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Abstract
By employing Krasnoselskii’s fixed point theorem, we establish the existence of nonoscillatory solutions to a class of third-

order neutral functional dynamic equations on time scales. In addition, the significance of the results is illustrated by three
examples.
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1. Introduction

Let R denote the set of real numbers and let T be a time scale which is a nonempty closed subset
of R with the topology and ordering inherited from R. More details on time scale theory can be found
in [1, 4, 7, 8, 15, 16]. Analysis of the oscillatory and nonoscillatory behavior of solutions to various
classes of third-order dynamic equations has always attracted interest of researchers; see, for instance,
[2, 3, 5, 6, 13, 14, 18, 22]. We remark that there has been some research achievement about the existence
of oscillatory and nonoscillatory solutions to neutral dynamic equations on time scales; see the papers
[10, 12, 17, 19–21, 23, 24] and the references cited therein.

Some significative results for existence of nonoscillatory solutions to neutral functional differential
equations were given in [9, 11]. Afterwards, some open problems were presented in the paper by Mathsen
et al. [19]. Zhu and Wang [24] discussed the existence of nonoscillatory solutions to a first-order nonlinear
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neutral dynamic equation

[x(t) + p(t)x (g(t))]∆ + f (t, x (h(t))) = 0

on a time scale T. Gao and Wang [12] investigated a second-order nonlinear neutral dynamic equation[
r(t)(x(t) + p(t)x (g(t)))∆

]∆
+ f (t, x (h(t))) = 0 (1.1)

under the condition
∫∞
t0

1/r(t)∆t < ∞, whereas Deng and Wang [10] studied the same problem of (1.1)
under another condition

∫∞
t0

1/r(t)∆t = ∞. Inspired by [10], Qiu [20] considered a third-order nonlinear
neutral functional dynamic equation(

r1(t)
(
r2(t) (x(t) + p(t)x(g(t)))

∆
)∆)∆

+ f(t, x(h(t))) = 0 (1.2)

assuming that
∫∞
t0

1/r1(t)∆t =
∫∞
t0

1/r2(t)∆t =∞. Qiu and Wang [21] studied (1.2) in the case where∫∞
t0

∆t

r1(t)
<∞ and

∫∞
t0

∆t

r2(t)
<∞.

As a matter of fact, the study of dynamic behaviors of the nonoscillatory solutions to (1.2) is difficult
because of the diverse cases of convergence or divergence of the integrals

∫∞
t0

1/r1(t)∆t and
∫∞
t0

1/r2(t)∆t.
Qiu et al. [23] analyzed (1.2) under the assumptions that∫∞

t0

∆t

r1(t)
=∞ and

∫∞
t0

∆t

r2(t)
=M0 <∞.

In this paper, we further consider (1.2) on a time scale T satisfying sup T = ∞, where t ∈ [t0,∞)T =
[t0,∞)∩T with t0 ∈ T. The motivation originates from [10, 12, 20, 23, 24]. We shall establish the existence
of nonoscillatory solutions to (1.2) by employing Krasnoselskii’s fixed point theorem, and we will give
three examples to show the versatility of the results. Throughout this paper, we assume that

(C1) r1, r2 ∈ Crd([t0,∞)T, (0,∞)) and there exists a constant M0 > 0 such that∫∞
t0

∆t

r1(t)
=M0 <∞ and

∫∞
t0

∆t

r2(t)
=∞;

(C2) p ∈ Crd([t0,∞)T, R) and there exists a constant p0 with |p0| < 1 such that limt→∞ p(t) = p0;
(C3) g,h ∈ Crd([t0,∞)T, T), g(t) 6 t, limt→∞ g(t) = limt→∞ h(t) =∞, and

lim
t→∞ R(g(t))R(t)

= η ∈ (0, 1],

where

R(t) = 1 +

∫t
t0

∆s

r2(s)
;

if p0 ∈ (−1, 0], then there exists a sequence {ck}k>0 such that limk→∞ ck =∞ and g(ck+1) = ck;
(C4) f ∈ C([t0,∞)T ×R, R), f(t, x) is nondecreasing in x, and xf(t, x) > 0 for x 6= 0.

Definition 1.1. A solution x of (1.2) is termed eventually positive (or eventually negative) if there exists a
c ∈ T such that x(t) > 0 (or x(t) < 0) for all t > c in T. A solution x of (1.2) is called nonoscillatory if it is
either eventually positive or eventually negative; otherwise, it is oscillatory.
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2. Auxiliary results

Let C([T0,∞)T, R) denote all continuous functions mapping [T0,∞)T into R. For λ = 0, 1, define

BCλ[T0,∞)T =

{
x : x ∈ C([T0,∞)T, R) and sup

t∈[T0,∞)T

∣∣∣∣ x(t)R2λ(t)

∣∣∣∣ <∞
}

. (2.1)

Endowing BCλ[T0,∞)T with the norm ‖x‖λ=supt∈[T0,∞)T

∣∣x(t)/R2λ(t)
∣∣, it is clear that (BCλ[T0,∞)T, ‖ · ‖λ)

is a Banach space.

Lemma 2.1 ([24, Lemma 4]). Assume that X ⊆ BCλ[T0,∞)T is bounded and uniformly Cauchy. Furthermore,
suppose that X is equi-continuous on [T0, T1]T for any T1 ∈ [T0,∞)T. Then X is relatively compact.

Lemma 2.2 ([9, Krasnoselskii’s fixed point theorem]). Suppose that X is a Banach space and Ω is a bounded,
convex, and closed subset of X. Assume further that there exist two operators U,S : Ω→ X such that

(i) Ux+ Sy ∈ Ω for all x,y ∈ Ω;
(ii) U is a contraction mapping;

(iii) S is completely continuous.

Then U+ S has a fixed point in Ω.

Without loss of generality, we mainly consider eventually positive solutions of (1.2) in the sequel.
Letting

z(t) = x(t) + p(t)x(g(t)), (2.2)

we have the following lemma; its proof is similar to that of [10, Lemma 2.3], and so is omitted.

Lemma 2.3. Assume that x is an eventually positive solution of (1.2) and limt→∞ z(t)/Rλ(t) = a for λ = 0, 1.

(i) If a is finite, then

lim
t→∞ x(t)

Rλ(t)
=

a

1 + p0ηλ
.

(ii) If a is infinite, then x/Rλ is unbounded, or

lim sup
t→∞

x(t)

Rλ(t)
=∞.

Let S denote the set of all eventually positive solutions of (1.2) and

A(α,β) =
{
x ∈ S : lim

t→∞ x(t) = α, lim
t→∞ x(t)R(t)

= β

}
.

The following theorem is established for a classification scheme of eventually positive solutions to (1.2).

Theorem 2.4. If x is an eventually positive solution of (1.2), then x belongs to A(0, 0), A(b, 0), A(∞,b) for some
positive constant b, or x is infinite with limt→∞ x(t)/R(t) = 0.

Proof. Suppose that x is an eventually positive solution of (1.2). From (C2) and (C3), there exist a t1 ∈
[t0,∞)T and |p0| < p1 < 1 such that x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, and |p(t)| 6 p1 for t ∈ [t1,∞)T. By
(1.2) and (C4), it follows that for t ∈ [t1,∞)T,(

r1(t)
(
r2(t)z

∆(t)
)∆)∆

= −f(t, x(h(t))) < 0.

Hence, r1(t)
(
r2(t)z

∆(t)
)∆ is strictly decreasing on [t1,∞)T. Then there are two cases to be considered.
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Case 1. r1
(
r2z
∆
)∆ and

(
r2z
∆
)∆ are eventually negative. It implies that there exists a t2 ∈ [t1,∞)T such

that r2(t)z
∆(t) is strictly decreasing on [t2,∞)T. We claim that

lim
t→∞ r2(t)z

∆(t) = L1, (2.3)

where 0 6 L1 < ∞. If not, then there exist a constant c < 0 and a t3 ∈ [t2,∞)T such that r2(t)z
∆(t) 6 c

for t ∈ [t3,∞)T, which means that

z∆(t) 6
c

r2(t)
, t ∈ [t3,∞)T. (2.4)

Letting t be replaced by s and integrating (2.4) from t3 to t, t ∈ [σ(t3),∞)T, we obtain

z(t) 6 z(t3) + c

∫t
t3

∆s

r2(s)
.

Letting t → ∞, by (C1) we have z(t) → −∞. From (2.2), it follows that p0 ∈ (−1, 0], and there exists a
t4 ∈ [t3,∞)T such that z(t) < 0 or

x(t) < −p(t)x(g(t)) 6 p1x(g(t)), t ∈ [t4,∞)T.

By (C3), we can choose some positive integer k0 such that ck ∈ [t4,∞)T for all k > k0. Then for any
k > k0 + 1, we have

x(ck) < p1x(g(ck)) = p1x(ck−1) < p
2
1x(g(ck−1)) = p

2
1x(ck−2) < · · · < pk−k0

1 x(g(ck0+1)) = p
k−k0
1 x(ck0).

This inequality implies that limk→∞ x(ck) = 0. It follows from (2.2) that limk→∞ z(ck) = 0, which contra-
dicts limt→∞ z(t) = −∞. So (2.3) holds, and we conclude that r2z

∆ and z∆ are eventually positive.
If limt→∞ r2(t)z

∆(t) = b for some positive constant b, then for t ∈ [t2,∞)T, we have r2(t)z
∆(t) > b, or

z∆(t) >
b

r2(t)
. (2.5)

Substituting s for t and integrating (2.5) from t2 to t, t ∈ [σ(t2),∞)T, we obtain

z(t) > z(t2) + b

∫t
t2

∆s

r2(s)
.

Letting t→∞, by (C1) we have z(t)→∞.
Suppose that limt→∞ r2(t)z

∆(t) = 0. Since z∆ is eventually positive, there exists a t5 ∈ [t2,∞)T

such that z(t) is strictly increasing on [t5,∞)T. Assume that limt→∞ z(t) < 0. Similarly, it will cause a
contradiction as before. Therefore,

lim
t→∞ z(t) = L0,

where 0 6 L0 6∞.

Case 2. r1
(
r2z
∆
)∆ and

(
r2z
∆
)∆ are eventually positive. It implies that there exists a t2 ∈ [t1,∞)T such

that r2(t)z
∆(t) is strictly increasing on [t2,∞)T. Then we also have two cases: r2z

∆ is either eventually
positive or eventually negative.

Assume first that r2z
∆ is eventually positive. Since r1(t)

(
r2(t)z

∆(t)
)∆ is eventually positive and strictly

decreasing on [t1,∞)T, there exist a constant M > 0 and a t3 ∈ [t2,∞)T such that r1(t)
(
r2(t)z

∆(t)
)∆

6M
or (

r2(t)z
∆(t)

)∆
6

M

r1(t)
(2.6)
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for t ∈ [t3,∞)T. Letting t be replaced by s and integrating (2.6) from t3 to t, t ∈ [σ(t3),∞)T, we obtain

r2(t)z
∆(t) 6 r2(t3)z

∆(t3) +M

∫t
t3

∆s

r1(s)
< r2(t3)z

∆(t3) +M ·M0,

which implies that r2z
∆ is upper bounded. Hence, limt→∞ r2(t)z

∆(t) = b for some positive constant b.
Then, there exists a t4 ∈ [t3,∞)T such that r2(t)z

∆(t) > b/2 or

z∆(t) >
b

2r2(t)
(2.7)

for t ∈ [t4,∞)T. Letting t be replaced by s and integrating (2.7) from t4 to t, t ∈ [σ(t4),∞)T, we get

z(t) > z(t4) +
b

2

∫t
t4

∆s

r2(s)
.

Letting t→∞, by (C1) we have z(t)→∞.
Assume now that r2z

∆ is eventually negative. Since r2(t)z
∆(t) is strictly increasing on [t2,∞)T, we

have
−∞ < lim

t→∞ r2(t)z
∆(t) 6 0.

Suppose that there exists a constant d < 0 such that limt→∞ r2(t)z
∆(t) = d. Then we have r2(t)z

∆(t) < d
for t ∈ [t2,∞)T. Similarly, it will cause a contradiction as before. Hence, limt→∞ r2(t)z

∆(t) = 0 and
we have r2(t)z

∆(t) < 0 and z∆(t) < 0 for t ∈ [t2,∞)T. We claim that 0 6 limt→∞ z(t) = L0 < ∞. If
−∞ 6 L0 < 0, then it will also cause a contradiction as before. Therefore, L0 = b for some positive
constant b, or L0 = 0.

It follows from L’Hôpital’s rule (see [7, Theorem 1.120]) and (2.3) that

lim
t→∞ r2(t)z

∆(t) = lim
t→∞ z(t)R(t)

= L1.

To sum up, by Lemma 2.3, we see that x belongs to A(0, 0), A(b, 0), A(∞,b) for some positive constant
b, or x is infinite with limt→∞ x(t)/R(t) = 0. The proof is complete.

3. Main results

In this section, by employing Krasnoselskii’s fixed point theorem, we establish the existence criteria
for each type of eventually positive solutions to (1.2).

Theorem 3.1. Equation (1.2) has an eventually positive solution inA(∞,b) if and only if there exists some constant
K > 0 such that ∫∞

t0

∫s
t0

f(u,KR(h(u)))
r1(s)

∆u∆s <∞, (3.1)

where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.2) in A(∞,b), that is,

lim
t→∞ x(t) =∞, lim

t→∞ x(t)R(t)
= b. (3.2)

Assume that limt→∞ z(t) < ∞. By Lemma 2.3, we have limt→∞ x(t) < ∞, which contradicts (3.2). Then
we have

lim
t→∞ z(t) =∞, lim

t→∞ z(t)R(t)
= (1 + p0η)b,
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and there exists a T1 ∈ [t0,∞)T such that x(t) > 0, x(g(t)) > 0, and x(h(t)) > bR(h(t))/2 for t ∈ [T1,∞)T.
Integrating (1.2) from T1 to s, s ∈ [σ(T1),∞)T, we obtain

r1(s)
(
r2(s)z

∆(s)
)∆

− r1(T1)
(
r2(T1)z

∆(T1)
)∆

= −

∫s
T1

f(u, x(h(u)))∆u

or (
r2(s)z

∆(s)
)∆

=
r1(T1)

(
r2(T1)z

∆(T1)
)∆

r1(s)
−

∫s
T1
f(u, x(h(u)))∆u

r1(s)
. (3.3)

Integrating (3.3) from T1 to v, v ∈ [σ(T1),∞)T, we obtain

r2(v)z
∆(v) − r2(T1)z

∆(T1) = r1(T1)
(
r2(T1)z

∆(T1)
)∆ ∫v

T1

1
r1(s)

∆s−

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s.

Letting v→∞, we have ∫∞
T1

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s <∞.

In view of (C4), it follows that∫∞
T1

∫s
T1

f (u,bR(h(u))/2)
r1(s)

∆u∆s 6
∫∞
T1

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s <∞,

which means that (3.1) holds.
On the other hand, suppose that there exists some constant K > 0 such that (3.1) holds. There will be

two cases to be considered.

Case (i). 0 6 p0 < 1. When p0 > 0, take p1 such that p0 < p1 < (1 + 4p0)/5 < 1. Choose a sufficiently
large T0 ∈ [t0,∞)T such that

p(t) > 0,
5p1 − 1

4
6 p(t) 6 p1 < 1, p(t)

R(g(t))

R(t)
>

5p1 − 1
4

η, t ∈ [T0,∞)T,∫∞
T0

∫s
T0

f(u,KR(h(u)))
r1(s)

∆u∆s 6
(1 − p1η)K

8
. (3.4)

When p0 = 0, choose p1 such that |p(t)| 6 p1 6 1/13 for t ∈ [T0,∞)T. From (C3), there exists a T1 ∈
(T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T.

Define BC1[T0,∞)T as in (2.1) with λ = 1, and let

Ω1 =

{
x ∈ BC1[T0,∞)T :

K

2
R(t) 6 x(t) 6 KR(t)

}
.

It is easy to prove that Ω1 is a bounded, convex, and closed subset of BC1[T0,∞)T. Define two operators
U1 and S1: Ω1 → BC1[T0,∞)T as follows

(U1x)(t) =

{
3Kp1ηR(t)/4 − p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
3Kp1ηR(t)/4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(S1x)(t) =

{
3KR(t)/4, t ∈ [T0, T1)T,
3KR(t)/4 +

∫t
T1

∫∞
v

∫s
T1
f(u, x(h(u)))/(r1(s)r2(v))∆u∆s∆v, t ∈ [T1,∞)T.

(3.5)

Similarly to the proofs of [10, Theorem 2.5] and [20, Theorem 3.1], it is not difficult to prove that U1 and
S1 satisfy the conditions in Lemma 2.2. Hence, there exists an x ∈ Ω1 such that (U1 + S1)x = x. For
t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1η)K

4
R(t) − p(t)x(g(t)) +

∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.
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Since ∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v 6
∫t
T1

∫∞
v

∫s
T1

f(u,KR(h(u)))
r1(s)r2(v)

∆u∆s∆v

and

lim
t→∞ 1

R(t)

∫t
T1

∫∞
v

∫s
T1

f(u,KR(h(u)))
r1(s)r2(v)

∆u∆s∆v = lim
t→∞

∫∞
t

∫s
T1

f(u,KR(h(u)))
r1(s)

∆u∆s = 0,

we have

lim
t→∞ z(t)R(t)

=
3(1 + p1η)K

4
and lim

t→∞ x(t)R(t)
=

3(1 + p1η)K

4(1 + p0η)
> 0.

Moreover, it is obvious that limt→∞ x(t) =∞.

Case (ii). −1 < p0 < 0. Take p1 such that −p0 < p1 < (1 − 4p0)/5 < 1. Choose a sufficiently large
T0 ∈ [t0,∞)T such that (3.4) holds and

p(t) < 0,
5p1 − 1

4
6 −p(t) 6 p1 < 1, −p(t)

R(g(t))

R(t)
>

5p1 − 1
4

η, t ∈ [T0,∞)T.

There also exists a T1 ∈ (T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T. Define S1 as in (3.5)
and U ′1 on Ω1 as follows

(U ′1x)(t) =

{
−3Kp1ηR(t)/4 − p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
−3Kp1ηR(t)/4 − p(t)x(g(t)), t ∈ [T1,∞)T.

The remainder of the proof is similar to that of the case where 0 6 p0 < 1 and we omit it here. By Lemma
2.2, there exists an x ∈ Ω1 such that (U ′1 + S1)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 − p1η)K

4
R(t) − p(t)x(g(t)) +

∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.

Letting t→∞, we conclude that

lim
t→∞ z(t)R(t)

=
3(1 − p1η)K

4
, lim

t→∞ x(t)R(t)
=

3(1 − p1η)K

4(1 + p0η)
> 0, and lim

t→∞ x(t) =∞.

The proof is complete.

Next, assume that the condition ∫∞
t0

∫∞
v

1
r1(s)r2(v)

∆s∆v <∞ (3.6)

holds. Then we will have Theorems 3.2 and 3.3.

Theorem 3.2. Assume that (3.6) holds. Then (1.2) has an eventually positive solution in A(b, 0) if and only if
there exists some constant K > 0 such that∫∞

t0

∫∞
v

∫s
t0

f(u,K)
r1(s)r2(v)

∆u∆s∆v <∞, (3.7)

where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.2) in A(b, 0). Then

lim
t→∞ z(t) = (1 + p0)b, lim

t→∞ r2(t)z
∆(t) = lim

t→∞ z(t)R(t)
= 0,

and there exists a T1 ∈ [t0,∞)T such that x(t) > b/2, x(g(t)) > b/2, and x(h(t)) > b/2 for t ∈ [T1,∞)T.
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Integrating (1.2) from T1 to s, s ∈ [σ(T1),∞)T, we arrive at (3.3). Integrating (3.3) from T2 (T2 ∈ [T1,∞)T)
to v, v ∈ [σ(T2),∞)T, we obtain

r2(v)z
∆(v) − r2(T2)z

∆(T2) = r1(T1)
(
r2(T1)z

∆(T1)
)∆ ∫v

T2

1
r1(s)

∆s−

∫v
T2

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s.

Letting v→∞, we have

− r2(T2)z
∆(T2) = r1(T1)

(
r2(T1)z

∆(T1)
)∆ ∫∞

T2

1
r1(s)

∆s−

∫∞
T2

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s, (3.8)

which implies that ∫∞
T2

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s <∞.

In view of (C4), since x(h(t)) > b/2 for t ∈ [T1,∞)T, it follows that∫∞
T2

∫s
T1

f (u,b/2)
r1(s)

∆u∆s <∞,

which means that there exists a constant K > 0 such that∫∞
t0

∫s
t0

f (u,K)
r1(s)

∆u∆s <∞. (3.9)

Substituting v for T2 in (3.8), we have

z∆(v) = −
r1(T1)

(
r2(T1)z

∆(T1)
)∆

r2(v)

∫∞
v

1
r1(s)

∆s+
1

r2(v)

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s. (3.10)

Integrating (3.10) from T3 (T3 ∈ [T2,∞)T) to t, t ∈ [σ(T3),∞)T, we deduce that

z(t) − z(T3) = −r1(T1)
(
r2(T1)z

∆(T1)
)∆ ∫t

T3

∫∞
v

1
r1(s)r2(v)

∆s∆v+

∫t
T3

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v. (3.11)

Letting t→∞, by (3.6) we get ∫∞
T3

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v <∞.

By (C4), it follows that ∫∞
T3

∫∞
v

∫s
T1

f (u,b/2)
r1(s)r2(v)

∆u∆s∆v <∞,

which means that (3.7) holds. It is obvious that (3.7) yields (3.9).
Suppose that there exists some constant K > 0 such that (3.7) holds. Then, we also consider two cases.

Case (i). 0 6 p0 < 1. When p0 > 0, take p1 as in the proof of Theorem 3.1. Choose a sufficiently large
T0 ∈ [t0,∞)T such that

p(t) > 0,
5p1 − 1

4
6 p(t) 6 p1 < 1, t ∈ [T0,∞)T,

∫∞
T0

∫∞
v

∫s
T0

f(u,K)
r1(s)r2(v)

∆u∆s∆v 6
(1 − p1)K

8
.

When p0 = 0, choose p1 such that |p(t)| 6 p1 6 1/13 for t ∈ [T0,∞)T. From (C3), there exists a T1 ∈
(T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T.
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Define BC0[T0,∞)T as in (2.1) with λ = 0, and let

Ω2 =

{
x ∈ BC0[T0,∞)T :

K

2
6 x(t) 6 K

}
. (3.12)

Similarly, Ω2 is a bounded, convex, and closed subset of BC0[T0,∞)T. Define the operators U2 and S2:
Ω2 → BC0[T0,∞)T as follows

(U2x)(t) =

{
(U2x)(T1), t ∈ [T0, T1)T,
3Kp1/4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(S2x)(t) =

{
3K/4, t ∈ [T0, T1)T,
3K/4 +

∫t
T1

∫∞
v

∫s
T1
f(u, x(h(u)))/(r1(s)r2(v))∆u∆s∆v, t ∈ [T1,∞)T.

(3.13)

Then, U2 and S2 satisfy the conditions in Lemma 2.2. The proof is similar to those of [10, Theorem 2.5] and
[20, Theorem 3.1], so we also omit it here. By Lemma 2.2, there exists an x ∈ Ω2 such that (U2 + S2)x = x.
For t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1)K

4
− p(t)x(g(t)) +

∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v. (3.14)

Since

0 <
∫∞
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v 6
∫∞
T1

∫∞
v

∫s
T1

f(u,K)
r1(s)r2(v)

∆u∆s∆v <∞,

letting t→∞ in (3.14), we have 0 < limt→∞ z(t) <∞, which yields

lim
t→∞ x(t) = b and lim

t→∞ x(t)R(t)
= 0,

where b is a positive constant.

Case (ii). −1 < p0 < 0. Introduce BC0[T0,∞)T and its subset Ω2 as in (3.12). Define S2 as in (3.13) and U ′2
on Ω2 as follows

(U ′2x)(t) =

{
(U ′2x)(T1), t ∈ [T0, T1)T,
−3Kp1/4 − p(t)x(g(t)), t ∈ [T1,∞)T.

The following proof is also similar to that of the case as above and so is omitted. By Lemma 2.2, there
exists an x ∈ Ω2 such that (U ′2 + S2)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 − p1)K

4
− p(t)x(g(t)) +

∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.

Similarly, we conclude that

lim
t→∞ x(t) = b and lim

t→∞ x(t)R(t)
= 0,

where b is a positive constant.
The proof is complete.

Theorem 3.3. Assume that (3.6) holds. If (1.2) has an eventually positive solution in A(∞, 0), then∫∞
t0

∫s
t0

f(u, 3/4)
r1(s)

∆u∆s <∞,
∫∞
t0

∫∞
v

∫s
t0

f(u,R(h(u)))
r1(s)r2(v)

∆u∆s∆v =∞. (3.15)

If there exists a constant M > 0 such that |p(t)R(t)| 6M for t ∈ [t0,∞)T, and∫∞
t0

∫s
t0

f(u,R(h(u)))
r1(s)

∆u∆s <∞,
∫∞
t0

∫∞
v

∫s
t0

f(u,M+ 3/4)
r1(s)r2(v)

∆u∆s∆v =∞, (3.16)

then (1.2) has an eventually positive solution in A(∞, 0).
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Proof. Suppose that x is an eventually positive solution to (1.2) in A(∞, 0). Similarly, we have

lim
t→∞ z(t) =∞, lim

t→∞ r2(t)z
∆(t) = lim

t→∞ z(t)R(t)
= 0,

and there exists a T0 ∈ [t0,∞)T such that 3/4 6 x(t) 6 R(t) for t ∈ [T0,∞)T. From (C3), there exists a
T1 ∈ (T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T. Proceeding as in the proof of Theorem
3.2, we arrive at (3.8), which implies that∫∞

T2

∫s
T1

f(u, 3/4)
r1(s)

∆u∆s <∞
due to (C4) and x(h(t)) > 3/4 for t ∈ [T1,∞)T. Then, continuing the proof as in Theorem 3.2, we arrive at
(3.11). Letting t→∞, we have ∫∞

T3

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v =∞.

By (C4), since x(h(t)) 6 R(h(t)) for t ∈ [T1,∞)T, it follows that∫∞
T3

∫∞
v

∫s
T1

f(u,R(h(u)))
r1(s)r2(v)

∆u∆s∆v =∞,

which means that (3.15) holds.
Conversely, if there exists a constant M > 0 such that |p(t)R(t)| 6M for t ∈ [t0,∞)T, and (3.16) holds,

then limt→∞ p(t) = 0. Choose a sufficiently large T0 ∈ [t0,∞)T and 0 < p1 < 1 such that

|p(t)| 6 p1 < 1, 2M+
3
2
6

1
4
R(t), t ∈ [T0,∞)T,

∫∞
T0

∫s
T0

f(u,R(h(u)))
r1(s)

∆u∆s 6
1 − p1

8
.

From (C3), there exists a T1 ∈ (T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T.
Define BC1[T0,∞)T as in (2.1) with λ = 1, and let

Ω3 =

{
x ∈ BC1[T0,∞)T :M+

3
4
6 x(t) 6 R(t)

}
.

Then, Ω3 is a bounded, convex, and closed subset of BC1[T0,∞)T. Define the operators U3 and S3:
Ω3 → BC1[T0,∞)T as follows

(U3x)(t) =

{
M+ 3/4 − p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
M+ 3/4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(S3x)(t) =

{
M+ 3/4, t ∈ [T0, T1)T,
M+ 3/4 +

∫t
T1

∫∞
v

∫s
T1
f(u, x(h(u)))/(r1(s)r2(v))∆u∆s∆v, t ∈ [T1,∞)T.

Similarly, U3 and S3 satisfy the conditions in Lemma 2.2. The proof is similar to those of Theorems 3.1
and 3.2, and thus is omitted. Then, there exists an x ∈ Ω3 such that (U3 + S3)x = x. For t ∈ [T1,∞)T, we
have

x(t) = 2M+
3
2
− p(t)x(g(t)) +

∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.

Since

lim
t→∞ 1

R(t)

∫t
T1

∫∞
v

∫s
T1

f(u,R(h(u)))
r1(s)r2(v)

∆u∆s∆v = lim
t→∞

∫∞
t

∫s
T1

f(u,R(h(u)))
r1(s)

∆u∆s = 0
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and

lim
t→∞

∫t
T1

∫∞
v

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v > lim
t→∞

∫t
T1

∫∞
v

∫s
T1

f(u,M+ 3/4)
r1(s)r2(v)

∆u∆s∆v =∞,

it follows that

lim
t→∞ z(t) =∞, lim

t→∞ z(t)R(t)
= 0.

Since |p(t)x(g(t))| 6 |p(t)R(t)| 6M, by Lemma 2.3, we deduce that

lim
t→∞ x(t) =∞, lim

t→∞ x(t)R(t)
= 0.

The proof is complete.

Remark 3.4. It is not difficult to see that assumption (3.6) can be deleted in the sufficiency of the proofs of
Theorems 3.2 and 3.3. Therefore, we have the following corollaries, respectively.

Corollary 3.5. If there exists some constant K > 0 such that (3.7) holds, then (1.2) has an eventually positive
solution in A(b, 0), where b is a positive constant.

Corollary 3.6. If there exists a constant M > 0 such that |p(t)R(t)| 6M for t ∈ [t0,∞)T, and (3.16) holds, then
(1.2) has an eventually positive solution in A(∞, 0).

When p is eventually nonnegative, we have the following theorem. The proof is similar to that of [20,
Theorem 3.5] and hence is omitted.

Theorem 3.7. If there exist a constant K > 0 and a sufficiently large T ∈ [t0,∞)T such that for t ∈ [T ,∞)T,

0 6 p(t) 6 Kg(t)e−t,
∫∞
t

∫∞
v

∫∞
s

f
(
u, e−h(u)

)
r1(s)r2(v)

∆u∆s∆v > (K+ 1)e−t,

and ∫∞
t

∫∞
v

∫∞
s

f(u, 1/h(u))
r1(s)r2(v)

∆u∆s∆v 6
1
t

,

then (1.2) has an eventually positive solution in A(0, 0).

When p is eventually negative, we have another result. The proof is similar to that of [12, Theorem 3]
and thus is omitted.

Theorem 3.8. If there exists a sufficiently large T ∈ [t0,∞)T such that for t ∈ [T ,∞)T,

p(t)e−g(t) 6 −e−t (3.17)

and ∫∞
t

∫∞
v

∫∞
s

f(u, 1/h(u))
r1(s)r2(v)

∆u∆s∆v 6
1
t
+
p(t)

g(t)
, (3.18)

then (1.2) has an eventually positive solution in A(0, 0).

4. Examples

In this section, the applications of our results will be shown in three examples. The first example is
given to demonstrate Theorems 3.1-3.3.

Example 4.1. Let T =
⋃∞
n=0[3

n, 2 · 3n]. For t ∈ [3,∞)T, considert5

(
1
t

(
x(t) +

1
4t2x

(
t

3

))∆)∆∆ +
x(t)

1 + t2 = 0. (4.1)

Here, r1(t) = t
5, r2(t) = 1/t, p(t) = 1/(4t2), g(t) = t/3, h(t) = t, and f(t, x) = x/(1 + t2). It is obvious that
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the coefficients of (4.1) satisfy (C1)-(C4) and (3.6), and by (C3) we have

R(t) = 1 +

∫t
3
s∆s 6 1 +

1
2
t2 −

9
2
< t2.

Therefore,∫∞
3

∫s
3

f(u,R(h(u)))
r1(s)

∆u∆s <

∫∞
3

∫s
3

u2

(1 + u2)s5∆u∆s <

∫∞
3

∫s
3

1
s5∆u∆s <

∫∞
3

1
s4∆s <∞,∫∞

3

∫∞
v

∫s
3

f(u, 1)
r1(s)r2(v)

∆u∆s∆v =

∫∞
3

∫∞
v

∫s
3

v

(1 + u2)s5∆u∆s∆v <

∫∞
3

∫∞
v

∫s
3

v

s5∆u∆s∆v <

∫∞
3

∫∞
v

v

s4∆s∆v <∞,

and ∫∞
3

∫∞
v

∫s
3

f(u,R(h(u)))
r1(s)r2(v)

∆u∆s∆v 6
∫∞

3

∫∞
v

∫s
3

u2v

(1 + u2)s5∆u∆s∆v

<

∫∞
3

∫∞
v

∫s
3

v

s5∆u∆s∆v <

∫∞
3

∫∞
v

v

s4∆s∆v <∞.

By Theorems 3.1-3.3, we see that (4.1) has eventually positive solutions x1 ∈ A(∞,b1) and x2 ∈ A(b2, 0),
where b1,b2 are positive constants, but it has no eventually positive solutions in A(∞, 0).

Then, we give the second example to demonstrate Theorem 3.3 (or Corollary 3.6).

Example 4.2. For any time scale T which satisfies that t/2, 3
√
t ∈ T for any t ∈ [t0,∞)T with t0 > 1 and∫∞

t0
t−λ∆t <∞ for λ > 1, considert3

(
1
t

(
x(t) +

1
4t2x

(
t

2

))∆)∆∆ + x(
3
√
t) = 0. (4.2)

Here, r1(t) = t3, r2(t) = 1/t, p(t) = 1/(4t2), g(t) = t/2, h(t) = 3
√
t, and f(t, x) = x. Obviously, the

coefficients of (4.2) satisfy (C1)-(C4) and (3.6), and by (C3) we have

R(t) = 1 +

∫t
t0

s∆s 6 1 +
1
2
t2 −

1
2
t2

0 6 t2.

Therefore,

|p(t)R(t)| 6
1
4

,∫∞
t0

∫s
t0

f (u,R(h(u)))
r1(s)

∆u∆s 6
∫∞
t0

∫s
t0

u2/3

s3 ∆u∆s <
3
5

∫∞
t0

s5/3

s3 ∆s =
3
5

∫∞
t0

s−4/3∆s <∞,

and ∫∞
t0

∫∞
v

∫s
t0

f (u, 1/4 + 3/4)
r1(s)r2(v)

∆u∆s∆v =

∫∞
t0

∫∞
v

∫s
t0

v

s3∆u∆s∆v

>

∫∞
2t0

∫∞
v

(s− t0)v

s3 ∆s∆v >
1
2

∫∞
2t0

∫∞
v

v

s2∆s∆v >
1
2

∫∞
2t0

∆v =∞.

It follows that (4.2) has an eventually positive solution x0 ∈ A(∞, 0) in terms of Theorem 3.3 (or Corollary
3.6). Furthermore, by Theorem 2.4, we can see that ((x0(t) + x0(t/2)/(4t2))∆/t)∆ is eventually negative,
and (x0(t) + x0(t/2)/(4t2))∆/t is eventually strictly decreasing.
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The third example illustrates Theorem 3.8.

Example 4.3. Let T = [0,∞)R. For t ∈ [t0,∞)T with t0 > 1, consider(
et
(
e−2t

(
x(t) −

t− 1
2t

x(t− 1)
) ′) ′) ′

+ e−tx(et) = 0. (4.3)

Here, r1(t) = et, r2(t) = e−2t, p(t) = −(t− 1)/(2t), g(t) = t− 1, h(t) = et, and f(t, x) = e−tx. Similarly,
the coefficients of (4.3) satisfy (C1)-(C4), and we have

1
t
+
p(t)

g(t)
=

1
t
−

1
2t

=
1
2t

, p(t)e−g(t) = −
t− 1

2t
e−(t−1) = −

(
1
2
−

1
2t

)
e · e−t,

and ∫∞
t

∫∞
v

∫∞
s

f(u, 1/h(u))
r1(s)r2(v)

∆u∆s∆v =

∫∞
t

∫∞
v

∫∞
s

e−2u

es · e−2vdudsdv

=
1
2

∫∞
t

∫∞
v

e−3s

e−2vdsdv =
1
6

∫∞
t

e−vdv =
1
6
e−t.

There exists a sufficiently large T ∈ [t0,∞)T such that for t ∈ [T ,∞)T, the conditions (3.17) and (3.18)
hold. By Theorem 3.8, we see that (4.3) has an eventually positive solution x ∈ A(0, 0).
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