of 2€(r)/m+ 1/2. An easy computation yields

28(r)/m+71/2) 1 2r K(r)—E&(r)
dr 2 a e 213)

It follows from (2.13) and Lemma 2.2 (1) that d[2E(r)/m+ v/2]/dr is strictly decreasing on (0,1). The
monotonicity of (2.13) leads to the conclusion that

2e(r)/mt1/2) 1 2\7 K(V2/2) — £(V2)2

= 0.046753 - - -
dr 2 )

This completes the proof.
(4). Let wq(r) = T+ 417" and wy (1) = /T — 084717, then wq(r) > wa(r) > 0 for r € (0,v2/2). By easy

computations, one has

dlw;(r) —wa(r)] 54(1—212) [ 1 n 1 } -0
dr 2V1—12 |[wi(r)  wa(r) ’ (2.18)
dl1/w (1) +1/wa(r)] _ 84(1— 212) [ 11 } -0 '
dr 2V1—12 w% w?(r)

for r € (0,v/2/2).
Moreover, it is easy to see that (1 —2r?)/v1—12 = 2y/1—12—1/v/1—12 is strictly decreasing on
(0,v/2/2). This conjunction with (2.14) implies that

d[®@s, (1) +1/2] :_wl(r) — wo(1) N 1—2r2 { 1 n 1 ] +1
dr 8472 2v1—12 [wi(r)  wo(r)] 2
w1 (17/25) — wy(17/25)
B 64T2
1 —2 x (17/25)? 1 1 1
2\/1— (17/25)2 [wl V2/2) 2(\/5/2)} (2.15)
O R
512 4r ' 2
1 [3+1 V21 (ﬁ)] TSN
2| 5 4 2 2 2 40r2
for r € (17/25,1/2/2). Therefore, Lemma 2.8 (4) follows directly from (2.15). O

3. Main results
Theorem 3.1. The double inequality
x1Q(a,b) + (1 —a)C(a,b) < T,c(a,b) < B1Q(a,b) + (1 —B1)C(a, b)

holds for all a,b > 0 with a # b ifand only if «; > 1/2 and By < &1 = 2[m—2&(v2/2)1/(2—V2)mt = 0.4785 - - -.
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Proof. Since Q(a,b), C(a,b), and T(a,b) are symmetric and homogeneous of degree 1, without loss of
generality, we may assume that a > b > 0. Let r = (a —b)/+/2(a? +b?) € (0, v2/2), then (1.1) and (1.3)
lead to

A(a,b) A(a,b) 2A(a,b)
Q(a,b) = 2 C(a,b) = T 2 To,cla,b) = m&(r). (3.1)
It follows from (3.1) that
Cla,b)—Tg,cla,b) 1-2&(r)/m — f(r), (32)

C(a/b)_Q(a/b) B 1— 1—T2

where f(r) is defined as in Lemma 2.3. Therefore, Theorem 3.1 follows easily from Lemma 2.3 and (3.2).
O

Theorem 3.2. The double inequality
Q%(a,b)C'"**(a,b) < To,cla,b) < QP*(a,b)C'P2(a,b)

holds for all a,b > 0 with a # b if and only if xx > 1/2 and Py < &y = 210g[7r/(28(\/§/2))}/10g2 =
0.435698 - - -

Proof. Without loss of generality, we assume that a > b > 0. Let r = (a —b)/y/2(a®> +b?) € (0, V2/2),
then from (3.1) we clearly see that

log C(a,b) —logTg,c(a,b)
log C(a,b) —log Q(a,b)

=g(7), (3.3)

where ¢(r) is defined as in Lemma 2.4.
Therefore, Theorem 3.2 follows directly from (3.3) and Lemma 2.4.

O
Theorem 3.3. The double inequality
Q(a,b)C(a,b) Q(a,b)C(a,b)
<T a,b) <
%Qlab) + (1—o)C(a,0) ~ €Y < Biga,b) (1 83)Cla,b)
holds for all a,b > 0 with a # b if and only if az < 1/2 and 3 > 63 = V2&(v2/2) —m/2]/(V2—1)E(V2/2) =
0.606488 - - -.
Proof. In order to prove the double inequality in Theorem 3.3, it suffices to find a3z and 33 such that
11
o5 < 1oclab) Qlab) g (3.4)
C(a,®b)  Q(a,b)

holds for all a,b > 0 with a # b.
Without loss of generality, we assume that a > b > 0. Let r = (a —b)//2(a? +b?) € (0, v2/2), then

(3.1) leads to
1 1

TQ,C(a/b) Q((l,b)
11

C(a,b) Q(a,b)

=h(r), (3.5)

where h(r) is defined as in Lemma 2.5. Therefore, Theorem 3.3 follows directly from (3.4), (3.5), and
Lemma 2.5. O



Z.]i, Q. Ding, T. Zhao, J. Nonlinear Sci. Appl., 11 (2018), 150-160 158

Theorem 3.4. Let «y, B4 € (1/2,1), then the double inequality

C (\/064(12 + (1 — O(4)b2, \/(1 — OC4)C12 + 064b2> < TQ,C(Cl,b)

<C<¢Mduwrﬂhw%¢u—ﬁn&+ﬁwﬁ
holds for all a,b > 0 with a # b if and only if g < (V2 +2)/4 and By > (84 +2)/4 = 0.967894 - - -, where 8y is
defined as in Lemma 2.8.

Proof. Since T(a,b) and C(a, b) are symmetric and homogeneous of degree one, we assume that a > b > 0.

Letr=(a— b/\/W (0,4/2/2), then (1.1), (3.1) lead to

To,cl(a,b)— <\/pa2+ (1—p)b?, \/pb2+ 1—p)a2)

_ Clab) zg(r)_\/l (4p —2)rr/ — /1 — (4p — 2)11’ _ Clab) EE(T)—(Dszfz(T) ,
s (4p —2)r T

where @, (r) is defined as in Lemma 2.8.

It is easy to be verified that C <\/ paZ+ (1—p)b2, /pb2 + (1 —p) a2> is continuous and strictly increas-

ing on [1/2,1] with respect to p for fixed a,b > 0 with a # b.
We divide the proof into three cases.

Case 1. p1 = (v/2+2)/4. Then it follows from 2.7 and Lemma 2.8 (1) that

) ) N 4 4 4
2E(r) — Dup, olr) = 2E(0) ~ @ 5lr) > 1T — - (1-5-%)-%>0 67)

for r € (0,v/2/2). Therefore, Tg,c(a,b) > C (\/plaZ +(1—p1)b% /(1 —p1)a® —|—p1b2) follows from (3.6)
and (3.7).
Case 2. po = (84 +2)/4. Then from Corollary 2.7 and Lemma 2.8 (2) we clearly see that

2 2 4 3t r 3rt
;8(1‘) — (D4p272(1‘) = %8(1‘) - (1)54(T) <l—————— <1 — 4> = _674 <0 (38)

for r € (0,17/25). Furthermore, it follows from Lemma 2.8 (3) and (4) that 2&(r)/mt— @5, (1) = 2&(r)/m+
/2 —[®s,(r) +1/2] is strictly increasing on (17/25, V/2/2). This implies

%e() Dyp, (1) < e\f/z — D4y, 2(V2/2) =0 (3.9)

for v € (17/25,v/2/2).
Therefore, Tg,c(a,b) < C <\/p2c12 +(1—p2)b% /(1 —pa)a® + p2b2> follows from (3.6), (3.8), and (3.9).

Case 3. (vV2+2)/4 < p3 < (84 +2)/4. On the one hand, if r — 0, then making use of Taylor series yields

EE(T) — Oy, (1) =2 [(p?’ -2 _4\@) <p3 B \/§4+2>

Equations (3.6) and (3.10) lead to the conclusion that there exists small enough T; € (0, v2/2) such that
To,cla,b) < C (\/pgaZ + (1 —p3)b2, \/(1—p3)a2+p3b2> forall a > b > 0 with (a—b)/y/2(a?2+b2) €
(0, t1).

2 +o(rh). (3.10)
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On the other hand, it is easy to see that

2 £(V2/2) — Dy, 2(v2/2) = 2e(va/2) 4 1BV
" T 2p3—1

is strictly decreasing on (1/2,1) with respect to p3. This implies that
2 2
~E(V2/2) = Qup,2(V2/2) < ZE(V2/2) — ©5,(V2/2) = 0. (3.11)

Equations (3.6) and (3.11) lead to the conclusion that there exists small enough 1, € (0, v2/2) such that
To,cla,b) > C (\/pgaz +(1—p3)b%, /(1 —p3)a? —|—p3b2> forall a > b > 0 with (a—b)/y/2(a2+b2) €
(V2/2—12,v2/2). O

The following corollary follows from Theorems 3.1, 3.2, 3.3, and 3.4 immediately.
Corollary 3.5. Let v/ = v/1—12 and

m(r) — max 147/ S 21 14+ V2rr — 1 —V2rr
— 2 7 ’1+T/’ \/ET 7
. ! 1T+ 04117 — /1 — 84177
M(r) = min { 18 + &1/, 782, — v
(T) mln{ 1 + 1r,T ’ 1_— 63 + 63T/’ 64T 7

where 81, 83,03, and 84 are defined as in Lemmas 2.3, 2.4, 2.5, 2.8, respectively. Then the double inequality

T T
Em(r) < &(r) < EM(r)

holds for all v € (0,/2/2).
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