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1. Introduction

In this paper, we assume that

− 1 6 B < 0, B < A 6 −B, λ > 1 and k ∈N \ {1}. (1.1)

For functions f and g analytic in the open unit disk U = {z ∈ C : |z| < 1}, the function f is said to be
subordinate to g, written f(z) ≺ g(z) (z ∈ U), if there exists an analytic function w in U, with w(0) = 0
and |w(z)| < 1, such that f(z) = g(w(z)).

A function f which is analytic in a domain D ⊂ C is called p-valent in D if for every complex number
w, the equation f(z) = w has at most p roots in D and there will be a complex number w0 such that the
equation f(z) = w0 has exactly p roots in D. Let Σp denote the class of functions of the form

f(z) = z−p +

∞∑
n=p

anz
n (p ∈N), (1.2)
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which are analytic in the punctured open unit disk U0 = U \ {0}. We denote by S∗p the well-known class
of meromorphically p-valent starlike functions. It is defined as follows

S∗p =

{
f ∈ Σp : Re

zf ′(z)

f(z)
< 0, z ∈ U

}
.

Let

fj(z) = z
−p +

∞∑
n=p

an,jz
n ∈ Σp (j = 1, 2).

Then the Hadamard product (or convolution) of f1 and f2 is defined by

(f1 ∗ f2)(z) = z
−p +

∞∑
n=p

an,1an,2z
n = (f2 ∗ f1)(z).

Lemma 1.1. Let f ∈ Σp defined by (1.2) satisfies

∞∑
n=p

{
p(1 −A) + (1 −B)[λn+ p(λ− 1)δn,p,k]

}
6 p(A−B). (1.3)

Then
p(1 − λ)fp,k(z) − λzf

′(z)

pf(z)
≺ 1 +Az

1 +Bz
(z ∈ U), (1.4)

where

fp,k(z) =
1
k

k−1∑
j=0

ε
jp
k f(ε

j
kz), εk = exp

(
2πi
k

)
(1.5)

and

δn,p,k =

{
0,

(
n+p
k /∈N

)
,

1,
(
n+p
k ∈N

)
.

(1.6)

Proof. The function fp,k in (1.5) can be expressed as

fp,k(z) = z
−p +

∞∑
n=p

δn,p,kanz
n (1.7)

with

δn,p,k =
1
k

k−1∑
j=0

ε
j(n+p)
k =

{
0
(
n+p
k /∈N

)
,

1
(
n+p
k ∈N

)
.

According to (1.1) and (1.6), we see that

pA−B[p(1 − λ)δn,p,k − λn] 6 −B[p− p(λ− 1)δn,p,k − λn] 6 0 (n > p). (1.8)

Let the inequality (1.3) hold. Then from (1.7) and (1.8), we deduce that∣∣∣∣∣∣
p(1−λ)fp,k(z)−λzf

′(z)
pf(z) − 1

A−B
p(1−λ)fp,k(z)−λzf ′(z)

pf(z)

∣∣∣∣∣∣ =
∣∣∣∣∣ −

∑∞
n=p[p(λ− 1)δn,p,k + λn+ p]anz

n+p

p(A−B) +
∑∞
n=p{pA−B[p(1 − λ)δn,p,k − λn]}anzn+p

∣∣∣∣∣
6

∑∞
n=p[p(λ− 1)δn,p,k + λn+ p]|an|

p(A−B) +
∑∞
n=p{pA−B[p(1 − λ)δn,p,k − λn]}|an|

6 1.

Hence, by the maximum modulus theorem, we have (1.4). The proof is completed.
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We now introduce the following two subclasses of Σp.

Definition 1.2. A function f ∈ Σp defined by (1.2) is said to be in the class Mp,k(λ,A,B) if and only if it
satisfies the coefficient inequality (1.3).

Definition 1.3. A function f ∈ Σp defined by (1.2) is said to be in the class Rp,k(λ,A,B) if and only if it
satisfies the coefficient inequality

∞∑
n=p

n{p(1 −A) + (1 −B)[λn+ p(λ− 1)δn,p,k]} 6 p
2(A−B).

For f ∈ Σp, we have

2z−p +
zf ′(z)

p
= z−p +

∞∑
n=p

n

p
anz

n,

which implies that

f ∈ Rp,k(λ,A,B) if and only if 2z−p +
zf ′(z)

p
∈Mp,k(λ,A,B). (1.9)

If we write

αn =
p(1 −A) + (1 −B)[λn+ p(λ− 1)δn,p,k]

p(A−B)
and βn =

n

p
αn (n > p), (1.10)

then it is easy to verify that

∂βn

∂λ
=
n

p

∂αn

∂λ
> 0,

∂βn

∂A
=
n

p

∂αn

∂A
< 0, and

∂βn

∂B
=
n

p

∂αn

∂B
> 0.

Thus, we obtain the following inclusion relations. If

1 6 λ0 6 λ, −1 6 B0 6 B < 0 B < A 6 −B, and A 6 A0 6 −B0,

then

Rp,k(λ,A,B)⊂Mp,k(λ,A,B) ⊂Mp,k(λ0,A0,B0) ⊂Mp,k(1, 1,−1) ⊆ S∗p=
{
f ∈ Σp : Re

zf ′(z)

f(z)
< 0, z ∈ U

}
.

Therefore, by Lemma 1.1, we see that each function in the classes Mp,k(λ,A,B) and Rp,k(λ,A,B) is
meromorphically p-valent starlike function. Meromorphic (and analytic) functions which are starlike
have been extensively investigated by several authors (see, e.g., [1–22] and the references therein). In this
paper we study some properties such as inclusion relation, integral transforms, and partial sums for the
above-defined classes Mp,k(λ,A,B) and Rp,k(λ,A,B).

2. Inclusion relation

In this section we shall generalize the above mentioned inclusion relation

Rp,k(λ,A,B) ⊂Mp,k(λ,A,B). (2.1)

Theorem 2.1. If −1 6 D 6 B, then

Rp,k(λ,A,B) ⊂Mp,k(λ,C(D),D),

where
C(D) = D+

(1 −D)(A−B)

1 −B
.

The number C(D) cannot be decreased for each D.
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Proof. Since −1 6 D 6 B < 0 and B < A 6 −B, we see that

D < C(D) 6 D−
2B(1 −D)

1 −B
6 −D.

Let f ∈ Rp,k(λ,A,B). In order to prove that f ∈Mp,k(λ,C(D),D), we need only to find the smallest C
(D < C 6 −D) such that

p(1 −C) + (1 −D)[λn+ p(λ− 1)δn,p,k]

p(C−D)
6
n{p(1 −A) + (1 −B)[λn+ p(λ− 1)δn,p,k]}

p2(A−B)
(2.2)

for all n > p, that is, that

(1 −D)[λn+ p+ p(λ− 1)δn,p,k]

p(C−D)
− 1 6

n

p

{
(1 −B)[λn+ p+ p(λ− 1)δn,p,k]

p(A−B)
− 1
}

. (2.3)

For n > p and n+p
k /∈N, (2.3) becomes

C > D+
1 −D

n(1−B)
p(A−B) −

n−p
λn+p

:= ϕ(n).

Noting that (1.1), a simple calculation shows that ϕ(n) (n > p) is decreasing in n. Therefore,

ϕ(n) 6

 ϕ(p+ 1),
(

2p
k ∈N

)
,

ϕ(p),
(

2p
k /∈N

)
.

For n > p and n+p
k ∈N, (2.3) is equivalent to

C > D+
1 −D

n(1−B)
p(A−B) −

n−p
λ(n+p)

:= ψ(n).

Also, ψ(n)(n > p) is decreasing in n. Thus

ψ(n) 6

 ψ(p),
(

2p
k ∈N

)
,

ψ
(
k
([

2p
k

]
+ 1
)
− p
)

,
(

2p
k /∈N

)
,

(2.4)

where [x] in (2.4) denotes the integer part of a given real number x. Consequently, by taking

C = ϕ(p) = ψ(p) = D+
(1 −D)(A−B)

1 −B
= C(D), (2.5)

it follows from (2.2) to (2.5) that f ∈Mp,k(λ,C(D),D). Furthermore, for 2p
k ∈ N and D < C0 < C(D), we

see that

1 −C0 + (2λ− 1)(1 −D)

C0 −D
· A−B

1 −A+ (2λ− 1)(1 −B)

>
1 −C(D) + (2λ− 1)(1 −D)

C(D) −D
· A−B

1 −A+ (2λ− 1)(1 −B)
= 1,

which implies that the function

f(z) = z−p +
A−B

1 −A+ (2λ− 1)(1 −B)
zp ∈ Rp,k(λ,A,B)



Y.-J. Liu, J.-L. Liu, J. Nonlinear Sci. Appl., 11 (2018), 228–236 232

is not in the class Mp,k(λ,C0,D). Also, for 2p
k /∈N and D < C0 < C(D), we have

1 −C0 + λ(1 −D)

C0 −D
· A−B

1 −A+ λ(1 −B)
>

1 −C0 + λ(1 −D)

C0 −D
· A−B

1 −A+ λ(1 −B)
= 1,

which implies that the function

f(z) = z−p +
A−B

1 −A+ λ(1 −B)
zp ∈ Rp,k(λ,A,B) (2.6)

is not in the class Mp,k(λ,C0,D). The proof of the theorem is completed.

Remark 2.2. Putting D = B in Theorem 2.1, we have the inclusion relation (2.1).

3. Integral transforms

Theorem 3.1. Let p < µ < p(2λ+ 1). Suppose that f ∈Mp,k(λ,A,B) and

Iµ(z) =
µ− p

zµ

∫z
0
tµ−1f(t)dt. (3.1)

Then Iµ ∈Mp,k(λ,C1(D),D), where −1 6 D 6 B and

C1(D) = D+
(λ+ 1)(µ− p)(A−B)(1 −D)

(λ+ 1)(µ+ p)(1 −B) − 2p(A−B)
.

The number C1(D) cannot be decreased for each D.

Proof. Since −1 6 D 6 B < 0, B < A 6 −B and p < µ < p(2λ+ 1), we can see that

D < C1(D) 6 D+
(λ+ 1)(µ− p)(A−B)(1 −D)

λ(µ+ p)(1 −B)
6 D−

2B(1 −D)

1 −B
6 −D.

For

f(z) = z−p +

∞∑
n=p

anz
n ∈Mp,k(λ,A,B),

it follows from (3.1) that

Iµ(z) = z
−p +

∞∑
n=p

µ− p

µ+n
anz

n. (3.2)

In order to prove that Iµ ∈Mp,k(λ,C1(D),D), we need only to find the smallest C (D < C 6 −D) such
that

p(1 −C) + (1 −D)[λn+ p(λ− 1)δn,p,k]

p(C−D)
· µ− p
µ+n

6
p(1 −A) + (1 −B)[λn+ p(λ− 1)δn,p,k]

p(A−B)
(3.3)

for all n > p.
For n > p and n+p

k /∈N, (3.3) becomes

C > D+
1 −D

(µ+n)(1−B)
(µ−p)(A−B) −

p(n+p)
(µ−p)(λn+p)

:= ϕ1(n).

It is easy to show that ϕ1(n) (n > p) is a decreasing function of n and so

ϕ1(n) 6

 ϕ1(p+ 1),
(

2p
k ∈N

)
,

ϕ1(p),
(

2p
k /∈N

)
.
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For n > p and n+p
k ∈N, (3.3) reduces to

C > D+
1 −D

(µ+n)(1−B)
(µ−p)(A−B) −

p
λ(µ−p)

:= ψ1(n)

and we have

ψ1(n) 6

 ψ1(p),
(

2p
k ∈N

)
,

ψ1

(
k
([

2p
k

]
+ 1
)
− p
)

,
(

2p
k /∈N

)
.

(3.4)

A simple calculation shows that ψ1(p) 6 ϕ1(p). Therefore, by taking

C = ϕ1(p) = C1(D),

it follows from (3.3) to (3.4) that Iµ ∈Mp,k(λ,C1(D),D).
Furthermore, the number C1(D) is best possible for the function defined by (2.6). The proof of the

theorem is completed.

Theorem 3.2. Let p < µ < p(2λ+ 1). Also let Iµ and C1(D) be the same as in Theorem 3.1. If f ∈ Rp,k(λ,A,B),
then Iµ ∈ Rp,k(λ,C1(D),D) and the number C1(D) cannot be decreased for each D.

Proof. By (3.2) we have

Iµ(z) =

(
z−p +

∞∑
n=p

µ− p

µ+n
zn

)
∗ f(z)

and so

2z−p +
z(Iµ(z))

′

p
=

(
z−p +

∞∑
n=p

µ− p

µ+n
zn

)
∗
(

2z−p +
zf ′(z)

p

)
. (3.5)

In view of (3.5) and (1.9), an application of Theorem 3.1 yields Theorem 3.2. The proof of the theorem is
completed.

4. Partial sums

In this section, we let f ∈ Σp be given by (1.2) and define the partial sums s1(z) and sm(z) by

s1(z) = z
−p and sm(z) = z−p +

p+m−2∑
n=p

anz
n (m ∈N \ {1}).

For simplicity we use the notation αn (n > p) defined by (1.10).

Theorem 4.1. Let p > 2 and 1 6 λ 6 p
p−1 . Suppose that f ∈Mp,k(λ,A,B). Then for m ∈N, we have

Re
f(z)

sm(z)
> 1 −

1
αp+m−1

(z ∈ U) (4.1)

and
Re
sm(z)

f(z)
>

αp+m−1

1 +αp+m−1
(z ∈ U). (4.2)

The bounds in (4.1) and (4.2) are sharp for each m.

Proof. In view of the assumptions of the theorem, we see that

αn =
p(1 −A) + (1 −B)[λn+ p(λ− 1)δn,p,k]

p(A−B)
>

2 −A−B

A−B
> 1 (4.3)

and

αn+1 = αn +
(1 −B)[λ+ p(λ− 1)(δn+1,p,k − δn,p,k)]

p(A−B)
> αn +

(1 −B)[λ− p(λ− 1)]
p(A−B)

> αn. (4.4)
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Let f ∈Mp,k(λ,A,B). Then it follows from (4.3) and (4.4) that

p+m−2∑
n=p

|an|+αp+m−1

∞∑
n=p+m−1

|an| 6
∞∑
n=p

αn|an| 6 1 (m ∈N \ {1}). (4.5)

If we put

p1(z) = 1 +αp+m−1

(
f(z)

sm(z)
− 1
)

for z ∈ U and m ∈N \ {1}, then p1(0) = 1 and we deduce from (4.5) that

∣∣∣∣p1(z) − 1
p1(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣ αp+m−1

∑∞
n=p+m−1 anz

n+p

2
(

1 +
∑p+m−2
n=p anzn+p

)
+αp+m−1

∑∞
n=p+m−1 anz

n+p

∣∣∣∣∣∣
6

αp+m−1
∑∞
n=p+m−1 |an|

2 − 2
∑p+m−2
n=p |an|−αp+m−1

∑∞
n=p+m−1 |an|

6 1.

This implies that Re p1(z) > 0 (z ∈ U), and so (4.1) holds for m ∈N \ {1}.
Similarly, by setting

p2(z) = (1 +αp+m−1)
sm(z)

f(z)
−αp+m−1,

it follows from (4.5) that

∣∣∣∣p2(z) − 1
p2(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣ −(1 +αp+m−1)

∑∞
n=p+m−1 anz

n+p

2
(

1 +
∑p+m−2
n=p anzn+p

)
+ (1 −αp+m−1)

∑∞
n=p+m−1 anz

n+p

∣∣∣∣∣∣
6

(1 +αp+m−1)
∑∞
n=p+m−1 |an|

2 − 2
∑p+m−2
n=p |an|− (αp+m−1 − 1)

∑∞
n=p+m−1 |an|

6 1.

Hence, we have (4.2) for m ∈N \ {1}.
For m = 1, replacing (4.5) by

αp

∞∑
n=p

|an| 6
∞∑
n=p

αn|an| 6 1

and proceeding as the above, we see that (4.1) and (4.2) are also true.
Furthermore, taking the function

f(z) = z−p +
zp+m−1

αp+m−1
∈Mp,k(λ,A,B),

we have sm(z) = z−p,

Re
f(z)

sm(z)
→ 1 −

1
αp+m−1

as z→ exp
(

πi

2p+m− 1

)
and

Re
sm(z)

f(z)
→

αp+m−1

1 +αp+m−1
as z→ 1.

The proof of the theorem is completed.
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Theorem 4.2. Let p > 2 and 1 6 λ 6 p
p−1 . Suppose that f ∈ Rp,k(λ,A,B). Then for m ∈N, we have

Re
f(z)

sm(z)
> 1 −

p

(p+m− 1)αp+m−1
(z ∈ U) (4.6)

and

Re
sm(z)

f(z)
>

(p+m− 1)αp+m−1

p+ (p+m− 1)αp+m−1
(z ∈ U). (4.7)

The bounds in (4.6) and (4.7) are sharp for the function

f(z) = z−p +
pzp+m−1

(p+m− 1)αp+m−1
∈ Rp,k(λ,A,B). (4.8)

Proof. According to the assumptions of the theorem, it follows from (4.3) and (4.4) that

p+m−2∑
n=p

|an|+
(p+m− 1)αp+m−1

p

∞∑
n=p+m−1

|an| 6
∞∑
n=p

n

p
αn|an| 6 1 (m ∈N \ {1}) (4.9)

and

αp

∞∑
n=p

|an| 6
∞∑
n=p

n

p
αn|an| 6 1. (4.10)

If we put

p1(z) = 1 +
(p+m− 1)αp+m−1

p

[
f(z)

sm(z)
− 1
]

and

p2(z) =

[
1 +

(p+m− 1)αp+m−1

p

]
sm(z)

f(z)
−

(p+m− 1)αp+m−1

p
,

then (4.9) and (4.10) lead to Re pj(z) > 0 (z ∈ U;m ∈N; j = 1, 2). The proof of the theorem is completed.

Theorem 4.3. Let p > 2 and 1 6 λ 6 p
p−1 . Suppose that f ∈ Rp,k(λ,A,B). Then for m ∈N, we have

Re
f ′(z)

s ′m(z)
> 1 −

1
αp+m−1

(z ∈ U) (4.11)

and

Re
s ′m(z)

f ′(z)
>

αp+m−1

1 +αp+m−1
(z ∈ U). (4.12)

The bounds in (4.11) and (4.12) are sharp.

Proof. By virtue of the assumptions of the theorem, it follows from (4.3) and (4.4) that

1
p

p+m−2∑
n=p

n|an|+
αp+m−1

p

∞∑
n=p+m−1

n|an| 6
∞∑
n=p

n

p
αn|an| 6 1 (m ∈N \ {1}) (4.13)

and
αp

p

∞∑
n=p

n|an| 6
∞∑
n=p

n

p
αn|an| 6 1. (4.14)
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By considering the functions

p1(z) = 1 +αp+m−1

(
f ′(z)

s ′m(z)
− 1
)

and p2(z) =
(
1 +αp+m−1

) s ′m(z)

f ′(z)
−αp+m−1,

we deduce from (4.13) and (4.14) that Re pj(z) > 0 (z ∈ U;m ∈ N; j = 1, 2). Thus (4.11) and (4.12) hold
true.

Furthermore, the bounds in (4.11) and (4.12) are best possible for the function defined by (4.8). The
proof of the theorem is completed.
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