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Abstract

This paper is devoted to investigating a class of stochastic nonlinear system with periodic coefficients. Some criteria on
existence and uniqueness of periodic solution are established for the stochastic nonlinear system. Finally, a numerical example
is given to show the effectiveness and merits of the present results.
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1. Introduction

During the past years, the theory and applications of stochastic differential equations have been de-
veloped very quickly, see e.g. [3, 11–13]. However, few results have been obtained in the direction of the
periodically stochastic differential equations. Till now, we only find that very few results for periodic solu-
tion of stochastic differential equations have been published in [5, 6, 19]. Recently, some results have been
established for the periodically stochastic differential equations. In [4] and [1], the authors studied the
existence of periodic solution of differential equations with random right sides. Xu et al. [17] considered
the following periodic stochastic functional differential equation (SFDE){

dx(t) = B(t, xt)dt+ σ(t, xt)dW(t), t > t0 > 0,
xt0(t0 + s) = φ(s) ∈ C, s ∈ [0, τ] (1.1)
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on the probability space (Ω,F, {Ft}t>0,P). By using the properties of periodic Markov processes, they
obtained some sufficient conditions for the existence of periodic solution of system (1.1). After that, when
the delay is unbounded in system (1.1), Li and Xu [9] also obtained the existence of periodic solution of
system (1.1). In [19], Zhang and Gopalsamy studied two n species stochastic population models with
periodic coefficients. Based on Lemma 2.3 (see e.g. [2]), some existence results of periodic solution
are obtained for the above system, but the conditions of Lemma 2.3 are very sharp. In [24], a class
of impulsive stochastic Nicholson’s blowflies model is investigated by applying Cauchy matrix. Under
proper conditions, the existence and exponential stability of square-mean almost periodic solutions for
the model with multiple nonlinear harvesting terms and delays.

For practical applications, we note that when designing the neural networks or in the implementation
of neural systems, stochastic perturbations are almost inevitable [10]. Hence, stochastic modeling is a
vital issue. Therefore, it is necessary to investigate effects of stochastic perturbations on the stability of
neural networks. Stability analysis of various stochastic neural networks with time delays has become an
attractive topic of research, see e.g. [14, 16, 22, 23]. In [8], the stability and stabilization were studied for
a class of stochastic systems with impulsive effects. In [15], the pth moment (p > 2) and the almost-sure
stability of stochastic Cohen-Grossberg neural networks with mixed time delays and nonlinear impulsive
effects were investigated through the Razumikhin type technique. Zhang et al. [21] studied a class of
stochastic neural networks with local impulsive effects. For deterministic neural network, see e.g. [18, 20].

One of our main objectives is to study a kind of stochastic nonlinear system and obtain the properties
of periodic solution for the above system. Firstly, an effective existence theorem for stochastic periodic
process is established. Then, some sufficient conditions for the uniqueness of periodic solution of nonlin-
ear system are given. To overcome the difficulties created by the special features possessed by the periodic
stochastic equations with delays, as one will see, several novel analysis methods are introduced. These
existence theorems are rather general and therefore have great power in applications.

The distinctive contributions of this paper are outlined as follows: (1) few results are obtained for
the existence and uniqueness of the periodic solutions of stochastic nonlinear system with activation
functions, novel analysis technique is developed since the conventional analysis tool no longer applies; (2)
we develop the methods in [17] and [9], our method for the proof of existence and uniqueness of periodic
solutions can more easily be understood; (3) the existence theorems of stochastic periodic solutions in this
paper are rather general and therefore have great power in applications.

The following sections are organized as follows. In Section 2, some useful Lemmas and Definitions are
given. In Section 3, sufficient conditions are established for existence and uniqueness of periodic solutions
of systems (3.1) and (3.9), respectively. In Section 4, an example is given to show the feasibility of our
results.

2. Preliminaries

In [7], Kolmanovskii and Myshkis have considered the existence of periodic solutions of the SFDEs of
Itô. The method of the shift and averaging of the initial distribution generating a solution with certain
properties was used. Particularly, they considered SRDE (stochastic retard differential equation) of the
form {

dx(t) = a(t, xt)dt+ b(t, xt)dξ(t), t > 0,
xt(θ) := x(t+ θ), − h 6 θ 6 0, x(t) ∈ Rn, ξ(t) ∈ Rl, (2.1)

with the initial condition
xt(θ) := φ(θ), − h 6 θ 6 0. (2.2)

Here ξ(t) is the standard Wiener process, the continuous functionals a(t,φ) and b(t,φ) are defined on
[0,∞)× C[−h, 0] and are T -periodic with respect to the first argument. The solution of system (2.1) for
t > 0 is determined by initial condition (2.2). Now we give some basic results for the periodic solutions
of the SFDEs of Itô.
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Definition 2.1 ([7]). T -periodic solution of (2.1) is a T -periodic stochastic process periodically connected
with ξ(t) and satisfying (2.1) with probability 1. The form means that all finite-dimensional distribu-
tions of the process (x(t),−ξ(τ) + ξ(s)), τ < s, are invariant with respect to all shifts of the arguments
by the quantity kT , where k is an arbitrary integer, i.e., that for any positive integers N,m and any
t1, . . . , tN, τ1, . . . , τm, s1, . . . , sm such that τi < si, i = 1, . . . ,m, the distribution of the probabilities of the
random variable (x(t1), . . . , x(tN), ξ(s1) − ξ(τ1), . . . , ξ(sm) − ξ(τm)) coincides with the distribution of the
probabilities of variable (x(t1 + kT), . . . , x(tN + kT), ξ(s1 + kT) − ξ(τ1 + kT), . . . , ξ(sm + kT) − ξ(τm + kT)).

Theorem 2.2 ([7]). Assume that the the coefficients of system (2.1) satisfy the assumptions

|a(t,φ)|2 6 q1 +

∫ 0

−h
|φ(s)|2dk1(s), |b(t,φ)|2 6 q2 +

∫ 0

−h
|φ(s)|2dk2(s),

where q1 and q2 are some positive constants, and k1(s) and k2(s) are scalar non-decreasing functions on [−h, 0].
Let, further on, a solution x(t,φ) of (2.1) and (2.2) exists such that for s1, s2 ∈ [−h, 0],

E|x(s1) − x(s2)|
ε1 6 C|s1 − s2|

1+ε2 ,

where E is mathematical expectation, ε1, ε2 and C are positive constants, and for t > 0 the second moment is
bounded:

E|x(t,φ)|2 6 C <∞.

Then there exists a T -periodic solution of system (2.1).

Lemma 2.3 ([7]). Let the continuous scalar functions z(t) and f(t), t > 0 satisfy for some constant C and for any
t1, t2 : t2 > t1 > 0 the inequality

z(t2) − z(t1) 6 −C

∫t2

t1

z(s)ds+

∫t2

t1

f(s)ds.

Then

z(t) 6 z(0)e−Ct +
∫t

0
e−C(t−s)f(s)ds.

Lemma 2.4 ([7]). Let the continuous non-negative function x(t) satisfies for some constants Ci the inequality

x(t) 6 C1 +C2

∫t
0
e−C3(t−s)x(s)ds.

Then, if C3 > C2, then x(t) 6 C3C1(C3 −C2)
−1.

Remark 2.5. Theorem 2.2 shows that the boundedness of the moments of some solution implies the ex-
istence of a periodic solution. In relation to Theorem 2.2 we shall note that for determinate equation of
the form (2.1) for b = 0 the existence of a bounded solution does not imply the existence of a periodic
solution.

3. Existence and stability of periodic solutions

In this section, we consider a stochastic nonlinear system
dxi(t) = [−ai(t)xi(t) +

∑n
j=1 aij(t)fi(xi(t)) +

∑n
j=1 dij(t)gi(xi(t− τ))]dt

+σi(t, xi(t), xi(t− τ))dξi(t),
xit(θ) = φi(θ), θ ∈ [−h, 0], i = 1, 2, . . . ,n,

(3.1)

where t > 0, φi(θ) ∈ C([−h, 0], R), 0 < τ 6 h, xi(t) is the state of the system, fi(xi(t)) and gi(xi(t− τ))
are the activation functions, ai(t) > 0 shows the rate of change for the state x(t), τ represents the trans-
mission delay, and ξ(t) = (ξ1(t), . . . , ξn(t))> is the standard Wiener process. We assume that ai(t),aij(t)
and dij(t) are defined on [0,∞), are T -periodic and continuous functions. Assume that the following
conditions hold.
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(H1) For i = 1, 2, . . . ,n, there exist positive constants q1i and q2i such that

|gi(xi(t− τ))|
2 6 q1i +

∫ 0

−h
|φi(s)|

2dk1i(s), |σi(t, xi(t), xi(t− τ))|2 6 q2i +

∫ 0

−h
|φi(s)|

2dk2i(s),

where k1i(s) and k2i(s) are scalar non-decreasing bounded functions on [−h, 0].
(H2) For i = 1, 2, . . . ,n, t > 0, we have

n∑
j=1

aij(t) > 0, xi(t)fi(xi(t)) 6 0.

(H2)∗ For i = 1, 2, . . . ,n, t > 0, we have

n∑
j=1

aij(t) 6 0, xi(t)fi(xi(t)) > 0.

Theorem 3.1. Let the assumptions (H1) and (H2) hold. Furthermore, the following inequality holds:

γ1i = inf
t>0

[
ai(t) −α

1/2
01

n∑
j=1

|dij(t)|/2 −α
1/2
01 /2 −α02/2

]
> 0,

where j = 1, . . . ,n, α0j =
∫0
−h dkji(s), j = 1, 2, 3, and k1i and k2i are scalar non-decreasing functions bounded

on [−h, 0]. Then there exists a T -periodic solution of (3.1).

Proof. Let

k3i = α
−1/2
01

n∑
j=1

dij(s)k1i(s) + k2i(s), i = 1, 2, . . . ,n.

For i = 1, 2, . . . ,n, consider the following functional on the trajectories of (3.1):

V(t, xit) = x2
i(t) +

∫ 0

−h
dk3i(s)

∫t
t+s

x2
i(τ)dτ, (3.2)

where xit(θ) = xi(t+ θ), θ ∈ [−h, 0]. From Itô’s formula, (H2), (3.1), and (3.2), we have

dV(t, xit)

=

[
σ2
i(t, xi(t), xi(t− τ)) +

(
− ai(t)xi(t) +

n∑
j=1

aij(t)fi(xi(t)) +

n∑
j=1

dij(t)gi(xi(t− τ))

)
2xi(t)

+ x2
i(t)(
√
α01 +α02) −

∫ 0

−h
x2
i(t+ s)dk3i(s)

]
dt+ 2xi(t)σi(t, xi(t), xi(t− τ))dξi(t)

6

[
σ2
i(t, xi(t), xi(t− τ)) + 2

n∑
j=1

dij(t)xi(t)gi(xi(t− τ))

+ x2
i(t)(
√
α01 +α02 − 2ai(t)) −

∫ 0

−h
x2
i(t+ s)dk3i(s)

]
dt+ 2xi(t)σi(t, xi(t), xi(t− τ))dξi(t).

(3.3)

We shall transform the separate addends in (3.3). In view of (H1), considering the term

2xi(t)
n∑
j=1

dij(t)gi(xi(t− τ)),
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we have

2|xi(t)
n∑
j=1

dij(t)gi(xi(t− τ))|

6 α1/2
01

n∑
j=1

|dij(t)|x
2
i(t) +α

−1/2
01

n∑
j=1

|dij(t)|g
2
i(xi(t− τ))

6 α1/2
01

n∑
j=1

|dij(t)|x
2
i(t) +α

−1/2
01

n∑
j=1

|dij(t)|

(
q1i +

∫ 0

−h
|φi(s)|

2dk1i(s)

)

= α
1/2
01

n∑
j=1

|dij(t)|x
2
i(t) +α

−1/2
01

n∑
j=1

|dij(t)|

(
q1i +

∫ 0

−h
|xit(s)|

2dk1i(s)

)

= α
1/2
01

n∑
j=1

|dij(t)|x
2
i(t) +α

−1/2
01

n∑
j=1

|dij(t)|

(
q1i +

∫ 0

−h
|xi(t+ s)|

2dk1i(s)

)

6 α1/2
01

n∑
j=1

|dij(t)|x
2
i(t) +α

−1/2
01

n∑
j=1

|dij(t)|q1i +α
−1/2
01

n∑
j=1

|dij(t)|

∫ 0

−h
|xi(t+ s)|

2dk1i(s)

(3.4)

and

σ2
i(t, xi(t), xi(t− τ)) 6 q2i +

∫ 0

−h
|φi(s)|

2dk2i(s)

= q2i +

∫ 0

−h
|xit(s)|

2dk2i(s) 6 q2i +

∫ 0

−h
|xi(t+ s)|

2dk2i(s), i = 1, . . . ,n,
(3.5)

where xit(s) := φi(s), − h 6 s 6 0. In view of (3.3)-(3.5), we have

dV(t, xit) 6 −2γ1ix
2
i(t)dt+C1idt+ 2xi(t)σi(t, xi(t), xi(t− τ))dξi(t), (3.6)

where

γ1i = inf
t>0

[ai(t) −α
1/2
01

n∑
j=1

|dij(t)|/2 −α
1/2
01 /2 −α02/2] > 0, i = 1, . . . ,n,

C1i = q2i + q1iα
−1/2
01 sup

t>0
{

n∑
j=1

|dij(t)|}, i = 1, . . . ,n.

For t2 > t1 > 0, integrating the both sides of (3.6) from t1 to t2, and taking the mathematical expectation,
we have

Ex2
i(t2) − Ex2

i(t1) 6 −γ2i

∫t2

t1

Ex2
i(t)dt+C1i(t2 − t1) +

∫t2

t1

dt

∫ 0

−h
Ex2
i(t+ s)dk3i(s), (3.7)

where γ2i = 2γ1i +α03. From (3.7) and Lemma 2.3, we have

Ex2
i(t) 6 C2i +

∫t
0
dτ

∫ 0

−h
Ex2
i(τ+ s)zi(t− τ)dk3i(s),

where C2i = C1i/γ2i + Ex2
i(0), zi(t− τ) = e−γ2i(t−τ). Denote by νi a function such that νi(t) = 0 for

t < 0 and νi(t) = 1 for t > 0 and set

Γi(τ) = sup
06t6τ

Ex2
i(t), i = 1, . . . ,n.
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Note that∫t
0
dτ

∫ 0

−h
Ex2
i(τ+ s)zi(t− τ)dk3i(s) =

∫t
0
dτ

∫ 0

−h
Eφ2

i(τ+ s)zi(t− τ)[1 − νi(s+ τ)]dk3i(s)

+

∫t
0
dτ

∫ 0

−h
Ex2
i(τ+ s)zi(t− τ)νi(s+ τ)dk3i(s)

6
∫h

0
dτ

∫ 0

−h
Eφ2

i(τ+ s)zi(t− τ)[1 − νi(s+ τ)]dk3i(s)

+α03

∫t
0
Γi(τ)zi(t− τ)dτ.

Hence

Ex2
i(t) 6 C3i +α03

∫t
0
Γi(τ)zi(t− τ)dτ

and

C3i > C2i +

∫h
0
dτ

∫ 0

−h
Eφ2

i(τ+ s)zi(t− τ)[1 − νi(s+ τ)]dk3i(s).

Note that ∫t
0
Γi(τ)zi(t− τ)dτ =

1
γ2i

(1 − zi(t))γ2i(0) +
1
γ2i

∫t
0
(1 − zi(t− τ))dΓi(τ).

Thus,

Γi(t) 6 C3i +α03

∫t
0
Γi(τ)zi(t− τ)dτ. (3.8)

In view of (3.8), γ2i > α03, and Lemma 2.4, we have

Γi(t) 6 γ2i +
γ2iC3i

γ2i −α03
:= Ci, i = 1, . . . ,n,

and
Ex2
i(t) 6 Ci, i = 1, . . . ,n.

Thus,

Ex2(t) 6
n∑
i=1

Ci.

By Theorem 2.2, there exists a T -periodic solution of system (3.1).

From the proof of Theorem 3.1, we have the following corollary.

Corollary 3.2. Let the assumptions (H1) and (H2)∗ hold. Furthermore, the following inequality holds:

γ1i = inf
t>0

[
ai(t) −α

1/2
01

n∑
j=1

|dij(t)|/2 −α
1/2
01 /2 −α02/2

]
> 0,

where α0j =
∫0
−h dkji(s), j = 1, 2, 3, and k1i and k2i are scalar non-decreasing functions bounded on [−h, 0].

Then there exists a T -periodic solution of (3.1).

Remark 3.3. Compared with the methods in [17] and [9], our methods are easier than ones in the above
two papers. In fact, in order to obtain existence of periodic solution for system (1.1), they obtained the
following lemma.
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Lemma 3.4. A sufficient condition for the existence of an ω-periodic Markov process with a given ω-periodic
transition function p(v, xv, t,A) is that for some t0, φ, xt are uniformly stochastically continuous and

lim
r→∞ lim

T→∞
∫t0+T

t0

p(t0,φ, Ūr)dt = 0,

provided the transition function p(v, xv, t,A) satisfies the following not very restrictive assumption that

α(r) = sup
φ∈Uβ(r),0<t0,t−t0<ω

p(t0,φ, Ūr)→ 0 as r→∞
for some function β(r) which tends to infinity as r→∞.

However, it is very difficult for obtaining the existence of an ω-periodic Markov process by using
Lemma 3.4. In the present paper, by using some inequalities lemmas (Lemma 2.3 and 2.4) and some
mathematic analysis techniques we can easily obtain existence results of periodic solutions for neural
networks system.

When the initial values in (3.1) are unbounded, we can formulate conditions for the unique existence
of periodic solution of the form

dxi(t) = [−ai(t)xi(t) +
∑n
j=1 aij(t)fi(xi(t)) +

∑n
j=1 dij(t)gi(xi(t− γ))]dt

+σi(t, xi(t), xi(t− γ))dξi(t), t > 0, γ ∈ (−∞, 0],
xi(θ) = φi(θ), θ ∈ (−∞, 0], i = 1, 2, . . . ,n.

(3.9)

We shall say that the T -periodic solution of (3.9) is unique if for any two T -periodic solution of this system
x(t) = (x1(t), . . . , xn(t))> and y(t) = (y1(t), . . . ,yn(t))> such that E|x(t)|2 6 C <∞ and E|y(t)|2 6 C <∞,
and for all t the following relations holds

Pi(xi(t) = yi(t)) = 1, i = 1, . . . ,n.

We need the following assumptions.

(H3) For i = 1, . . . ,n, assume ai(t) such that the solution zi(t, s) of homogeneous equation x ′i(t) =
−ai(t)xi(t) satisfies the following estimate

|zi(t, s)| 6 e−λ(t−s), λ > 0, i = 1, . . . ,n.

(H4) There exist li > 0 such that

|fj(xj(t)) − fj(yj(t))| 6 li, i = 1, . . . ,n.

(H5) For i = 1, 2, . . . ,n,

|gi(yi(t− τ)) − gi(xi(t− τ))|
2 6
∫ 0

−∞ |φi(s) −ψi(s)|
2dk1i(s) − li,

|σi(t,yi(t),yi(t− τ)) − σi(t, xi(t), xi(t− τ))|2 6
∫ 0

−∞ |φi(s) −ψi(s)|
2dk2i(s),

where li is defined by (H3), and k1i and k2i are scalar non-decreasing bounded on (−∞, 0] functions.

Theorem 3.5. Let the coefficients of (3.9) satisfy the conditions of Theorem 3.1 and assumptions (H3)-(H5) hold.
Then there exists unique T -periodic solution of (3.9).
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Proof. Assume that (3.9) has two T -periodic solution x(t) and y(t) satisfying initial condition φ(t) =
(φ1(t), . . . ,φn(t))> and ψ(t) = (ψ1(t), . . . ,ψn(t))>, respectively. Assume further that x(t) and y(t) satisfy
E|x(t)|2 6 C <∞ and E|y(t)|2 6 C <∞. Let ui(t) = yi(t) − xi(t), i = 1, . . . ,n satisfies the relation

ui(t) = zi(t, s)ui(s) +
∫t
s

zi(t, τ)
[ n∑
j=1

aij(τ)fi(yi(τ)) +

n∑
j=1

dij(τ)gi(yi(τ− γ))

−

n∑
j=1

aij(τ)fi(xi(τ)) −

n∑
j=1

dij(τ)gi(xi(τ− γ))

]
dτ

+

∫t
s

zi(t, τ)[σi(τ,yi(t),yi(τ− γ)) − σi(τ, xi(τ), xi(τ− γ))]dξi(τ).

Then for any positive constants ε and ε1, we have

E|ui(t)|
2 6 (1 + ε−1)|zi(t, s)|2E|ui(s)|

2 + (1 + ε)

[
(1 + ε1)

∫t
s

|zi(t, τ1)|dτ1

∫t
s

|zi(t, τ)|

×E|

n∑
j=1

aij(τ)fi(yi(τ)) +

n∑
j=1

dij(τ)gi(yi(τ− γ))

−

n∑
j=1

aij(τ)fi(xi(τ)) −

n∑
j=1

dij(τ)gi(xi(τ− γ))|
2dτ

+ (1 + ε−1
1 )

∫t
s

|zi(t, τ)|2E|σi(τ,yi(t),yi(τ− γ)) − σi(τ, xi(τ), xi(τ− γ))|2dτ
]

.

Let s→ −∞ in the above inequality, by (H3)-(H5), we get

E|ui(t)|
2 6 (1 + ε)[(1 + ε1)λ

−2α01 + (1 + ε−1
1 )(2λ)−1α02]fi(t), (3.10)

where fi(t) = sups6tE|ui(s)|
2. Obviously, when ε1 = (λα02)

1/2(2α01)
11/2, we have the minimum of the

righthand side of (3.10). Thus,

fi(t) 6 (1 + ε)[λ−1α
1/2
01 + (2λ)−1α

1/2
02 ]2f(t), i = 1, . . . ,n. (3.11)

Let
ν = λ−1α

1/2
01 + (2λ)−1α

1/2
02 < 1.

Then we choose ε > 0 such that (1 + ε)ν < 1. By (3.11) we have P(xi(t) = yi(t)) = 1 for all t and
i = 1, 2, . . . ,n. Hence P(x(t) = y(t)) = 1. The proof is completed.

Remark 3.6. In [7], the authors studied the uniqueness of periodic solution for equations containing linear
terms A(t)x(t) of the form{

dx(t) = [A(t)x(t) + a(t, xt)]dt+ b(t, xt)dξ(t), t > 0,
xt(θ) = x(t+ θ), θ 6 0, x(t) ∈ Rn, ξ(t) ∈∈ Rl, (3.12)

where A(t) is a matrix with continuous T -periodic entries such that the fundamental matrix Z(t, s) of the
homogeneous equation x ′(t) = A(t)x(t) satisfies for some constant λ > 0 the estimate

Z(t, s) 6 e−λ(t−s).

Under the conditions

|a(t,φ) − a(t,ψ)|2 6
∫ 0

−∞ |φ(s) −ψ(s)|2dk1(s), |b(t,φ) − b(t,ψ)|2 6
∫ 0

−∞ |φ(s) −ψ(s)|2dk2(s),

then (3.12) has unique T -periodic solution. The proof of Theorem 3.5 is similar to the proof in [7]. It is
worth pointing out that assumptions (H4) and (H5) are different from the conditions in [7] in order to
obtain unique periodic solution.
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4. Numerical example

In order to verify the feasibility of our results, we examine the existence of periodic solutions for the
following stochastic nonlinear system:

dx1(t) = −a1(t) +

2∑
j=1

a1j(t)f(x1(t)) +

n∑
j=1

d1j(t)g1(x1(t− γ))dt

+ σ1(t, x1(t), x1(t− γ))dξ1(t),

dx2(t) = −a2(t) +

2∑
j=1

a2j(t)f(x2(t)) +

n∑
j=1

d2j(t)g2(x2(t− γ))dt

+ σ2(t, x2(t), x2(t− γ))dξ2(t), t > 0, γ ∈ [−1, 0],
xi(θ) = φi(θ), θ ∈ [−1, 0], i = 1, 2,

(4.1)

where

ai(t) = 20 + sin t, aij(t) = dij(t) = 2 + sin t,

fi(xi(t)) = −x3
i(t) − xi(t), gi(xi(t− γ)) = sin(xi(t− γ)), σi(t, xi(t), xi(t− γ)) =

1
2

cos t.

Obviously,
∑2
j=1 a1j(t) =

∑2
j=1 a2j(t) = 4 + 2 sin t > 0 and xifi(xi) = −x4

i − x
2
i 6 0, hence assumption

(H2) holds. Choosing ki(s) = s, i = 1, 2, we have

α01 = α02 =

∫ 0

−1
dk1(s) = 1

and

γ1 = inf
t>0

[
a1(t) −α

1/2
01

n∑
j=1

|dij(t)|/2 −α01/2 −α02/2
]
= 18 −

√
6

2
> 0.

Then we can choose proper q1,q2 and initial function φ in order to other conditions of Theorem 3.1 satisfy.
It follows from Theorem 3.1 that system (4.1) exists a periodic solution.

The numerical simulations of system (4.1) are shown in Fig. 1. Fig. 1 shows the state trajectories of
periodic solution x(t) = (x1(t), x2(t))

> for system (4.1).
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Figure 1: The States’ evolution of the system (4.1).
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5. Conclusion

In this paper, novel results for existence and uniqueness of periodic solutions for a class of stochastic
nonlinear system are obtained. As Kolmanovskii and Myshkis [7] pointed out that the proof of existence
theorems of periodic solutions of stochastic equations with delays is similar to the proof of existence
theorems of stationary solutions, the modifications arising are due to the fact that the distribution of
probabilities of periodic solutions must be invariant with respect to shifts of argument by quantities
multiple to the period while for the stationary solutions it is invariant with respect to arbitrary shifts
of the argument. That is why in this paper we shall give some coefficient conditions for the existence of
periodic solutions. At last, we provide a numerical example to illustrate the effectiveness of the theoretical
results.
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