Weakly (\mathbf{s}, \mathbf{r})-contractive multi-valued operators on b-metric space

Lingjuan Ye, Congcong Shen*
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China.

Communicated by N. Hussain

Abstract

In this paper we introduce the notion of weakly (s, r)-contractive multi-valued operator on b-metric space and establish some fixed point theorems for this operator. In addition, an application to the differential equation is given to illustrate usability of obtained results.

Keywords: b-metric space, weakly (s, r)-contractive multi-valued operator, fixed point theorem.
2010 MSC: 47H04, 47H09, 47H10.
(c)2018 All rights reserved.

1. Introduction

Banach fixed point theorem [1] says that every contractive mapping on a complete metric space has a unique fixed point. As it is well known, the Banach fixed point theorem is a very useful, simple and classical tool in modern analysis. There are a large number of generalizations for this interesting theorem, for example see $[5,9-11,16,20]$. On the one hand, to get an analog result for multi-valued mappings, one has to equip the powerset of a set with some suitable metric. One such a metric is a Hausdorff metric. Markin [13] for the first time used the Hausdorff metric to study the fixed point theory of the multi-valued contractive mapping; Nadler [15] and Reich [18, 19] respectively introduced the fixed point theorem of the multi-valued contractive operator and generalized the compression conditions given by Nadler; Rus [23] introduced multi-valued weakly Picard operator; Popescu [17] introduced the definition of the (s, r)contractive multi-valued operator and showed that this operator is a weakly Picard operator. On the other hand, Czerwik [3] introduced the notions of the contractive mapping and the set-valued contractive mapping on b-metric space. Recently Kamran and Hussain [12] generalized the (s, r)-contractive multivalued operator and introduced the notion of the weakly (s, r)-contractive multi-valued operator. They also obtained fixed points and strict fixed point theorems for the weakly (s, r)-contractive multi-valued

[^0]operator. Thus it is worth for us to research fixed point theorems of the multi-valued operator in b-metric space.

Next, we present some elementary definitions and results which will be used throughout this paper. Details can be seen in [2-4, 6-8, 21, 24, 25].

Definition 1.1 ([3]). Let X be a nonempty set and $K \geqslant 1$ be a given constant. A function $d: X \times X \rightarrow \mathbb{R}^{+}$ is called a b-metric if the following conditions are satisfied:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, y) \leqslant K[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space (with constant K).
It is easy to see that any metric space is a b-metric space with $K=1$. The following example shows that a b-metric on X need not be a metric on X.

Example 1.2. The set \mathbb{R} of real numbers together with the function

$$
d(x, y):=|x-y|^{2}
$$

for all $x, y \in \mathbb{R}$ is a b-metric space with constant $K=2$ but not a metric space.
Definition 1.3 ([2]). Let (X, d) be a b-metric space and $\left\{x_{n}\right\}$ be a sequence of X such that
(1) $\left\{x_{n}\right\}$ is convergent if there exists an x in X such that for any $\varepsilon>0$, there exists an $\mathfrak{n}(\varepsilon) \in \mathbb{N}$, such that $n \geqslant n(\varepsilon), d\left(x_{n}, x\right)<\varepsilon$.
(2) $\left\{x_{n}\right\}$ is a Cauchy sequence if for any $\varepsilon>0$, there exists an $\mathfrak{n}(\varepsilon) \in \mathbb{N}$, such that for all $\mathfrak{m}, \mathfrak{n} \geqslant \mathfrak{n}(\varepsilon)$, $d\left(x_{n}, x_{m}\right)<\varepsilon$.
(3) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

In contrast to the general metric, b-metric is not continuous. However we introduce the following lemma.

Lemma 1.4 ([21]). Let (X, d) be a b-metric space with the constant $\mathrm{K} \geqslant 1$, and suppose that the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{y_{n}\right\}$ converge to x, y, respectively. Then

$$
\frac{1}{K^{2}} d(x, y) \leqslant \varliminf_{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leqslant \varlimsup_{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leqslant K^{2} d(x, y) .
$$

In particular, if $\mathrm{x}=\mathrm{y}$, then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)=0$. Moreover, for each $z \in \mathrm{X}$,

$$
\frac{1}{K} d(x, z) \leqslant \varliminf_{n \rightarrow \infty} d\left(x_{n}, z\right) \leqslant \varlimsup_{n \rightarrow \infty} d\left(x_{n}, z\right) \leqslant K d(x, z) .
$$

In order to study fixed point theorems of the multi-valued mapping, we introduce the concept of Hausdorff metric.

Definition 1.5. Let (X, d) be a metric space and $C B(X)$ be the class of all nonempty closed and bounded subsets of X. For any $A, B \in C B(X)$, set
where $d(x, B)=\inf _{y \in B} d(x, y)$, then $(C B(X), H)$ is a metric space and $H(A, B)$ is called a Hausdorff metric.

Similarly, if (X, d) is a b-metric space, then $(C B(X), H)$ is a b-metric space. $H(A, B)$ is called a bHausdorff metric on $C B(X)$. In the following, unless stated in particular, $H(A, B)$ will always denote a b-Hausdorff metric.
Remark 1.6. Suppose that (X, d) is a metric space, then $H(A, B)=0$ iff $A=B$.
Definition 1.7 ([4]). Let X be a b-metric space and $T: X \rightarrow C B(X)$ be a multi-valued operator. If there exists $k \in[0,1]$ such that $H(T x, T y) \leqslant k d(x, y)$ for all $x, y \in X$, then T is called a contractive multi-valued operator.
Definition 1.8. Let (X, d) be a b-metric space and $T: X \rightarrow C B(X)$ be a multi-valued operator. If there exist constants s, r with $r \in[0,1], s \geqslant r$ such that for all $x, y \in X$,

$$
d(y, T x) \leqslant K s d(x, y) \Rightarrow H(T x, T y) \leqslant r M_{T}(x, y)
$$

where

$$
M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 K}\right\}
$$

then T is called a (s, r)-contractive multi-valued operator.
The purpose of this paper is to generalize the results of Kamran [12] and introduce the notion of weakly (s, r)-contractive multi-valued operator and establish some fixed point theorems for this operator on b-metric space.

2. Main results

In this section we introduce the notion of weakly (s, r)-contractive multi-valued operator and present our results. We start this section with the following definition.

Definition 2.1. Let (X, d) be a b-metric space and $T: X \rightarrow C B(X)$ be a multi-valued operator. If there exist $r \in[0,1]$ and $s \geqslant r, L \geqslant 0$ such that for any $x, y \in X$,

$$
d(x, T y) \leqslant K s d(x, y) \Rightarrow H(T x, T y) \leqslant r M_{T}(x, y)+\operatorname{Lmin}\{d(x, y), d(y, T x)\}
$$

where

$$
M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 K}\right\}
$$

then T is a weakly (s, r)-contractive multi-valued operator on X.
Remark 2.2. When $\mathrm{L}=0$, the above definition reduces to Definition 1.8.
The following example shows that the notion of weakly (s, r)-contractive operator properly generalizes the notion of (s, r)-contractive operator.

Example 2.3. Let $X=\{1,2,3\}$ endowed with the b-metric $d(x, y)=|x-y|^{2}$. Then (X, d) is a complete $b-m e t r i c$ space with the constant $K=2$. Define $T: X \rightarrow C B(X)$ by

$$
T x= \begin{cases}\{1,2\}, & x \in\{1,2\} \\ \{3\}, & x=3\end{cases}
$$

Then $\mathrm{H}(\mathrm{T} 1, \mathrm{~T} 1)=\mathrm{H}(\mathrm{T} 2, \mathrm{~T} 2)=\mathrm{H}(\mathrm{T} 3, \mathrm{~T} 3)=\mathrm{H}(\mathrm{T} 1, \mathrm{~T} 2)=\mathrm{H}(\mathrm{T} 2, \mathrm{~T} 1)=0$. By choosing $\mathrm{s}=0.4$,

$$
d(1, T 3)=4>3.2=K \cdot s \cdot d(1,3), \quad d(2, T 3)=1>0.8=K \cdot s \cdot d(2,3), \quad d(3, T 2)=1<0.8=K \cdot s \cdot d(3,2)
$$

Further, $d(3, T 1)=1<3.2=K \cdot s \cdot d(3,1)$. Now if we choose $L=1$ and $r=0.2$, then

$$
\mathrm{H}(\mathrm{~T} 3, \mathrm{~T} 1)=1<4.8=\mathrm{r} \max \left\{\mathrm{~d}(3,1), \mathrm{d}(3, \mathrm{~T} 3), \mathrm{d}(1, \mathrm{~T} 1), \frac{\mathrm{d}(3, \mathrm{~T} 1)+\mathrm{d}(1, \mathrm{~T} 3)}{2 \mathrm{~K}}\right\}+\operatorname{L} \min \{\mathrm{d}(3,1), \mathrm{d}(1, \mathrm{~T} 3)\}
$$

This shows that T is weakly $(0.4,0.2)$-contractive map with $L=1$, but not ($0.4,0.2$)-contractive. Since
$\mathrm{d}(3, \mathrm{~T} 1)=1<3.2=\operatorname{Ksd}(3,1)$ but

$$
\mathrm{H}(\mathrm{~T} 3, \mathrm{~T} 1)=1>0.8=\mathrm{rmax}\left\{\mathrm{~d}(3,1), \mathrm{d}(3, \mathrm{~T} 3), \mathrm{d}(1, \mathrm{~T} 1), \frac{\mathrm{d}(3, \mathrm{~T} 1)+\mathrm{d}(1, \mathrm{~T} 3)}{2 \mathrm{~K}}\right\} .
$$

Lemma 2.4 ($[14,21])$. Let (X, d) be a complete $b-m e t r i c ~ s p a c e ~ w i t h ~ t h e ~ c o n s t a n t ~ K \geqslant 1 ~ a n d ~\left\{x_{n}\right\}$ be a sequence in X such that $d\left(x_{n+1}, x_{n+2}\right) \leqslant \alpha \mathrm{d}\left(x_{n}, x_{n+1}\right)$ for all $n=0,1,2, \ldots$, where $0 \leqslant \alpha<1$. If $K \alpha<1$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X .

The following theorem generalizes the result of Kamran and Hussain [12] to the setting of b-metric space.

Theorem 2.5. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ be a weakly (s, r)-contractive operator with $\mathrm{r}<\min \left\{\frac{1}{\mathrm{~K}}, \mathrm{~s}\right\}$. Then T has fixed points.

Proof. Take a real number $r_{1}>1$ such that $0 \leqslant r<r_{1}<\min \left\{\frac{1}{\mathrm{~K}}, \mathrm{~s}\right\}$. Let $\mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in T x_{1}$. Then $\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{~T} \mathrm{x}_{1}\right)=0 \leqslant \operatorname{Ksd}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)$ and using hypothesis,

$$
\begin{aligned}
d\left(x_{2}, T x_{2}\right) \leqslant H\left(T x_{1}, T x_{2}\right) & \leqslant r M_{T}\left(x_{1}, x_{2}\right)+L \min \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{1}\right)\right\} \\
& =r \max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), d\left(x_{1}, T x_{1}\right), \frac{d\left(x_{1}, T x_{2}\right)+d\left(x_{2}, T x_{1}\right)}{2 K}\right\} \\
& \leqslant r \max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}, x_{2}\right)+d\left(x_{2}, T x_{2}\right)}{2}\right\} .
\end{aligned}
$$

(1) If $d\left(x_{1}, x_{2}\right) \leqslant d\left(x_{2}, T x_{2}\right)$, then $d\left(x_{2}, T x_{2}\right) \leqslant r d\left(x_{2}, T x_{2}\right)$. Since $r<1$, we have $d\left(x_{2}, T x_{2}\right)=0$, and x_{2} is a fixed point of T.
(2) If $d\left(x_{1}, x_{2}\right)>d\left(x_{2}, T x_{2}\right)$, then $d\left(x_{2}, T x_{2}\right) \leqslant r d\left(x_{1}, x_{2}\right)$. Since $r<1$, it follows that there exists $x_{3} \in T x_{2}$ such that $d\left(x_{2}, x_{3}\right) \leqslant r_{1} d\left(x_{1}, x_{2}\right)$. Continuing in this manner a sequence $\left\{x_{n}\right\}$ can be constructed in X such that $x_{n+1} \in T x_{n}$ and $d\left(x_{n+1}, x_{n+2}\right) \leqslant r_{1} d\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$.
Since $\operatorname{Kr}_{1}<1$, it implies $\left\{x_{n}\right\}$ is a Cauchy sequence by using Lemma 2.4. Since X is a complete, there is $z \in X$ such that $\left\{x_{n}\right\}$ converges to z. Now, we claim that there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\mathrm{d}\left(z, T x_{n_{k}}\right) \leqslant \operatorname{Ksd}\left(z, x_{n_{k}}\right), \forall k \in \mathbb{N} .
$$

If not, there exists a positive integer $N \in \mathbb{N}$ such that

$$
d\left(z, T x_{n}\right)>\operatorname{Ksd}\left(z, x_{n}\right), \forall n \geqslant N .
$$

This implies

$$
d\left(z, x_{n+1}\right)>\operatorname{Ksd}\left(z, x_{n},\right), \forall n \geqslant N .
$$

By induction, we obtain

$$
\begin{equation*}
\mathrm{d}\left(z, x_{n+p}\right)>(K s)^{p} d\left(z, x_{n}\right), \forall n \geqslant N, p \geqslant 1 . \tag{2.1}
\end{equation*}
$$

Since

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leqslant K\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+p}\right)\right) \\
& \leqslant K d\left(x_{n}, x_{n+1}\right)\left(1+K r_{1}+\cdots+K^{p-1} r_{1}^{p-1}\right. \\
& =\frac{K\left[1-\left(K r_{1}\right)^{p}\right]}{1-K r_{1}} d\left(x_{n}, x_{n+1}\right), \quad \forall n \geqslant N, p \geqslant 1 .
\end{aligned}
$$

Let $p \rightarrow \infty$, using Lemma 1.4,

$$
\frac{1}{K} d\left(z, x_{n}\right) \leqslant \varliminf_{p \rightarrow \infty} d\left(x_{n}, x_{n+p}\right) \leqslant \frac{K}{1-K r_{1}} d\left(x_{n}, x_{n+1}\right), \forall n \geqslant N .
$$

Thus

$$
\begin{equation*}
d\left(z, x_{n+p}\right) \leqslant \frac{K^{2}}{1-K r_{1}} d\left(x_{n+p}, x_{n+p+1}\right) \leqslant \frac{K^{2} r_{1}^{p}}{1-K r_{1}} d\left(x_{n}, x_{n+1}\right), \forall n \geqslant N, p \geqslant 1 . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we obtain

$$
\mathrm{d}\left(z, x_{n}\right)<\frac{\mathrm{K}^{2} r_{1}^{p}}{(K s)^{p}\left(1-K r_{1}\right)} d\left(x_{n}, x_{n+1}\right) .
$$

Set $p \rightarrow \infty, d\left(z, x_{n}\right)=0, \forall n \geqslant N$, which contradicts to (1). Therefore there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
d\left(z, T x_{n_{k}}\right) \leqslant K s d\left(z, x_{n_{k}}\right), \forall k \in \mathbb{N} .
$$

Thus

$$
\begin{aligned}
d\left(x_{n_{k}+1}, T z\right) \leqslant H\left(T x_{n_{k}}, T z\right) \leqslant & r \max \left\{d\left(z, x_{n_{k}}\right), d(z, T z), d\left(x_{n_{k}}, T x_{n_{k}}\right), \frac{d\left(z, T x_{n_{k}}\right)+d(z, T z)}{2 K}\right\} \\
& +\operatorname{L} \min \left\{d\left(x_{n_{k}}, z\right), d\left(x_{n_{k}}, T z\right)\right\} .
\end{aligned}
$$

Letting $k \rightarrow \infty$,

$$
\varlimsup_{k \rightarrow \infty} d\left(x_{n_{k}+1}, T z\right) \leqslant r \max \left\{d(z, T z), \frac{d(z, T z)}{2 K}\right\}=r d(z, T z) .
$$

By the triangle inequality,

$$
\mathrm{d}(z, \mathrm{~T} z) \leqslant \mathrm{K}\left[\mathrm{~d}\left(z, x_{n_{k}+1}\right)+\mathrm{d}\left(x_{n_{k}+1}, T z\right)\right] .
$$

Thus

$$
\lim _{k \rightarrow \infty} \frac{1}{\mathrm{~K}} \mathrm{~d}(z, \mathrm{~T} z) \leqslant \varlimsup_{k \rightarrow \infty}\left[\mathrm{~d}\left(z, x_{n_{k}+1}\right)+\mathrm{d}\left(x_{n_{k}+1}, \mathrm{~T} z\right)\right], \quad \frac{1}{\mathrm{~K}} \mathrm{~d}(z, \mathrm{~T} z) \leqslant \varlimsup_{k \rightarrow \infty} \mathrm{~d}\left(x_{n_{k}+1}, \mathrm{~T} z\right) \leqslant \mathrm{rd}(z, \mathrm{~T} z) .
$$

As $\mathrm{Kr}<1, \mathrm{~d}(z, \mathrm{~T} z)=0$. Since $\mathrm{T} z \in \mathrm{CB}(\mathrm{X}), z \in \mathrm{~T} z$, T has fixed point.
From the following example, one can see that under the condition of Theorem 2.5, the fixed point may not be unique.

Example 2.6. Let $X=[1, \infty)$ and $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then d is a complete b-metric but not a metric on X with the constant $K=2$. Define $T: X \rightarrow C B(X)$ by

$$
T x=\left[2,2+\frac{x}{3}\right]
$$

for all $x \in X$. Consider $H(T x, T y)=\frac{1}{9}(x-y)^{2}=\frac{1}{9} d(x, y)$, where we choose $r=\frac{1}{9} \in[0,1), s=\frac{1}{5}>r, L=$ $1 \geqslant 0$. Then the conditions of Theorem 2.5 are satisfied. Moreover, 2 and 3 are the two fixed points of T.

It is necessary for us to consider the uniqueness of the fixed point of the weakly (s, r)-contractive multi-valued operator.

Corollary 2.7. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a weakly (s, r)-contractive single-valued operator with $\mathrm{r}<\min \left\{\frac{1}{\mathrm{~K}}, \mathrm{~s}\right\}$. Then T has a fixed point. Moreover, if $\mathrm{K} s \geqslant 1$ and $\mathrm{r}+\mathrm{L}<1$, then T has a unique fixed point.

Proof. From Theorem 2.5, T has a fixed point. Let $\mathrm{K} s \geqslant 1$ and $(\mathrm{r}+\mathrm{L})<1$. Suppose that there exist two different fixed points x and y of T. Then

$$
d(y, T x)=d(y, x) \leqslant K s d(y, x) .
$$

Thus

$$
\begin{aligned}
d(T x, T y)) & \leqslant r M_{T}(x, y)+L \min \{d(x, y), d(y, T x)\} \\
d(x, y) & \leqslant r M_{T}(x, y)+\operatorname{L\operatorname {min}\{ d(x,y),d(y,Tx)\} } \\
& =r \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 K}\right\}+L \min \{d(x, y), d(y, T x)\} \\
& =r d(x, y)+L d(x, y)=(r+L) d(x, y)
\end{aligned}
$$

It is a contradiction, since $(r+L)<1$.
Next, we introduce the other theorem about the weakly (s, r)-contractive multi-valued operator.
Theorem 2.8. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ be a multi-valued operator. Assume that there exist constants $r, s \in[0,1)$ and $r<s<\frac{1}{K}$ such that

$$
\frac{1}{K(1+K r)} d(x, T x) \leqslant d(x, y) \leqslant \frac{K^{2}}{1-K s} d(T x, x)
$$

implies

$$
\mathrm{H}(\mathrm{~T} x, \mathrm{~T} y) \leqslant r M_{T}(x, y)+\operatorname{Lmin}\{\mathrm{d}(x, y), \mathrm{d}(y, T x)\}
$$

where

$$
M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 K}\right\}
$$

Then T has a fixed point.
Proof. Take a real number r_{1} such that $0 \leqslant r<r_{1}<s<\frac{1}{K}$. Since $\frac{1-K r_{1}}{1-K s}>1$, it follows that for $x_{1} \in X$ there exists $x_{2} \in T x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right) \leqslant \frac{1-K r_{1}}{1-K s} d\left(x_{1}, T x_{1}\right)
$$

Then

$$
\frac{1}{K(1+K r)} d\left(x_{1}, T x_{1}\right) \leqslant d\left(x_{1}, T x_{1}\right) \leqslant d\left(x_{1}, x_{2}\right) \leqslant \frac{1}{1-K s} d\left(x_{1}, T x_{1}\right) \leqslant \frac{K^{2}}{1-K s} d\left(x_{1}, T x_{1}\right)
$$

and by hypothesis

$$
\begin{aligned}
d\left(x_{1}, T x_{2}\right) \leqslant H\left(T x_{1}, T x_{2}\right) & \leqslant r M_{T}\left(x_{1}, x_{2}\right)+L \min \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{1}\right)\right\} \\
& \leqslant r \max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}, x_{2}\right)-d\left(x_{2}, T x_{2}\right)}{2 K}\right\} \\
& \leqslant r \max \left\{d\left(x_{1}, T x_{1}\right), d\left(x_{2}, T x_{2}\right), \frac{d\left(x_{1}+x_{2}\right)+d\left(x_{2}, T x_{2}\right)}{2}\right\}
\end{aligned}
$$

(1) If $d\left(x_{1}, x_{2}\right) \leqslant d\left(x_{2}, T x_{2}\right)$, then $d\left(x_{2}, T x_{2}\right) \leqslant r d\left(x_{2}, T x_{2}\right)$. Since $r<1$, we have $d\left(x_{2}, T x_{2}\right)=0$. Then x_{2} is the fixed point of T.
(2) If $d\left(x_{1}, x_{2}\right)>d\left(x_{2}, T x_{2}\right)$, then $d\left(x_{2}, T x_{2}\right) \leqslant r d\left(x_{1}, x_{2}\right)$. Since $r<1$, it follows that there exists $x_{3} \in T x_{2}$ such that

$$
d\left(x_{2}, x_{3}\right) \leqslant r_{1} d\left(x_{1}, x_{2}\right), \quad d\left(x_{2}, x_{3}\right) \leqslant \frac{1-K r_{1}}{1-K s} d\left(x_{2}, T x_{2}\right)
$$

Therefore a sequence $\left\{x_{n}\right\}$ can be constructed in X such that $x_{n+1} \in T x_{n}$ and

$$
\begin{align*}
d\left(x_{n+1}, x_{n+2}\right) & \leqslant r_{1} d\left(x_{n}, x_{n+1}\right), \forall n \in \mathbb{N} \\
d\left(x_{n}, x_{n+1}\right) & \leqslant \frac{1-K r_{1}}{1-K s} d\left(x_{n}, T x_{n}\right), \forall n \in \mathbb{N} . \tag{2.3}
\end{align*}
$$

Since $K r_{1}<1$, it implies $\left\{x_{n}\right\}$ is a Cauchy sequence by using Lemma 2.4. Since X is complete, there is $z \in X$ such that x_{n} converges to z, that is

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0
$$

Since
$d\left(x_{n+p}, x_{n}\right) \leqslant K d\left(x_{n}, x_{n+1}\right)+K^{2} d\left(x_{n+1}, x_{n+2}\right)+\cdots+K^{p} d\left(x_{n+p-1}, x_{n+p}\right)$,
$d\left(x_{n+p}, x_{n}\right) \leqslant K d\left(x_{n}, x_{n+1}\right)\left(1+K r_{1}+K^{2} r_{1}^{2}+\cdots+K^{p-1} r_{1}^{p-1}\right)=\frac{K\left[1-\left(K r_{1}\right)^{p}\right]}{1-K r_{1}} d\left(x_{n}, x_{n+1}\right), \forall n \geqslant N, p \geqslant 1$.
Set $p \rightarrow \infty$,

$$
\frac{1}{K} d\left(z, x_{n}\right) \leqslant \varlimsup_{p \rightarrow \infty} d\left(x_{n+p}, x_{n}\right) \leqslant \frac{K}{1-K r_{1}} d\left(x_{n}, x_{n+1}\right)
$$

Thus

$$
d\left(z, x_{n}\right) \leqslant \frac{K^{2}}{1-K r_{1}} d\left(x_{n}, x_{n+1}\right), \quad \forall n \geqslant 1
$$

From (2.3),

$$
\begin{equation*}
d\left(z, x_{n}\right) \leqslant \frac{K^{2}}{1-K s} d\left(x_{n}, T x_{n}\right), \forall n \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

Now suppose that there exists $N>0$ such that

$$
d\left(z, x_{n}\right) \leqslant \frac{1}{K(1+K r)} d\left(x_{n}, T x_{n}\right), \quad \forall n \geqslant N
$$

Therefore

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) \leqslant K\left(d\left(x_{n}, z\right)+d\left(z, x_{n+1}\right)\right) & <\frac{1}{1+K r}\left[d\left(x_{n}, T x_{n}\right)+d\left(x_{n+1}, T x_{n+1}\right)\right] \\
& \leqslant \frac{1}{1+K r}\left[d\left(x_{n}, T x_{n}\right)+r d\left(x_{n}, x_{n+1}\right)\right]
\end{aligned}
$$

This implies

$$
d\left(x_{n}, x_{n+1}\right)<d\left(x_{n}, T x_{n}\right)
$$

which is impossible. So there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
d\left(z, x_{n_{k}}\right)>\frac{1}{K(1+K r)} d\left(x_{n_{k}}, T x_{n_{k}}\right), \quad \forall k \geqslant N \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5) and using the hypothesis,

$$
\begin{aligned}
d\left(x_{n_{k}+1}, T z\right) \leqslant H\left(T x_{n_{k}}, T z\right) & \leqslant r M_{T}\left(x_{n_{k}}, z\right)+L \min \left\{d\left(x_{n_{k}}, z\right), d\left(x_{n_{k}}, T z\right)\right\} \\
& =r \max \left\{d\left(x_{n_{k}}, z\right), d\left(x_{n_{k}}, T x_{n_{k}}\right), d(z, T z), \frac{d\left(x_{n_{k}}, T z\right)+d\left(z, T x_{n_{k}}\right.}{2 K}\right\} \\
& +\operatorname{L} \min \left\{d\left(x_{n_{k}}, z\right), d\left(x_{n_{k}}, T z\right)\right\} .
\end{aligned}
$$

Therefore

$$
\frac{1}{\mathrm{~K}} \mathrm{~d}(z, \mathrm{~T} z) \leqslant \varlimsup_{\mathrm{k} \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}_{\mathrm{k}}+1}, \mathrm{~T} z\right) \leqslant \mathrm{r} \max \left\{\mathrm{~d}(z, \mathrm{~T} z), \frac{\mathrm{d}(z, \mathrm{~T} z)}{2 \mathrm{~K}}\right\}=\operatorname{rd}(z, \mathrm{~T} z)
$$

As $\mathrm{Kr}<1$, we get $d(z, T z)=0$. Since $T z \in C B(X), z \in T z$, T has the fixed point.

Corollary 2.9. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a weakly (s, r)-contractive single-valued operator. Assume there exists $r \in[0,1)$ and $r<\frac{1}{\mathrm{~K}}$ such that $\forall x, y \in X$

$$
\begin{aligned}
& \frac{1}{K(1+K r)} d(x, T x) \leqslant d(x, y) \leqslant \frac{K^{2}}{1-K r} d(x, T x) \\
& \Rightarrow H(T x, T y) \leqslant r M_{T}(x, y)+L \min \{d(x, y), d(y, T x)\}, \quad \forall x, y \in X
\end{aligned}
$$

where

$$
M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 K}\right\}
$$

Then there exists $z \in X$ such that $T z=z$.
Proof. For every $x_{1} \in X$ the sequence $\left\{x_{n}\right\}$ is defined by $x_{n+1}=T x_{n}$. One can easily prove that $d\left(x_{n+1}, x_{n+2}\right) \leqslant \operatorname{rd}\left(x_{n}, x_{n+1}\right)$ and $\left\{x_{n}\right\}$ is a Cauchy sequence. Then there is a point $z \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=z$. From above theorem we have $d\left(x_{n}, z\right) \leqslant \frac{K^{2}}{1-K r} d\left(x_{n}, x_{n+1}\right)$ for all $n \geqslant 1$ and there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that

$$
d\left(z, x_{n_{k}}\right) \geqslant \frac{1}{K(1-K r)} d\left(x_{n_{k}}, x_{n_{k}+1}\right), \quad \forall k \geqslant N
$$

Therefore

$$
\begin{aligned}
d\left(x_{n_{k}+1}, T z\right) \leqslant H\left(T x_{n_{k}}, T z\right) \leqslant & r \max \left\{d\left(x_{n_{k}}, z\right), d\left(x_{n_{k}}, T x_{n_{k}}\right), d(z, T z), \frac{d\left(x_{n_{k}}, T z\right)+d\left(z, T x_{n_{k}}\right)}{2 K}\right\} \\
& +\operatorname{L} \min \left\{d\left(x_{n_{k}}, z\right), d\left(x_{n_{k}}, T z\right)\right\} .
\end{aligned}
$$

Letting $k \rightarrow \infty$, using the triangle inequality,

$$
\frac{1}{\mathrm{~K}} \mathrm{~d}(z, \mathrm{~T} z) \leqslant \varlimsup_{\mathrm{k} \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}_{\mathrm{k}}+1}, \mathrm{~T} z\right) \leqslant \mathrm{r} \max \left\{\mathrm{~d}(z, \mathrm{~T} z), \frac{\mathrm{d}(z, \mathrm{~T} z)}{2 \mathrm{~K}}\right\}
$$

Then we get $d(z, T z)=0$ as $K r<1$. Since $T z \in C B(X), z \in T z$, T has a fixed point.

3. Application

For fixed point theorems, there are a number of applications in differential equations and integral equations.

Let X be a set of the continuous functions on the closed interval $[a, b]$ and we define the b-metric by

$$
d(x, y)=\max _{t \in[a, b]}|x(t)-y(t)|^{2}, \quad \forall x, y \in X
$$

Then (X, d) is a complete b-metric space with the constant $K=2$.
Consider the differential equation

$$
\left\{\begin{array}{l}
\frac{d x}{d y}=f(x, y) \tag{3.1}\\
y\left(x_{0}\right)=y_{0}
\end{array}\right.
$$

The equation (3.1) is equivalent to the following integral equation,

$$
\begin{equation*}
y(x)=y_{0}+\int_{x_{0}}^{x} f(x, y(t)) d t \tag{3.2}
\end{equation*}
$$

We choose a constant $0<\delta<1$, and define a map T on the continuous functional space $C\left[x_{0}-\delta, x_{0}+\delta\right]$ by

$$
T y(x)=y_{0}+\int_{x_{0}}^{x} f(x, y(t)) d t
$$

Then the integral equation (3.2) has a solution which is equivalent to that the map T has a fixed point. Now we suppose that
(1) there exist constants $r \in[0,1], s>0$ and $r<\min \left\{\frac{1}{2}, s\right\}$, such that for all $y_{1}, y_{2} \in X$,

$$
\left|y_{2}-\left[y_{0}+\int_{x_{0}}^{x} f(x, y(t)) d t\right]\right|^{2} \leqslant 2 s\left|y_{1}-y_{2}\right|^{2} \Rightarrow\left|f\left(z, y_{1}\right)-f\left(z, y_{2}\right)\right|^{2} \leqslant r\left|y_{1}-y_{2}\right|^{2}
$$

We have

$$
\begin{aligned}
d\left(T y_{1}, T y_{2}\right) & =\max _{\left|x-x_{0}\right|<\delta}\left|\int_{x_{0}}^{x}\left[f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right)\right] d t\right|^{2} \\
& \leqslant \max _{\left|x-x_{0}\right|<\delta} \int_{x_{0}}^{x}\left|\left[f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right)\right]\right|^{2} d t \\
& \leqslant \max _{\left|x-x_{0}\right|<\delta} \int_{x_{0}}^{x} r\left|y_{1}(t)-y_{2}(t)\right|^{2} d t \\
& \leqslant r \delta \max _{\left|t-x_{0}\right|<\delta}\left|y_{1}(t)-y_{2}(t)\right|^{2} \\
& =r \delta d\left(y_{1}(t), y_{2}(t)\right) \\
& \leqslant r M_{T}\left(y_{1}(t), y_{2}(t)\right)+\operatorname{Lmin}\left\{d\left(y_{1}(t), y_{2}(t)\right), d\left(y_{2}(t), T y_{1}(t)\right)\right\},
\end{aligned}
$$

where

$$
M_{T}\left(y_{1}, y_{2}\right)=\max \left\{d\left(y_{1}, y_{2}\right), d\left(y_{1}, T y_{1}\right), d\left(y_{2}, T y_{2}\right), \frac{d\left(y_{1}, T y_{2}\right)+d\left(y_{2}, T y_{1}\right)}{4}\right\} .
$$

Then T satisfies the conditions of Theorem 2.5 and T has a fixed point. So there exists a continuous function $y_{0}(t)$ such that

$$
y_{0}(t)=\int_{x_{0}}^{x} f\left(x, y_{0}(t)\right) d t, \forall x \in\left[x_{0}-\delta, x_{0}+\delta\right] .
$$

Acknowledgment

The authors are grateful to the reviewers for their suggestion and comments. The project is supported by the scientific research foundation of Natural Science Foundation of China (11371222).

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leures applications aux equations integrales, Fundam. Math., 3 (1922), 133-181. 1
[2] M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367-377. 1, 1.3
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1, 1.1
[4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263-276. 1, 1.7
[5] P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 8 pages. 1
[6] N. Hussain, D. Dorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012 (2012), 12 pages. 1
[7] N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic weakly (ψ, ϕ, L, A, B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013 (2013), 18 pages.
[8] N. Hussain, N. Yasmin, N. Shafqat, Multi-valued Ćirić contractions on metric spaces with applications, Filomat, 28 (2014), 1953-1964. 1
[9] H. Işık, D. Türkoǧlu, Fixed point theorems for weakly contractive mappings in partially ordered metric-like spaces, Fixed Point Theory Appl., 2013 (2013), 12 pages. 1
[10] H. Işık, D. Türkoğlu, Coupled fixed point theorems for new contractive mixed monotone mappings and applications to integral equations, Filomat, 28 (2014), 1253-1264.
[11] H. Işık, D. Türkoğlu, Generalized weakly alfa-contractive mappings and applications to ordinary differential equations, Miskolc Math. Notes, 17 (2016), 365-379. 1
[12] T. Kamran, S. Hussain, Weakly (s, r)-contractive multi-valued operators, Rend. Circ. Mat. Palermo., 64 (2015), 475-482. 1, 1, 2
[13] J. T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38 (1973), 545-547. 1
[14] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153-2163. 2.4
[15] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. 1
[16] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order, 22 (2005), 223-239. 1
[17] O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math., 137 (2013), 30-44. 1
[18] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26-42. 1
[19] S. Reich, A. J. Zaslavski, Genericity in Nonlinear Analysis, Springer, New York, (2014). 1
[20] B. H. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683-2693. 1
[21] J. R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229-245. 1, 1.4, 2.4
[22] J. R. Roshan, V. Parvaneh, Z. Kadelburg, N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal. Model. Control, 21 (2016), 614-634.
[23] I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Studia Univ. Babeş-Bolyai Math., 36 (1991), 81-89. 1
[24] S. L. Singh, S. Czerwik, K. Król, A. Singh, Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24 (2008), 401-416. 1
[25] L. Wang, The fixed point method for intuitionistic fuzzy stability of a quadratic functional equation, Fixed Point Theory Appl., 2010 (2010), 7 pages. 1

[^0]: *Corresponding author
 Email addresses: LingjuanYE@126.com (Lingjuan Ye), 3120140519@bit.edu.cn (Congcong Shen)
 doi: 10.22436/jnsa.011.03.04
 Received: 2017-07-03 Revised: 2017-10-13 Accepted: 2017-12-18

