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Abstract

In this paper, we study the Halpern type iterative algorithm to approximate a common solution of fixed point problems of
an infinite family of demimetric mappings and generalized split feasibility problems with firmly nonexpansive-like mappings in
Banach spaces. We also prove strong convergence theorems for a common solution of the above-said problems by the proposed
iterative algorithm and discuss some applications of our results. The methods in this paper are novel and different from those
given in many other paper. And the results are the extension and improvement of the recent results in the literature.
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1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H,T a mapping on C, and
F(T):={x e C:Tx=x}.

Definition 1.1. A mapping T: C — H is said to be:
(1) a k-strict pseudo-contraction if there exists k € [0, 1) such that

ITx—Ty[> < [x —yl +klx—Tx—(y—Ty)|>, VxyeC;

(2) a 2-generalized hybrid mapping if there exist 81,82, €1, €2 € R such that
2
8[| T2 =Ty ||” + & [ Tx = Ty|* + (1 — 81 — 82) [[x — Tyl
2
<er|[Tx—y[ +elTx—yl*+(1—e —e) [x—yl*, ¥xyeC.

We know that the class of 2-generalized hybrid mappings contains the classes of nonexpansive map-
pings, nonspreading mappings, hybrid mappings, and generalized hybrid mappings in a Hilbert space;
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see [13, 31]. In general, 2-generalized hybrid mappings are not continuous; see [12]. Hence, the class of
k-strict pseudo-contractions does not contain the class of 2-generalized hybrid mappings by the fact that
k-strict pseudo-contractions are continuous. We give an example for a 2-generalized hybrid mapping, but
not a k-strict pseudo-contraction.

Example 1.2 ([17]). Let S : [0,2] — R be defined as
[0, xe€l0,2),
Sx = { 1, x=2.
Then S is a 2-generalized hybrid mapping and F(S) = {0}. However, it is not a k-strict pseudo-contraction.

Certainly, the class of 2-generalized hybrid mappings does not contain the class of k-strict pseudo-
contractions. We give an example for a k-strict pseudo-contraction which is not a 2-generalized hybrid

mapping.
Example 1.3. Let S : [-2,2] — R be defined as
Sx = —3x.

Then S is a k-strict pseudo-contraction, but not a 2-generalized hybrid mapping (check for instance the
condition of 2-generalized hybrid mapping for x =0 and y = —1).

Recently, Takahashi [25] introduced a broad class of nonlinear mappings in a Hilbert space called
k-demimetric mapping. This class of mappings contains the classes of 2-generalized hybrid mappings,
k-strict pseudo-contractions, firmly quasi-nonexpansive mappings, and quasi-nonexpansive mappings.

Definition 1.4. Let H be a Hilbert space and let C be a nonempty, closed, and convex subset of H. Let

k € (—oo,1). A mapping T: C — H with F(T) # 0 is called k-demimetric if, for any x € C and q € F(T),

1-k
2

(x—q,x—Tx) > Ix — Tx||?. (1.1)

It is clear that (1.1) is equivalent to the following;:
ITx— gl < x—q* + k| — Tx|>.

We give an example of a k-demimetric mapping which is not pseudo-contractive, hence is not strictly
pseudo-contractive.

Example 1.5. ([10]) Let H be the real line and C = [-1,1]. Define T on C by T(x) = %xsin% if x 20
and T(0) = 0. Clearly, 0 is the only fixed point of T. Also, for x € C, [T(x) — 02 = [T(x)? = I%x sin %IZ <

I%"I2 < X2 < [x — 02 +k|T(x) — x| for any k € [0,1). Thus T is demimetric. We show that T is not

pseudo-contractive. Let x = % andy = 73271 . Then [T(x) —T(y)| = 821522. However,
160
2 2 _
x—ylF +[(I-T)x = (I-Thyl* = 812

Let E be a smooth Banach space and C a nonempty subset of E. A mapping S : C — E is said to be a
firmly nonexpansive-like mapping (or a mapping of type (P) (see [4])) if

(Sx—Sy,J(x—Sx)—J(y—Sy)) >0, V¥x,yeC.
If E is a Hilbert space, then T is firmly nonexpansive-like if and only if it is firmly nonexpansive, i.e.,

[Tx —Ty|| < (Tx —Ty,x —y) for all x,y € C. We give two examples of the firmly nonexpansive-like
mapping as following.

Example 1.6. Let E be a smooth, strictly convex, and reflexive Banach space and C a nonempty closed
convex subset of E. Then the metric projection Pc is a firmly nonexpansive-like mapping.

Example 1.7. Let E be a smooth, strictly convex, and reflexive Banach space, A C E x E* a monotone
operator, and r > 0. Then the metric resolvent |, of A is a firmly nonexpansive-like mapping.
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The class of firmly nonexpansive-like mappings plays an important role in nonlinear analysis and
optimization. The problem of finding the fixed points for such mappings is the subject of current interest
in functional analysis. It turns out that the fixed point theory for such mappings can be applied to several
nonlinear problems such as zero point problems for monotone operators, convex feasibility problems,
convex minimization problems, variational inequality, and equilibrium problems, and so on; see [2—4] for
more details.

On the other hand, we also have the split feasibility problem (SFP). The SFP in the setting of finite-
dimensional Hilbert spaces was first introduced by Censor and Elfving [7] for modelling inverse problems
which arises from phase retrievals and in medical image reconstruction [6]. Since then, a lot of work has
been done on finding a solution of SFP. Recently, it is found that the SFP can also be applied to study the
intensity-modulated radiation therapy; see, for example, [8, 18] and the references therein.

At the same time, to construct a mathematical model which is as close as possible to a real complex
problem, we often have to use more than one constraint. Solving such problems, we have to obtain
some solution which is simultaneously the solution of two or more subproblems or the solution of one
subproblem on the solution set of another subproblem. These subproblems can be given, for example,
by two or more different SFPs or two or more different fixed point problems. It is natural to construct
a unified approach for these problems. In this direction, several authors have introduced some iterative
schemes for finding a common element of the set of solutions of the SFPs and the set of fixed points of
nonlinear mappings; see, for example, [9, 11, 22] and the references therein.

In order to finding a common fixed point of an infinite family of demimetric mappings in a Hilbert
space, Akashi and Takahashi [1] introduced the following hybrid method in mathematical programming
without assuming that demimetric mappings are commutative:

{ Zn = Z]Oil En((1—An)I ‘l‘)\nTj)Xn/
Xn41 = PC(anxn + (1 - (xn)zn)/

where {Tj};2; : C — H is an infinite family of ki-demimetric and demiclosed mappings. Then they
obtained a weak convergence theorem under some mild restrictions on the parameters.

On the other hand, Takahashi and Yao [27] considered the following split common null point problem
in Banach spaces: Given set-valued mappings A : H — 2", B: E — 2%, respectively, and bounded linear
operator T : H — E, the split common null point problem [27] is to find a point z € H such that

ze A0\ T 1 (B10) #0,

where A~10 and B~10 are null point sets of A and B, respectively. In order to finding a solution of the
split common null point problem in Banach spaces, they also introduced the following hybrid method in
mathematical programming:

Zn = ])\n (Xn - }\nT*]E (Txn - QunTXn)),
Yn = XnZn + (1—otn)xn,
Crn={zeH:|yn—ul < [xn—uf,
Qn={z€eH: (xn—2z,x1 —xn) =0},
Xnil = Pcannxl, vn € N,

where ], is the resolvent of A for A > 0, Q,, is the metric resolvent of B for p > 0, T: H — Eis a
bounded linear operator such that T # 0 and T* is the adjoint operator of T. Then they obtained a
strong convergence theorem under some mild restrictions on the parameters. However, we find that the
sequence generated by the above algorithm is difficult to compute because it involves projecting xo onto
the intersection of closed convex sets C, and Qy, for eachn > 1.

Motivated and inspired by Akashi and Takahashi [1] and Takahashi and Yao [27], we analyze the
Halpern type iterative algorithm for finding a common solution of fixed point problems of an infinite
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family of demimetric mappings and generalized split feasibility problems with firmly nonexpansive-
like mappings in Banach spaces. We prove the strong convergence of the proposed algorithm without
requiring the complex computation of Cr, [ Qn for each n > 1. Finally, we apply our convergence results
to the convex minimization problem. Our results improve essentially the corresponding results in [1, 27].
Further, some other results are also improved; see [3, 15, 30].

2. Preliminaries

Throughout this paper, we denote E the real Banach space, E* the dual of E, I the identity mapping on
E, H the real Hilbert space, R the set of real numbers, and IN the set of positive integers. The expressions
Xn — x and xn, — x denote the strong and weak convergence of the sequence {x,}, respectively. The
(normalized) duality mapping J from E to E* is defined by

Jx={x" € E": {x,x") = |Ix||* = |x"[|*}

for all x € E, where (-, -) denotes the duality product. If E is a Hilbert space, then ] = I, where I is the
identity mapping on H.

The norm of a Banach space E is said to be Gateaux differentiable if the limit
[+ ty|l — X[

lim |

2.1
t—0 t 1)

exists for all x,y on the unit sphere S(E) ={x € E : ||x|| = 1}. In this case, we say that E is smooth.

The norm of E is said to be uniformly Gdateaux differentiable if for each y € S(E), the limit (2.1) is
attained uniformly for x € S(E). The norm of E is said to be Fréchet differentiable if for each x € S(E), the
limit (2.1) is attained uniformly for y € S(E). The norm of E is said to be uniformly Fréchet differentiable
if the limit (2.1) is attained uniformly for x,y € S(E). In this case E is said to be uniformly smooth. It is
known that

e if E is smooth, then the duality mapping | is single-valued;

e if the norm of E is uniformly Gateaux differentiable, then | is uniformly norm-to-weaks continuous
on each bounded subset of E;

e if the norm of E is Fréchet differentiable, then ] is norm-to-norm continuous;

e if E is uniformly smooth, then ] is uniformly norm-to-norm continuous on each bounded subset of
E

see [23, 24] for more details.

A Banach space E is said to be strictly convex if ||x —y|| < 2 whenever x,y € S(E) and x # y. Itis
known that if E is strictly convex, then the duality mapping ] is injective, that is, x,y € E and x # y imply
Jx(Jy = 0. A Banach space E is said to be uniformly convex if ||[xn —yn| — 0 whenever {x,} and {yn}
are sequences in S(E) and ||xn + yn| — 2. It is known that if E is uniformly convex, then

e L is strictly convex and reflexive;
e E has the Kadec-Klee property, that is, a sequence {x,, } in E converges strongly to x whenever x,, — x
and [[xn | = [[x[;

see [23, 24] for more details.

We know that E is reflexive if and only if ] is surjective. Therefore, if E is a smooth, strictly convex
and reflexive Banach space, then ] is a single-valued bijection and in this case, the inverse mapping ]!
coincides with the duality mapping J* on E*.

Let E be a Banach space and let A be a mapping of E into 2F". The effective domain of A is denoted
by dom(A), that is, dom(A) = {x € E : Ax # 0}. A multi-valued mapping A on E is said to be monotone
if (x—y,u*—v*) >0 for all x,y € dom(A), u* € Ax, and v* € Ay. A monotone operator A on E is said
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to be maximal if its graph is not properly contained in the graph of any other monotone operator on E.
Suppose E is a smooth, strictly convex, and reflexive Banach space and A is a monotone operator. Then
it is known that the single-valued mapping J, := (I1+ 1] 7'A)~! is well-defined for all v > 0; see [5]. Such
J+,T > 0 are called the metric resolvent of A. It is also known that if A is a maximal monotone operator,
then
ran(I+1] 1A)=E

for all r > 0, where ran(I + 1] ~!A) is the range of (I + rJ71A); see [4]. The set of null points of A is defined
by A~10 ={z € E: 0 € Az}. We know that A~!0 is closed and convex and F(J,) = A~10; see [4].

Let H be a Hilbert space and let A be a maximal monotone operator on a Hilbert space H. The metric
resolvent |, of A is called the resolvent of A simply. It is known that the resolvent J, of A for any r > 0 is
firmly nonexpansive, i.e.,

[Fx=TJryll* < k=, Jrx—Jry), ¥,y € H.
Lemma 2.1. In a Hilbert space H, it holds for all x,y € H and A € [0,1] that

A4 (1 =Ayl* = AP+ (1 =A) Jyl* = A1 =) [x—y]?,

which can be extended to the more general situation: for all x1,%2,...,xn € H, Ay € [0,1], and Z?:l A =1, we
have

2
Aixt +A2x2 + -+ Anxn P = Al A2 [xalP 4+ A+ A IxnllP = D> Ny [[xi — x5
I<igi<n

Lemma 2.2 ([14]). Let {otn} be a sequence of real numbers such that there exists a subsequence {n;} of {n} such that
0n, < &n,+1 forall i € IN. Then there exists a nondecreasing sequence {my} C IN such that my — oo and the
following properties are satisfied for all (sufficiently large) numbers k € IN:

Omy, < Omyt1 and o < Oy 41
In fact, my = max{j < k: o4 < 541}
Lemma 2.3 ([29]). Let {otn} be a sequence of nonnegative numbers satisfying the property:
A1 < (1 —=vn)on +bn +vnen, neN,
where {'yn},{bn}, {cn} satisfy the restrictions:

(i) Z?f:l Yn = OO, limn o0 Yn =0;
() bn >0, Y ¥ ibn<oo
(iii) limsup, _, cn <O0.

Then, limp oo & = 0.

Let T: C — E be a mapping. A point p € C is said to be an asymptotic fixed point of T if there exists
a sequence {xn} of C such that x, — p and xn, — Tx, — 0; see [16]. The set of all asymptotic fixed points
of T is denoted by F(T).

Lemma 2.4 ([3]). If T: C — E is a firmly nonexpansive-like mapping, then F(T) is a closed convex subset of E and
F(T) =F(T).

Lemma 2.5 ([1]). Let C be a nonempty close convex subset of a real Hilbert space H. Let k € (—oo,1) and T a
k-demimetric mapping of C into H such that F(T) is nonempty. Let 1 be a real number with 1 € (0, c0) and define
S = (1 —VI+1T. Then there holds that

(1) FS)=FT) ifL#0;
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(2) S is a quasi-nonexpansive mapping for 1 € (0,1 —kJ;
(3) F(T) is a closed convex subset of H.

Lemma 2.6 ([15]). Let C be a nonempty closed convex subset of a real Hilbert space H. Given x € Hand z € C,
then z = Pcx if and only if there holds the relation

(x—z,y—2z) <0, WyeC,

where P¢ is the metric projection of H onto C.

3. Main results

We also need the following lemmas which are fundamental for our theorems.

Lemma 3.1. Let E be a smooth, strictly convex, and reflexive Banach space and let | be the duality mapping on
E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A : H — 2 be a maximal
monotone operator such that dom(A) C C and let ], be the resolvent of A for A > 0. Let T : E — E be a firmly
nonexpansive-like mapping. Let S : H — E be a bounded linear operator such that S # 0 and let S* be the adjoint
operator of S. Suppose that A=10(\S™IF(T) # 0. Then it holds, for all \,v > 0, that

FJA(I—7S*J(I—T) ATO[STIR(T
Proof. We first prove that
FA(I—-1S*J(I1—-T)S)) C A~ '0()S™'F(T)
Suppose that z € F(Jo(I—1S*J(I—T)S)) and zp € A~10( S™!F(T). Then we have
=JA(I1=rS"J1-T)S)z (I—-rS*J(I-T)S)ze (I+AA)z & —%S*](I —T)Sz € Az
Since A is monotone and 0 € Az, we see that

(z—2p,S*J(I-T)Sz) < 0.

And hence

(Sz— Sz, J(I—-T)Sz) < 0. (3.1)
On the other hand, since T is a firmly nonexpansive-like mapping and Sz € F(T), we have that

(TSz— Sz, J(I—T)Sz) > 0. (3.2)

Adding up (3.1) and (3.2), we find that
1Sz —TSz|* = (Sz— TSz, J(1—T)Sz) < 0.

Therefore, Sz = TSz. Thatis, z € S™'F(T) and also Sz— TSz =0 implying S*J(I—T)S)z = 0. This reduces
the fixed point equation z = JA(I —rS*J(I —T)S)z to the fixed point equation z = ],z that is equivalent to
z € A~10. Consequently, z € A~10(STIF(T).

We now prove

ATIO[STIR(T) C F(JA(I—1S*J(I-T)S)).

Since zg € A0 S™'F(T), we have that zy € A~'0 and zg € ST'F(T). It follows that zg = Jazo and
Szy = TSzy. Hence, we have

zg = JA(I=71S*J(I—=T)S)zo,
which implies ATTONST'F(T) € F(JA(I—7S*J(I—T)S)). This completes the proof. O

Lemma 3.2. In the setting of Lemma 3.1, if v € (0,
nonexpansive on H.

HSII —21, then the mapping Jx(1 —rS*J(1—T)S) is quasi-
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Proof. Since the resolvent J, is nonexpansive, we see that, for u € A0 STIF(T),

ITA(I=rS* J(I—=T)S)z—ul]* < ||z—rS*](Sz — TSz) — u/?

= |lz—u|]* + ||r$*J(Sz — TSz)||* — 2r(z —u, $*J(Sz — TSz))
lz—ull* + 12 ||S||*||Sz — TSz||* — 2r(Sz — TSz + TSz — Su, J(Sz — TSz))
lz—ul® + 12 ||S||*||Sz — TSz||* — 21 ||Sz — TSz||* — 2r(TSz — Su, J (Sz — TSz))
lz—ul|® +72||S||*||Sz — TSz||* — 27 ||Sz — TSz|*
=lz—u|?> —r2—r|S|]*) ISz — TSz

< Jlz—u?.

INININ

From Lemma 3.1, we see u € F(JA(I —rS*J(I—T)S)). Thus we have the desired result. O

Lemma 3.3. Let H be a Hilbert space and C be a nonempty convex subset of H. Assume that {T;}3°, : C — H be
an infinite family of ki-demimetric mappings with sup{k; : 1 € IN} < 1 such that ({2, F(Ti) # 0. Assume that
{ni)$2., is a positive sequence such that ) 2 1mi = 1. Then ) 2 niT; : C — H is a k-demimetric mapping with
k = sup{ki 1€ N} and F(Zfozl T]iTi) = ﬂfozl F(Tl)
Proof. Let

Gnx=mix+mhx+ - +nnThx

and ) ' ;i = 1. Then, Gy : C — H is a k-demimetric mapping with k = max{k; : 1 <i < n}. Indeed, we
can firstly see the case of n = 2.

(I=G2)x,x—q) = MmI—=T)x+m2(I-T2)x,x—q)
=mx—Tix,x—q) +m(x—Thx,x—q)
1—k 1—k;

>m [x — Tyx|[* +m2 5 [x — Tax|)?
11—k

> T(m [ — Tyx||* +m2 [x — Tax||?)
11—k

> —— [x— G|,

where q € ({2, F(Ti). This shows that G, : C — H is a k-demimetric mapping with k = max{k; : 1 =1, 2}.
By the same way, our proof method easily carries over to the general finite case.
Next, we prove the infinite case. From the definition of demimetric mapping, we know

11—k
2

(x—Tix,x — q) > l[x — Tox||.

Hence, we can get

ITax|] < flx = Tax[| + [|x[] <

[ —qll +lIx]| <

2 [x—qll + [Ix]
X + |Ix]| .
1—Kk4 1—k q

Then, we deduce ) ;7 1;T; strongly converges. Letting

o
Tx =) miTix,
i=1

we have

o n n
. i 1
Tx = E niTix:nlgr;O E nNifix = lim ST E i lix.
i=1 i=1 =

n—oo 4
i=1
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Therefore, we get

2

1—k 1 s

> " lim ||[[ - =———) mTi | x
n—o0 < Z?ﬂh; t l)

1—k

= Ix — Tx|?

So, we deduce that T is k-demimetric.

Finally, we show F(} 2 niTy) = ﬂl 1 F(Ti). Suppose that x = Y2 ni Tix, it is sufficient to show that
x € i~ F(Ti). Indeed, for p € (;=; F(Ti), we have

I —pl* = (x—p,x—p) Zme p,x—p)
i=

Z (Tix—p,x—p)
i (x=p,x—p) + (Tix—x,x —p))
=1
< |x—pl? —Zm Hx Tix|?
< IIX—pHZ—%Zm Ix —Tix|?,
i=1

where k = sup{k; : 1 € N}. Hence, we deduce x = Tix for each i € N. This means that x € ({2, F(T;). O

Theorem 3.4. Let E be a smooth, strictly convex, and reflexive Banach space and let | be the duality mapping on
E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A be a maximal monotone
operator of H into 21 such that dom(A) C C. Let Ja be the resolvent of A for X > 0 and let T be a firmly
nonexpansive-like mapping on €. Let S : H — E be a bounded linear operator such that S # 0 and let S* be
the adjoint operator of S. Let {U;}{°, : C — H be an infinite family of ki-demimetric and demiclosed mappings.
Assume T == (72, F(U;) VA0 STIF(T) is nonempty and the element xo € C is fixed. Let {xn} be a sequence
generated by

x1 chosen arbitrarily,

Zn = I?\n (xn — 6nS*I(SXn —TSxn)),

Yn = (1—0n)zn +on Zfozl Nillizn,

Xn+1 = PclotnXo + Bnyn +v¥Ynzn), neN,

where {otn }, {Bnt, {yn), i} C (0,1) and {An}, {0n}, {on} C (0, +00) satisfy the following conditions:

(3.3)
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(1) limp_eo 0n =0and Y 7 _; an = 00;
(i) 0 <liminf, ;o Bn <limsup, , Bn <land ocn +Pn+vyn=1
(i) > Zmi=1
(iv) 0<a<(rn<b<1—kandk:sup{ki:i€IN}<1;
V) O0<c<g<dodp<d< and 0 < liminf,, o Ay < limsup, , An < oco.

IISH2
Then the sequence {xn } generated by (3.3) converges strongly to a point zo € T, where zog = Prxo.

Proof. Set V. = 3 2 niU; and Wy, = (1 — o)+ 0, V. Since W, is quasi-nonexpansive with F(W;,) =
F(V) =2, F(U;) due to Lemma 2.5 and Lemma 3.3, we have by Lemma 3.2, for any u € I that

Ho‘n X0 — W+ Bn(yn —uw) +vnlzn _u)H
o [[xo —ull 4+ Bn lyn —ufl +vn llzn —ul
&n HXO _u” +Bn ||Wnln _uH +Yn HZn _uH

X1 — ]

o [[x0 —wll 4+ Bn llzn —ul| +vn llzn —u|
Xn ||XO _uH +(1— (Xn) ||]?\n (xn — 5nS*](SXn - TSXn)) _u”

an |xo — |l + (1 —on) [[xn —u]

NN NN N //\ N

max{|[|xo —u|, [[xn —uff}.
By induction, we obtain
[xn —ull < max{|[xo —ull, [[x1 —uf}, ¥neN,
which gives that the sequence {x,,} is bounded, so are {yn} and {zn}.
In terms of Lemma 2.1 and Lemma 2.5, we have
1 = ulf? = [lon (x0 = W) + Br(yn —w) +Yn(zn —u)|?
2 2 2 2
< on o —ul[” + B [lyn —ul” +vn llzn —ull” = Bnyn [[yn — znl|

2 2 2 2
< o [Ixo —ul|” + B llzn —ul|” +vn Iz —wl” = Bnyn [yn — zall
<

on X0 —wf* + (1= otn) zn — | = Brvn [yn —2zn

(3.4)

Now put J, = 3(I+Ky) for all n € N. Since J,, is firmly nonexpansive, then we know that Ky, is
nonexpansive and F(J,, ) = F(K;,) for all n € IN. Therefore, we get

Iz —)® = [[Jan (Xn — 80 S (Sxn — TSXn)) —

= % |(xn — 0nS*J(Sxn — TSxn)) —LL||2 + % IIKn (xn — 0 S™J(Sxn — TSxn)) —u||2
- 411 K (Xn — 81 S*(Sxn — TSxn)) — (Xn — 51 S*(Sxn — TSxn)) |2

< xn — 0nS™J(Sxn — TSxn) —qu
_ }L Ko (e — 61S* ] (Sxm — TSxn ) — (X — 81 S*] (S — TSxn )12

< en = ul® + 1|80 S*J(Sxn — TSxm)|* = 285 (xn — 1, S*J(Sxn — TSxn))
— 411 K (Xn — 80 S*J(Sxn — TSxn)) — (X — 5 S*J(Sxn — TSxn ) ||?

< e — w2+ [0 S*T(Sxm — TSxn) |2 — 28n (Sxn — TSxn + TSxn — SW, J(Sxn — TSxn))  (3.5)
- 411 K (Xn — 81 S*(Sxn — TSxn)) — (Xn — 5nS*J(Sxn — TSxn)) |12

< e —uf> + 82 [IS]? |Sxn — TSxn [|* — 281 [|Sxn — TSXn ||* — 281 (TSxn — Su, J(Sxn — TSxn))
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- }L Ko (re — S T(Sxm — TSxn)) — (xre — 5 S*J(Sxm — TSxr )|
< e —ul* + 82 ||| ISxn — TSxn [|* — 283 [|Sxn — TSxn |*
— 411 IIKn (xn — 8nS*J(Sxn — TSxn)) — (xn — OnS*J(Sxn — Tan))H2
= [xn = u|® = 5n (2= 8n [[SI*) [[Sxn — TSxn|I®
— }1 K (xn — 80 S*J(Sxn — TSxn)) — (xn — 50 S*J(Sxn — TSxn)) ||
It follows from (3.4) and (3.5) that
ens1 —uf? < ocn Ixo = ulf* + [[xn — ul* — 8 (2= 8n [IS[I) [|Sxn — TSxn >
— 21 K (xn — 81 S*J(Sxm — TSXn)) — (X — 1 S*J(Sxn — TSx ) ||
—Bn¥n [yn —znl?,
which implies that
(2= 8n [ISI*) 1S%n — TSXn[|* + Brvn [[yn — 2za|®
+ i [Kn(xn — 80 S*J(Sxn — TSxn)) — (xn — 8nS*J(Sxn — TSxn)) || (3.6)
< ot [Ixo — ulf? + [Pen — ulf* = xng1 — .

Case 1. Assume there exists some integer m > 0 such that {||[x, — zo||} is decreasing for all n > m. In this
case, we know that limy,_, « ||xn — u|| exists. From (3.6), and conditions (i), (ii), and (v), we deduce

lim ([yn —zal| =0, 3.7)
n—oo
nlgrgo IKn (xn — 0nS™J(Sxn — TSxn)) — (xn — 8 S™J(Sxn — TSxn))|| =0, (3.8)
and
lim ||Sxn —TSxn|| = 0. (3.9)
n—oo
Notice that
”Zn_XnH = HI?\n n—2> S*](an_TSXn))_XnH
H — 6nS*J(Sxn — Tan))+%Kn(xn—énS*J(an—Tan))—xn
< E HSTLS*](SXTL TSxn) ” + = ”K 6n5*](sxn — TSxn)) _XnH

< % 1808 (Sxn — TSxn)|| + 5 [(Xn — 8nS*J(Sxn — TSxn)) — xn |
+ % | Kn (xn — 6nS*](an —TSxn)) — (xn — 8nS™J(Sxn — TSxn))||
< On IS ISxn — TSxn || + = ||K —O0nSJ(Sxn — TSxn)) — (xn — OnS™J(Sxn — TSxn))|| -
This together with (3.8) and (3.9) implies
nlgr;o llzn —xn | = 0. (3.10)

Observe that

Tawxn = xnll < [Tanxn =20l + llzn = xa
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< [0S J(Sxn — TSxn) || + [lzn — Xn ||
< O [[S] [[Sxn — TSxn | + [|zn — Xn|| -

It follows from (3.9) and (3.10) that
Tim [[J,%n —xal| = 0. (3.11)

Taking into consideration that
Xn = ynll < llxn —znl + [lzn —ynll,

we deduce from (3.7) and (3.10) that
Tim [xn —yn =0. (3.12)

In view of (3.3), we get
[Xns1=xnll = [[Pclanxo + Bnyn +¥nzn) = xnl < an([xo =Xnll + B l[yn —xnll +¥n lzn —xnll.
This together with (3.10), (3.12), and condition (i) implies that
JHm s = =0

Since {xn, } is bounded, there exists a subsequence {xn,} of {x,,} satisfying x,,, — % € C. Without loss of
generality, we may also assume

lim (xg — 2o, Xn, — z0) = lim sup(xg — zo, Xn — 20). (3.13)
1—00 n—o0

It is clear that

(zn —20,Zn —Yn) = On(zZn —20,Zn — Vzn) = On )_Ni(Zn —20,Zn — Uizn)
i=1

Gan

1—k —
Hzn izn” = UnT Zni ||Zn — uiZnH .
i=1

By (3.7) and condition (iv), we conclude that
lim ||zn —Uizn| =0, VieN.
n—oo

Since U; is demiclosed for each i € IN, noticing (3.10), we have x € ({2, F(Uy).
Let us show that X € A~10() S~'F(T). Since S is bounded and linear, we see that Sxn, — SXasi— oo.
Noticing (3.9) and Lemma 2.4, we deduce Sx € F(T); that is x = S~!F(T). Since Jy,, is the resolvent of A

for A, > 0, then we obtain X“;{%"“ € AJa, xn for all n > 1. From the monotonicity of A, we see that

Xny — I}\ni Xn;

), Y(u,1) € A.
A,

0< (u—TJx, Xn, 0—

Letting 1 — oo, we deduce from (3.11) that
0< (u—%,0—0), V(utl)eA.

Since A is maximal monotone, we get X € A~10. Therefor, we have ¥ € A~10 N S~IF(T). And hence it
follows from (3.13) that

lim sup(xp — zo, Xn — 20) = ili_)m (x0 — 20, Xn, —20) = (X0 — 20, %X — z0) = (X0 — Prxo, X — Prxg) < 0. (3.14)
n—oo o0
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Setting hn, = otnXo + BnYn + Ynzn for all n € IN, we have from (3.3) that x,+1 = Pchy. It follows from
Lemma 3.2 and Lemma 2.6 that

Hxn+1 - ZOH2 = <PChn —hn, Pchn — ZO> + <hn —z9,Pchn — ZO>
< <anX0 + Bnyn +YnzZn — 20, Xn4+1 — ZO>
< IBn(yn —20) +¥nlzn — z0) || [[Xn+1 — 20|l + otn (X0 — 20, Xn+1 — 20)
(3.15)
< Bn llzn — 2ol xn+1 — 2ol +¥n [lzn — 20| [[Xn+1 — 20l + otn (X0 — 20, Xn+1 — 20)
< (1T —on) [Ixn —2zol| [[Xn+1 — 2ol + on (X0 — 20, Xn1 — 20)
< (1= o) [[Xn — 201> + atn (X0 — 20, Xn+1 — 20)-

Applying Lemma 2.3 and (3.14) to (3.15), we deduce x,, — zg as n — oo.

Case 2. Suppose that there exists {n;} of {n} such that ||xn, —zo|| < ||Xn,+1 — 20| for all i € IN. Then by
Lemma 2.2, there exists a nondecreasing sequence {m;} in IN such that

[xm; —zo|| < |[xm;+1—20]| and ||xj —zo|| < ||xm;+1—20]|-

We want to show that
lim sup(xo — 2o, Xm; — z0) < 0,
]— 0
where zy = Prxg. Without loss of generality, there exists a subsequence {ijk} of {xmj} such that Xm;, — W
for some w € C and
lim (xo —Z0,Xm;, — zg) = lim sup(xo — zo, Xm; — z0)-

k—o00 j—o0

Following a similar argument as in the proof of Case 1, we have that

lim Hsz Xm; H =0 and lim Hzmj — Uizm, H =0, VielN. (3.16)
)—00

]—)

By the assumption that U; is demiclosed for each i € IN and noticing (3.16), we deduce that w €
M52, F(U;). Like in Case 1, we can also obtain

weA o[]S FHT)

and
lim mejﬂ — Xm; H =0. (3.17)
j—o0
Thus we obtain
lim sup(xo — zo, Xm; — 20) = kli_I>I;o<X0 — 20, Xm;, —20) = (x0 — Prxo, w —Prxg) < 0. (3.18)

j—o0
Letting hun; = &m; %0 + Pm;Ym; +¥Ym;Zm, for all j € N, we deduce from (3.3) and Lemma 3.2 that

[xmy+1— 2o||* = (Pchun; — Ry, Pchim, — 20) + (Rum; — 2o, Pchim, — 20)
(&m;X0 + Bm;Ym; +Ym;Zm; — 20, Xm;+1 — 20)

HﬁmJ Ym; — zp) +Ym; (Zm, —29)
B, [|zm; — 20| [[Xm;+1 = 20| +¥m, [|2m; — 20| [[xm,+1 — 20| + atm; (x0 — 20, X, +1 — 20)

(1- Gm me; _ZOH me;+1 _ZOH + Xy (xo — 20, Xm;+1 —2p)
(

N

| [|Xm;+1 — 20| + %m,; (X0 — 20, Xm+1 — 20)

NN CIN N

1- meJ HXmJJrl ZOH +me1<x0 ZO’XmJ_Z0>+o‘m; X0 —zo| meﬂrl Xm)H
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It follows that X
[ %m;+1— 20" < (x0— 20, Xm; — 20) + [Ix0 — 2ol || Xm;+1 — Xm, | - (3.19)

We deduce from (3.17), (3.18), and (3.19) that

im mej+1 —ZOH = 0.
—00

)

Applying Lemma 2.2, we obtain
0 < 1~ 0] < X1~

Consequently, we get x, = zp as n — oo. The proof is completed. O

4. An extension of our main results

By using Theorem 3.4, we have the following strong convergence results for computing the common
solution of fixed point problems of nonlinear mappings and generalized split feasibility problems in
Banach spaces.

Conclusion 4.1. Let E be a smooth, strictly convex, and reflexive Banach space and let ] be the duality mapping
on E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A be a maximal monotone
operator of H into 2" such that dom(A) C C. Let J) be the resolvent of A for A > 0 and let T be a firmly
nonexpansive-like mapping on E. Let S : H — E be a bounded linear operator such that S # 0 and let S* be the
adjoint operator of S. Let U : C — C be a 2-generalized hybrid mapping. Assume T := F(U) A0S IF(T) is
nonempty and the element xo € C is fixed. Let {xn} be a sequence generated by

x1  chosen arbitrarily,

Zn = I?\n (xn — 5nS*J(SXn —TSxn)),

Yn = (1= on)zn + 2 ¥ 155 Ukzy,

Xn+1 = PclonXo+ Pnyn +¥nzn), YneN,

(4.1)

where {otn }, {Pn}, {yn} C (0,1) and {An}, {dn}, {on} C (0, +00) satisfy the following conditions:

(i) limn_eo dn =0and Y 4 an = 00;
(i) 0 <liminf, ;o Bn <limsup, , Bn <land ocn +Pn+vyn =1
(ili) 0<ag<on<b<1;

iv) 0<c<dp <d< ||s2|\2 and 0 < liminfy, 0 An < limsup,,_,  An < co.

Then the sequence {xn } generated by (4.1) converges strongly to a point zo € T, where zg = Prxo.

Proof. It is easy to see that a 2-generalized hybrid mapping is 0-demimetric. In the same way as Theorem
3.4, we need only prove that when x,,, = X € C, then X € F(U). Indeed, since U is a 2-generalized hybrid
mapping, there exist 61,82, €1, €2 € R such that
5 2 2 2 2
1 |[UPx — Uyl + 82 [[Ux — Uyl + (1 — 8, — &) [[x — Uy]|
2
<er U —y|| + ez Ux—y|P + (1—e1 —&2) [x—y

for all x,y € C. Replacing x by U¥z,, in above inequality, we have for ally € Cand k =0,1,2,...,n—1,
51 |[UR* 2z, — Uy ||® + 82 [[UX 2z — Uy|[* + (1= 8, — &) [[U*zn — Uy

< e |[Uk 2z, —yHZ + e [[URHz, —yH2 +(1—€1—€2) ||Ukzy —yHZ

2
< e (U 2z — Uyl + Uy —y* +2(U* 2z, — Uy, Uy —y))



Y. Song, J. Nonlinear Sci. Appl., 11 (2018), 198-217 211

2
+ea(URH 2y — Uy )" + Uy —y > + 2(U* 1z, — Uy, Uy —y))
2
+(1— e — &) (|[Ukzn — Uy | + Uy —y* +2(U*z, — Uy, Uy —y)).

This implies that

0 < (€1 — 81) [[UX 2z — Uy |* + Uy — | + 21 (UF 22 — Uy, Uy —y)
+ (€2 — &) [UFH 2y, — UyH2 +2e (UK 1z, — Uy, Uy —y)
+ (01— €1+ 82 —€7) Hukzn — UyH2 +2(1—e; —e2)(UXz,, — Uy, Uy — ) (4.2)
< (o1 = 81) (U 2z — Uy|)® = [[Urzn — Uy|*) + (e2 — 82) ([ URH 20 — Uy|* — [|UF20 — Uy
+ Uy —y* + 2(U¥zy — Uy + €1 (U 22, — URzp) 4 o (UK 1z, — UKzy), Uy —y).

Set U, := % ZE;& U*. Summing up these inequalities (4.2) with respect to k = 0 to k = n—1 and
dividing by n, we have

€1—90 2
0 < = ([|Un Mz — Uy [|" 4 Uz — Uy|* — [[Uzn — Uy][* — [z — Uy]*)

€ — 0

= (U2 — Uy — flzn — Uy [?) + Uy —y|* +2(Unzn — Uy, Uy —y) (4.3)
2

+ H(el(U“Hzn + Uz, —Uzp —zn) + e2(UMz, —z), Uy —y).

By the definition of the 2-generalized hybrid mapping, we find for all x € C and x* € F(U) that
Ix* —U™| < [|x"—x||, YneN,

which means that the sequence {U™x} is bounded for all x € C and n € IN. On the other hand, following
a similar argument as in Theorem 3.4, we get limn_, [|zn —xn|| = 0 and limy o [[yn — zn || = 0. Hence
we deduce that limy _,  [|[Unzn —zn || = 0. Replacing n by n; and letting n; — oo, we have from (4.3) that

0 < Uy —yl* +2(x — Uy, Uy —y).
Taking y = X in the above inequality, we have
0 < ||Ug — &[> + 2(x — Ux, Ux — %) = [|[Ux — %/|* — 2 ||ug — %||* = — ||ux — %||*.
This implies that X € F(U). The rest proof is similar to the proof of Theorem 3.4. O

Conclusion 4.2. Let E be a smooth, strictly convex, and reflexive Banach space and let | be the duality mapping
on E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A be a maximal monotone
operator of H into 21 such that dom(A) C C. Let Ja be the resolvent of A for A > 0 and let T be a firmly
nonexpansive-like mapping on €. Let S : H — E be a bounded linear operator such that S # 0 and let S* be
the adjoint operator of S. Let {U}°, : C — H be an infinite family of generalized hybrid mappings. Assume
=52, F(Ui) VA0 STIF(T) is nonempty and the element xq € C is fixed. Let {xn} be a sequence generated
by

X1 chosen arbitrarily,

Zn = I?\n (Xn — 6nS*](SXn —TSxn)),

Yn=(1—on)zn +on Zfozl Nillizn,

Xn+1 = Pc(onXo + Bnyn +v¥nzn), M eN,

where {otn }, {Bnl}, {yn), it C (0,1) and {(An}, {0n},{on} C (0, +00) satisfy the following conditions:

(4.4)

(1) limn_eo 0n =0and Y 7 _; an = 00;
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(i) 0 <liminfn ;o Brn <limsup, . Bn <land dn+Pn+vn =1,
(iii) Zi"ilm—land0<a<6n <b<1;
(iv) 0<c<on<d IISH iminf, .o An <limsup, Ay < oo.

Then the sequence {xn} generated by (4.4) converges strongly to a point zg € T, where zy = Prxo.

Proof. We know that the generalized hybrid mapping is 0-demimetric and demiclosed; see [13]. Therefore,
Theorem 3.4 implies the conclusion. O

5. Applications

Using Theorem 3.4, we first study the problem of approximating zero points of maximal monotone
operators.

Theorem 5.1. Let E be a smooth, strictly convex, and reflexive Banach space and let | be the duality mapping on
E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A and B be maximal monotone
operators of H into 21 such that dom(A) C C and E into 2%, respectively. Let ] be the resolvent of A for A > 0
and let Q. be the metric resolvent of B for u > 0. Let S : H — E be a bounded linear operator such that S # 0
and let S* be the adjoint operator of S. Let {U}3° C — H be an infinite family of ki-demimetric and demiclosed
mappings. Assume T := (52, F(Uy) N AI0N S B~10) is nonempty and the element xo € C is fixed. Let {xn}
be a sequence generated by

X1 chosen arbitrarily,

Zn = Ja, (xn = 0nS*J(Sxn — QuSxn)), (5.1)
Yn = (1—on)zn+on 21:1 Nillizn, ’
Xn+1 = Pclonxg + Brnyn +Ynzn), YneN,

where {otn }, {Pnl}, {yn}, i} C (0,1) and {An}, {0n},{on} C (0,+00) satisfy the following conditions:

(1) limp_eo 0n =0and Y 5 an = 00;

(i) 0 <liminfy ;o Bn <limsup, ,  Bn <land on +Pn+vyn =1,
(if) 3% mi=1;
(iv) O<a<crn<b<1—kandk—sup{ki'ieIN}<1'

(v) 0<c<bn <d< —25and 0 < liminfn_,e An <limsup,, |, An < oo

ISl

Then the sequence {xn} generated by (5.1) converges strongly to a point zg € T, where zy = Prxo.

Proof. 1t is well known that each Q,, is a single valued mapping of E into itself and F(Q,) = B10; see
[4, 20]. We also know that each Q,, is firmly nonexpansive-like; see [3, 4]. Therefore, Theorem 3.4 implies
the Theorem 5.1. 0

Using Theorem 5.1, we next study the problem of minimizing a convex function. For a Banach space
E and a function f: E — (—o00, 0], we denote by 0f the subdifferential of f defined by

of(x) ={x* e B : (f —x™)(x) = inf(f —x*)(E)}
for all x € E.

Theorem 5.2. Let E be a smooth, strictly convex, and reflexive Banach space and let | be the duality mapping on
E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let f : E — IR be a proper, convex
and lower semicontinuous function such that 9f~1(0) # (. Let A be a maximal monotone operator of H into 2H
such that dom(A) C C. Let ] be the resolvent of A for A > 0. Let S : H — E be a bounded linear operator such
that S # 0 and let S* be the adjoint operator of S. Let {U;}°, : C — H be an infinite family of ki-demimetric and
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demiclosed mappings. Assume T' := (52, F(U;) A0S (df1(0)) is nonempty and the element xo € C is
fixed. Let {xn} be a sequence generated by

x1  chosen arbitrarily,

Wy = argminy e {f(y) + (21) 7 [y — Sxn %)

Zn = ]7\n (Xn - 6TLS*J(SXTL - Wn))/ (52)
Yn = (1—o0n)zn+on Ziozl Nilizn,

Xn+1 = Pc(otnxo + BnyYn +v¥nzn), YneN,

where {&n}, {Bn} {¥n), Mi} C (0,1), pn € (0, +00) and {An}, {0n}, {on} C (0, +00) satisfy the following conditions:
(i) lmn_oo n =0and Y 37 an = 00;

(i) 0 <liminfn ;o Brn <limsup, . Bn <land dn+Pn+vn =1,

(iii) > Zymi=1

(iv) 0<a<on<b<l—kandk=supfki:ieN}<1;

V) 0<c<<dép<d< ||52|\2 and 0 < liminfy, 0 A < limsup,, _,  An < co.

Then the sequence {xn} generated by (5.2) converges strongly to a point zg € T, where zy = Prxo.

Proof. We know that 9f : E — E* is maximal monotone and (3f)~1(0) = arg min f; see [19, 20]. We also
know that
(14w 10) " (x) = arg min{f(y) + (2u) " [y x|}

for all p > 0 and x € E, where I denotes the identity mapping on E. Therefore, we obtain the desired
result. O

Let H be a Hilbert space and let g : H — (—o00,+00] be a proper convex lower semi-continuous
function. Then, the subdifferential 0g of g is defined as follows:

dg={yeH:g(z) 2gx)+(z—x,y),z€ H}, VxeH.

From Rockafellar [21], we know that 0g is maximal monotone. It is easy to verify that 0 € dg(x) if and
only if g(x) = minycn g(y). Let I¢ be the indicator function of C, i.e.,

0, x € C,
felx) = +o00, x ¢ C.

Then, I¢ is a proper lower semi-continuous convex function on H, and the subdifferential dI¢ of I¢ is a
maximal monotone operator. Furthermore, suppose C is a nonempty closed convex subset. Then,

(I+A3Ic) 'x =Pcx, ¥xeH, A>0.

For more details, one can refer to [26].
Applying Theorem 3.4 to the case where A = 0l¢c, we have the following result.

Theorem 5.3. Let E be a smooth, strictly convex, and reflexive Banach space and let ] be the duality mapping on
E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be a firmly nonexpansive-
like mapping on €. Let S : H — E be a bounded linear operator such that S # 0 and let S* be the adjoint
operator of S. Let {U;}{°, : C — H be an infinite family of ki-demimetric and demiclosed mappings. Assume
M=, F(Ui) N STF(T) is nonempty and the element xo € C is fixed. Let {xn} be a sequence generated by

x1 chosen arbitrarily,

zZn = Pc (xn — nS*J(Sxn — TSxn)),

Yn = (1—0on)zn+on Ziozl Nillizn,

Xn41 = Pc(onxo + Brnyn +Ynzn), YneN,

(5.3)

where {otn }, {Bnt, {yn), i} C (0,1) and {dn},{on} C (0,+00) satisfy the following conditions:
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(1) limp_eo 0n =0and Y 7 _; an = 00;

(i) 0 <liminfn ;o Bn <limsup, . Bn <land cn+Pn+vn =1,
(i) Y32y m=1;
(iv) 0<a<on<b<l—kandk=supiki:ieN}<1;

<
V) 0<c<o<d< ||52|\2‘

Then the sequence {xn} generated by (5.3) converges strongly to a point zo € T', where zog = Prxo.

6. Numerical examples

The purpose of this section is to give two numerical examples supporting Theorem 3.4.

Table 1: The values of the sequence {xn}.

n Xn

1-5
6-10

21-25

46-50

1.000000000000
0.003687224442

0.000903174745

0.000400320289

0.136458333333  0.019509412977  0.007067027004
0.003053557087 0.002608427454 0.002277089072

0.000859959418 0.000820691798 0.000784854452

0.000391599776  0.000383251114 0.000375251014

0.004703615999
0.002020626483

0.000752016612

0.000367578092

09r
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0.7
0.6
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0.4 r
03
0.2
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n

Figure 1: The convergence of {x, } with initial values x; = 1.

Example 6.1. Let C = H = R with the inner product defined by (x,y) = xy for all x,y € R and the
standard norm ||. Letting S : H — E be defined as Sx = —%x for all x € H, we then see S is a bounded
linear operator with its adjoint S* = S. Let T: E — E be defined as Tx = ix forall x € E, A : H — H be
defined as Ax = 3x for all x € H, and U; : H — H be defined as U;x = —2x for alli € N and x € H. Itis
easy to check that I' = {0}. Also, it is easy to check T is firmly nonexpansive-like, A is maximal monotone,
and U; are %—demimetric and demiclosed for all i € IN.

Let us choose oy, = 6%1, B = oEL — 4n=3

2n—1 2n—1
3n /s I — An =

o On = On = =, 3n,andni:%forall
n,i € IN. Then &, Bn, Yn, An, On, On, Mi satisfy all the conditions of Theorem 3.4. Therefore iterative
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scheme (3.3) becomes
NP SV —28n® —4n”+5In 427 N 56n? — 6n — 27
T e Y 448n2(3n—1) "3 —1)
Taking xo = 0.1 and x; = 1, we see that numerical results in Table 1 and Figure 1 demonstrate Theorem
3.4.

Example 6.2. Let C = H = 3 and E = {, where {y denote the R™ equipped with the norm x|, =

Xn, Vn e IN.

. 1/p
(Z?:l ’xil) ‘p> for 1 < p < oo. Then we know H is a Hilbert space and E is a smooth, strictly convex,
and reflexive Banach space. As we know, in the {3 space, the duality mapping is given by

x=0,

0,
= { (D [xO]/1Ixll, x@ 2]/ Il - %M M/ xl5) - x # 0.

Letting S : H — E be defined by Sx = %x for all x € H, we then see S is a bounded linear operator with its
adjoint S* = S. Let T: E — E be defined as Tx = 3x for all x € E, A : H — H be defined as Ax = 4x for all
x € Hand U; : H — H be defined as Ujx = —%ix for all i € IN and x € H. It is easy to check that I' = {0}.
Also, it is easy to check T is nonexpansive-like, A is maximal monotone, and U; is ﬁ—demimetrie and
demiclosed for each i € IN.

Let us choose an = ¢, B = S,y = 423, 5, = 0y = 22 A, = 2L and ny = 5 for all
n,i € IN. Then oy, Bn, Yn, An, dn, On, and n; satisfy all the conditions of Theorem 3.4. Hence iterative

scheme (3.3) can be rewrite as
S LN (VL
g1 ™ T1en )7

4n—3 2n—1

NM+2—2n—1)In2
Yo = o, 61)
n+1 In—3

vn € NN,

xn—!—l:aXO'i‘ 3n Yn + 61 Zy,
where
0, Xnp =0,
X =
Poa = Gt |l < (2 el < O]/ ) 7

Using the algorithm (6.1) and taking xo = (0,0,0) and x; = (1,3,2), we report the numerical results in
Table 2. In addition, Figure 2 also demonstrates Theorem 3.4.

Table 2: The values of the sequence {xn}.

1

2

3

n Xn Xn X
1 1.0000000000000 3.0000000000000 2.0000000000000
2 0.2518830885020 0.6646635233715 0.4734375962925
3 0.0528922212860 0.1155835401108 0.0902451087661
4 0.0106450374252 0.0193955015251 0.0163638209461
5 0.0020787650463 0.0032424586881 0.0028949700508
10 0.0000004296960 0.0000004623849 0.0000004559153
16 1.235753255427350x 10~ 11 1.243931512007411x10~11  1.242438902187192x 1011
17 2.147941556198610x 10712 2.157364622440542 %1012 2.155649523624184 x 1012
18 3.730736375573632x 1013 3.741574065532121x 1013 3.739605085662673 x 1013
19 6.476321429387085x 10~ 14  6.488766725555732x 10~ ¢  6.486508419914774x 1014

20

1.123777174154652 x 10~ 14

1.125204375328997 x 10— 14

1.124945606067749 x 10— 14
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Figure 2: The convergence of {x, } with initial values x; = (1, 3,2).
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