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Abstract

In this paper, we apply Theorem 3.2 of [G. M. Lee, L.-J. Lin, J. Nonlinear Convex Anal., 18 (2017), 1781-1800] to study the
variational inequality over split equality fixed point problems for three finite families of strongly quasi-nonexpansive mappings.
Then we use this result to study variational inequalities over split equality for three various finite families of nonlinear mappings.
We give a unified method to study split equality for three various finite families of nonlinear problems. Our results contain many
results on split equality fixed point problems and multiple sets split feasibility problems as special cases. Our results can treat
large scale of nonlinear problems by group these problems into finite families of nonlinear problems, then we use simultaneous
iteration to find the solutions of these problems. Our results will give a simple and quick method to study large scale of nonlinear
problems and will have many applications to study large scale of nonlinear problems.
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1. Introduction

Let T: H; — Hy, and let Fix(T) = {x € H;j : x = Tx} denote the fixed point set of T. For each i € {1,2,3},
let H; be a real Hilbert space. Let C and Q be nonempty closed convex subsets of H; and Hy, respectively
and A : H; — Hj be a bounded linear operator.

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first introduced by Censor
and Elfving [6] for modeling inverse problems which arise from phase retrievals and in medical image
reconstruction.

The split feasibility problem (SFP) is the problem:

Find % € Hj such that x € C and Ax € Q.
Let F: C — Hj be an operator. The variational inequality problem VIP(E C) is the following problem:

Find x € C such that (Fx,u—%) > 0 for all u € C.
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The solution set of the variational inequality problem is denoted by VI(F, C). The variational inequality
problem VIP(E, C) has many applications in engineering, optimization, and signal recovery problem, see
for example, Chuang et al. [11] and references therein.

Let A : Hy — H3, B : Hy — Hs be bounded linear operators, the split equality problem (SEFP) which
was first introduced by Moudafi [18] is the problem:

Find x € C,§ € Q such that Ax = B{.

The split equality problem has many applications such as decomposition method for PDE, application in
image science, game theory, and intensity-modulated radiation [18]. It is easy to see that when B =1,
and Hy = Hgs, then (SEFP) is reduced to (SFP). Moudafi [18] introduced an iteration process to establish a
weak convergence theorem for split equality problem under suitable assumptions.

Let T: Hy — Hj, S : Hy — Hy be firmly quasi-nonexpansive mappings such that Fix(T) # (), Fix(S) # 0,
and let A : H; — Hgs, B : Hy — Hj3 be bounded linear operators. Moudafi and Al-Shemas [19] introduced
an iteration process and established a weak convergence theorem for split equality fixed point problem
(SEFPP):

Find x € Fix(T),y € Fix(S) such that Ax = Bg.

When B = [, and H; = H3, then (SEFPP) is reduced to the split common fixed point problem (SCFPP)
[7,17]:

Find % € H; such that x € Fix(U) and Ax € Fix(W).

Recently, many results on split equality fixed point problem have been found and one is referred to
[8, 10, 23, 24, 26, 27] and references therein.

Recently, Lee and Lin [14], studied variational inequality problem over split equality fixed point sets
of strongly quasi-nonexpansive mappings with applications to variational inequality problem over split
equality fixed point for the same type of m nonlinear operators.

In this paper, we apply Lee and Lin [14, Theorem 3.2] to study the variational inequality over split
equality fixed point problems for three finite families of strongly quasi-nonexpansive mappings. Then
we use this result to study variational inequalities over split equality for three various finite families of
nonlinear mappings. We give a unified method to study split equality for three various finite families of
nonlinear problems. Our results contain many results on split equality fixed point problems and multiple
sets split feasibility problems as special cases. Our results can treat large scale of nonlinear problems by
group these problems into finite families of nonlinear problems, then we use simultaneous iteration to
find the solutions of these problems. Our results will give a simple and quick method to study large scale
of nonlinear problems and will have many applications to study large scale of nonlinear problems.

2. Preliminaries

For each i € {1, 2,3,4}, let H; be a (real) Hilbert space with inner products (:,-) and norms || - ||, and let
I : Hi = Hj be the identity mapping on Hj. Let {xn}nen be a sequence in H; and x € H;, we denote the
strongly convergence and the weak convergence of {xnJnen to x € H; by x, = x and x — x, respectively.
Throughout this paper, we use these notations unless specified otherwise. Let C be a nonempty subset of
a real Hilbert space Hi, and let T: C — Hj. Then T is

(1) nonexpansive if [[Tx — Tyl| < |[x —yl/ for all x,y € C;
(2) quasi-nonexpansive if Fix(T) # () and ||Tx —y|| < |[[x —y|| for all x € C and for all y € Fix(T);
(3) p-strongly quasi-nonexpansive (in short p- SQNE), where p > 0, if Fix(T) # () and

ITx —ylP* < llx — vyl — ol Tx — x|/

for all x € C,y € Fix(T);
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(4) monotone if (x —y, Tx —Ty) > 0 for all x,y € C;
(5) y-strongly monotone if there exists y > 0 such that (x —y, Tx — Ty) > y|x —y||? for all x,y € C;
(6) pseudocontractive if || Tx — Ty||> < [x —y|? + [[x — Tx — (y — Ty)||* for all x,y € C;
(7) k-demicontractive if Fix(T) # () and there exists —co < k < 1 such that ||[Tx —yl|*> < |x —yl|*> +
k|| Tx —x||? for all x € C and for all y € Fix(T);
(8) k-strictly pseudononspreading [20] if there exists k € (0,1) such that || Tx — Ty||? < ||x —y|[> + k|jx —
Tx—(y—Ty)|>+ (x—Tx,y —Ty) for all x,y € C;
(9) firmly nonexpansive if || Tx — Ty||? + [|(I; — T)x — (I; = T)y|*> < |[x —y||? for all x,y € C;
(10) directed if Fix(T) # 0, and (Tx —y, Tx —x) < 0 for all x € C and for all y € Fix(T);
(11) demiclosed if for each sequence {xn} and x in C with x, — x and (I —T)x, — 0 implies that

(I-T)x=0;
(12) «-averaged if there exist x € (0,1) and a nonexpansive mapping S : C — H; such that T = (1 — x)I+
«S;

(13) hemicontinuous if, for all x,y € C, the mapping g : [0,1] — H;, defined by g(t) = T(tx + (1 —t)y) is
continuous with respect to weak topology on Hy;

(14) quasi-pseudocontractive if Fix(T) # () and ||Tx —y]|? < ||x —yl|> + ||Tx — x||? for all x € C and for all
y € Fix(T);

(15) a-inverse-strongly monotone (in short o-ism) if (x —y, Tx — Ty) > o Tx — Ty|? for all x,y € C and
o > 0.

Lemma 2.1 ([3]). Let C be a nonempty closed convex subset of a real Hilbert space Hi. Let T : C — Hy be a
nonexpansive mapping, and let {xn ncN be a sequence in C. If xn, — w and li_1>n [[Xn — Txnl| =0, then Tw = w.
n—oo

Let f: H; — (—o0,00] be a proper, lower-semicontinuous, and convex function. Then the subdifferen-
tial of of f is defined by

of(x) ={u e Hy : f(y) > f(x) + (y —x,u) for ally € Hy}.

Let C be a nonempty closed convex subset of a real Hilbert space H;. For each x € Hj, there is a
unique element u € C such that u = argminycc [[x —yl|. The mapping Pc : H; — C which is defined by
Pcx = arg minycc |[x —y|| for x € Hy is called the metric projection from H; onto C.

Proposition 2.2 ([1]). Let C be a nonempty subset of a Hilbert space Hy, and let T : C — Hy be nonexpansive, and
o € (0,1). Then the following are equivalent:

(i) Tis x-averaged;
(ii) (vx € C)(vy € C), [|Tx —Ty|* < [[x =yl = 52 [|(L = Tx — (I, = Ty||*.

Lemma 2.3 ([15]). Let T : Hy — Hy be a k-demicontractive operator with k < 1. Denote Ty = (1 —A)I; + AT for
A € (0,1 —XK). Then for any x € Hy,z € Fix(T),

ITax —2lf? < fx —2lf* = (1 — k= A) [ Tax —x||.

Lemma 2.4 ([20]). Let C be a nonempty closed convex subset of Hy and T : C — C be a k-strictly pseudonon-
spreading mapping with Fix(T) # 0. Set T\ = Al; + (1 —A)T,A € [k, 1). Then the following hold:

(i) Fix(Ty) = Fix(T);
(ii) Ty is demiclosed;
(iil) [ITax—Tayll? < [x—yl* + 25 (x = Tax,y = Tay) — A= K)[x = Tax — (y — Tay) [~

The equilibrium problem (EP) [2] is the problem:
Find z € C such that g(z,y) > 0 for eachy € C,
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where g : C x C — R is a bifunction. The solution set of equilibrium problem (EP) is denoted by EP(C, g).
We say that g : C x C — R satisfies the following conditions (A1)-(A4) if the following conditions hold:
(A1) g(x,x) =0 foreach x € C;

(A2) g is monotone, i.e., g(x,y)+g(y,x) <0 forany x,y € C;

(A3) for each x,y,z € C, limsup g(tz+ (1 —t)x,y) < g(x,y);
tJ0
(A4) for each x € C, the scalar function y — g(x,y) is convex and lower semicontinuous.

Theorem 2.5 ([12]). Let g : C x C — R be a bifunction which satisfies conditions (A1)-(A4). For r > 0, define
T? :Hy — Cby

1
TIx = {ZE C:g(z,y)+;<y—z,z—x> >0,Vye C}

for all x € H. Then the following hold:
(1) T is single-valued;
(ii) T2 is firmly nonexpansive, that is, |[T9x — T2yl < (x —y, T9x — Tfy) for all x,y € H;
(i) xeH: TPx=x}={x€C: g(x,y) =0, Vy € C};
(iv) {x € C: g(x,y) =0, Yy € C}is a closed and convex subset of C.

Here, T? is called the resolvent of g for r > 0.

Theorem 2.6 ([14]). Let M : C — Hy be a hemicontinuous and monotone mapping. Suppose that M is locally
bounded on C. Then, for v > 0 and x € Hy, define T, : Hy — C by

1
Tx = {ze C:(y—z,Mz)—i—;(y—z,z—x) >0, Vye C}

for all x € H. Then the following hold:

(i) T, is single-valued;

(ii) Ty is firmly nonexpansive, that is, || Tyx — Tyl? < (x—y, Tox —Try) forall x,y € H;
(iii) {x e H: T.x =x} = VI(M, C);
(iv) VI(M, C) is a closed and convex subset of C.

Theorem 2.7 ([14]). Let T : C — H; be a hemi-continuous and pseudocontractive mapping. Suppose that T is
locally bounded on C. Then, for each v > 0 and each x € Hy, define F, : Hy — C by

1
Frx = {ze C:<y—z,Tz>—;(y—z,(1+r)z—X) <0, Vye C}

forall x € Hy. Then the following hold:

(i) Fy is single-valued;

(ii) Fy is firmly nonexpansive;

(iii) Fix(Fy) = Fix(T);

(iv) Fix(T) is a closed and convex subset of C.
Proposition 2.8 ([5]). Let A : Hy — Hj be a bounded linear operator with ||A| > 0 and T : Hy — Hj be an
operator satisfying TAw = Aw for some w € Hy. Further let V = 1; — WA*(IQ —T)A.If T is an «-SQNE
operator for some x > 0, then

(i) Fix(V) = A~1Fix(T);

(ii) Vis a-SQNE.
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If T is demiclosed, then V is demiclosed .
Define L ={1,2,...,m}and A ={w = (wy.wy,...,wm) ER™,w; 20,i€l, and Y " wi =1}

Proposition 2.9 ([5]). Foreachi € L, let S; : Hy — Hy be demiclosed and pi-SQNE Suppose that ;<1 Fix(S;) #
0. Let S = Y ", wiSi, where w € Ay Then S is a p-SQNE operator with p = Z{il(ptﬁl)*l —1andS is
demiclosed .

Proposition 2.10 ([1]). Let C be a nonempty subset of Hy, let {Ti}ic1 be a finite family of quasi-nonexpansive
operators from C to Hy such that ;o Fix(Ty) # 0, let {w; : i € I} be strict positive numbers such that ) ;. wi =
1. Then Fix()_;c; wiTy) = ﬂlelle(T ).

Lemma 2.11 ([9]). Let T : Hy — Hy be a Li-Lipschitz continuous mapping with L1 > 0. Denote K = (1 —&)I; +

_ _ 1
ET1—m)L4+nT). If0<&E<n< ey Eusl then

(i) Fix(T) = Fix(K);
(i) if T is demiclosed, then K is also demiclosed;
(iii) in addition, if T : Hy — H; is quasi-pseudocontractive, then K is quasi-nonexpansive.

Let C be a nonempty closed convex subset of H;, and let the indicate function ¢ : H; — [0, 00] be

defined by
0, xeC,
tex = { 00, x¢C.

Then ¢ is a proper, lower semicontinuous, and convex function and ]?\LC = Pc.
Let g € IH(H1) and A € (0, 00). The proximal operator of g € IH(H1) of order A € (0, 00) is

) 1
Prox,  x = arg\])rrghn]{g(v) + ﬁHv —x||?}, x € Hy.

Lemma 2.12 ([1]). Let g € To(H1) and A € (0, 00). Then

(i) prox,, = (I +Adg) ' =]
(ii) prox,, is firmly nonexpansive;
(iii) if C is a nonempty closed convex subset of Hy and g = ic, then prox, ; = Pc for all A € (0, c0).

Lemma 2.13 ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let T : C — C be a k-
strictly pseudocontractive mapping. Then T is demiclosed.

3. Variational inequalities over split equality fixed point for finite families of nonlinear mappings

For each i € {1,2,3,4}, let H; be a Hilbert space, I; be the identity mapping on Hi, Vi : Hi — H; be
L;-Lipschitz continuous, F; : Hi — Hj be ki-Lipschitz continuous and ni-strongly monotone with k; > 0,
and n; > 0. Let

L= Li, k= = T
Jax Ly, k= max i, n = rflllg?)m, pe(0,23)andy € (0,7),
where T = pu(n — %MKZ). For each i € {1,2,3}, let A; : Hi — Hy be a bounded linear operator with adjoint
A¥. Suppose that [|[Ai]| > 0,0 < & < m. Let B; : Hi — Hj be a bounded linear operator with
i=1 i
adjoint B} and let B, : H; — H3 be a bounded linear operator with adjoint Bj. Suppose that ||B1|| > 0 and
|B2|| > 0. The product @, <;<3 Hi = Hi x Hz x Hs is a Hilbert space with inner product and norm given

by
3

(oy) =D (xi,yi) and ||x|* = ZHXIHZ

i=1
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for any x = (x1,%2,%3), Y = (Y1,Y2,Y3) € @1<ig3 Hi- Forany x = (x1,x2,%3) € Qi3 Hi, let V,F, 1=

I(X) - (X1/X2/X3)/
V(x) = (Vi(x1), Va(x2), V3(x3)),

F(x) = (F1(x1), F2(x2), F3(x3)).

Let {xn}_, be a sequence in (0, 1] such that 11m oan =0, and Y 37 ; oty = co. In the following, we use

these notatlons and assumptions unless spec1f1ed otherwise.

Theorem 3.1 ([14]). For each i € {1,2,3}, let p; > 0 and let T; : Hi — Hi be a demiclosed pi-strongly quasi-
nonexpansoive mapping. Suppose that

A={xvy,z) e ® Hi : x € Fix(Ty),y € Fix(T), z € Fix(T3)), A1(x) = Az(y) = Az(z)} # 0.
1<i<3

Let x1 € Hy, y1 € Hy, z1 € Ha, and let the sequences {(xn, Yn, zn)nenN be defined by
(i) Xn+1 = anyYVi(xn) + (I — pon F1) i (xn — A% (2A1(xn) — A2(Yn) — As(zn))) foralln € N;
(i) Ynt1 = on¥Valyn) + (I — ponF2) To(yn — $A3(2A2(yn) — A1 (xn) — As(zn))) forall n € N;
(iti) zni1 = oanYVs(zn) + (Is — ponF3) Ta(zn — $A%(2A3(2zn) — A1(xn) — Az(yn))) forall n € N.
Then lim (xn,Yn,zn) € VI(uF —vV, A).

n—oo
Remark 3.2. The assumption ” p; > 0 ” is needed in [14, Theorem 3.2].

The following theorem and corollary are essential tools in this paper.
Theorem 3.3. Foreachic€{1,2,...,m},j€{1,2,..., 8, k€{1,2,...,s}, let oy > 0,75 > 0and 6, > 0, and let

(i) Mi: Hy — Hy be a demiclosed oi-strongly quasi-nonexpansive mapping;
(ii) Qj:Hz2 — Hy be a demiclosed vj-strongly quasi-nonexpansive mapping;
(iif) Gk : H3 — Ha be a demiclosed &y-strongly quasi-nonexpansive mapping.

Let (C1,C2,...,Cm) € Am, (01,02,...,0¢) € A, (w1, wy,...,ws) € Ag. Suppose that

{ s
A={xyz)e K) Hi:xe ﬂ Fix(Mi),y € [ Fix(Q;), z € [] Fix(Gk), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1
Let x1 € Hy, y1 € Ha, z1 € Ha, and let the sequences {(xn, Yn, zn)nenN be defined by

(i) Xn41 = onyYVa(xn) + (I — pon F1) X1 GMi(xn — AT (2A1(xn) — A2(yn) — As(zn))) foralln € N;
(i) Yns1 = anyValyn) + (L — ponF2) ¥ j_; 0;Q; (yn — %A*(ZAz(yn) A1(xn) — Az(zn))) forall n € N;

(iil) zn41 = xnYVa(zn) + (I3 — nonF3) 3 31 Wk Gi(zn — §A5(2A3(zn) — A1(xn) — A2(yn))) foralln € N.
Then liﬁm (Xn,Yn,zn) € VI(uF—vyV, A).
n o0
Proof. Let

i) =31 GM
() To=3;_,0;Q;
(iii) T3 = Zlizl LUka.
By Proposition 2.9,

(i) Ty is a demiclosed pj-strongly quasi-nonexpansive mapping for some p; > 0;
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(ii) T, is a demiclosed p;-strongly quasi-nonexpansive mapping for some p, > 0;
(iii) Tz is a demiclosed p3-strongly quasi-nonexpansive mapping for some pz > 0.

By Proposition 2.10,
(i) Fix(Ty) = Ni%; Fix(My);
(i) Fix(Ta) = M)j_, Fix(Q;);
(iii) Fix(T3) = 5_, Fix(Gy).
Let O ={(x,y,2) € ®1<i<3 H; : x € Fix(Ty),y € Fix(Ty), z € Fix(T3)), A1(x) = Az(y) = As(z)}.

It is easy to see that Q = A # (). Then Theorem 3.3 follows from Theorem 3.1. O
Corollary 3.4. Foreachi €{1,2,3,}, let Vi : Hy — H; be Li-Lipschitz continuous, F; : Hy — Hj be ki-Lipschitz
continuous and ni-strongly monotone with ki > 0, and n; > 0.

Foreachie{1,2,...,m},j€{1,2,... ¢}, ke{l,2,...,s}, let oy > 0,75 > 0 and &, > 0, and let

(i) My : Hy — Hy be a demiclosed oi-strongly quasi-nonexpansive mapping;
(ii) Qj:Hy — Hy be a demiclosed vj-strongly quasi-nonexpansive mapping;
(iii) Gy : Hy — Hyq be a demiclosed d\-strongly quasi-nonexpansive mapping.

Let (Cl/ CZ/- ;Cm) S Am/ (61/ 621' . '162) S Ae; (w].l wa, .. -/ws) € AS- SUPPOSE that

m ¢ s
A ={(x,%x) :x € Hy,x € [ | Fix(Ms) (][ | Fix(Q;) [ ) () Fix(G)} # 0.
j=1 k=1

i=1

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)nenN be defined by

(i) Xnt1 = onYVi(xn) + (I — pomF1) {0 GiMi(xn — §(2xn —yn —zn)) foralln € N;

(i) Yn+1 = otnYVa(yn) + (I1 — panFa) Zle 0;Qj(Yn — 5(2yn —xn —zn)) foralln € N;
(iii) Zny1 = xnYValzn) + (I — panFa) Y5y WkGik(zn — §(22n —xn —yn)) foralln € N.

Then li_r>n (Xn, Yn,zn) € VI(UF —yV, A).
n o
Proof. Let H; = Hy = H3 = Hy, Ay = I} = Ay = A3z in Theorem 3.3, then Corollary 3.4 follows from

Theorem 3.3.
Theorem 3.5. Foreachi€{1,2,...,m},j €{1,2,..., 8,k e{1,2,...,s}, let
(i) My : Hy — Hy be a demiclosed oi-demicontractive mapping;

(ii) Qj:Ha — Hy be a demiclosed vj-demicontractive mapping;
(iif) Gk : H3 — Ha be a demiclosed \.-demicontractive mapping.

Let
(i) Mix, = (1 =A)L +AM; for Ay € (0,1 —07);
(i) Qjp; = (1 —Bj)l2+ B5Q;j for B € (0,1 —15);
(iii)) Gny, = (1 —=mk)I3 + MGy for nx € (0,1 — 6y ).
Let (C1,C2, ..., Cm) €Am, (01,02,...,0¢) €Ay, (w1, wo, ..., ws) €As. Suppose that A ={(x,y,z) € ®1<i<3 H; :

x € Ni%g Fix(Mi),y € ﬂle Fix(Qj), z € Ng—y Fix(Gy), A1(x) = Az(y) = As(z)} # 0.
Let x1 € Hy, y1 € Ha, z1 € Ha, and let the sequences {(xn, Yn, zn)nen be defined by

(i) Xnt1 = anyVi(xn) + (I — panF1) 0 GMin (xn — AT (2A1(xn) — A2(yn) — As(zn))) foralln € N;
(i) Yni1 = onyVa(yn) + (I — panF2) Zjezl e)'Qij (Yn — %AE (2A2(yn) —A1(xn) —Az(zn))) foralln € IN;
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(ili) zZnt1 = anYValzn) + (Is — panFa) ¥ ;1 WkGiny (zn — $A3(2A3(zn) — A1(xn) — A2(yn))) forall n €
IN.

Then li_r>n (Xn, Yn,zn) € VI(UF —yV, A).
n o

Proof. Since for eachi e {1,2,...,m,j€{1,2,..., 0, ke{1,2,...,s},

(i) M : Hi — H; be a demiclosed o;j-demicontractive mapping;
(i) Qj:H2 — Hz be a demiclosed rj-demicontractive mapping;
(iif) Gk : H3 — Ha be a demiclosed &y-demicontractive mapping.
It follows from Lemma 2.3 for each i € {1,2,...,m},j € {1,2,..., ¢}, k€ {1,2,...,s}, Ay € (0,1 —03), B €
(0,1—7;), and i € (0,1 —dy) that
(i) Mia, is a demiclosed (1 — o; — A;)-strongly quasi-nonexpansive mapping;
(ii) Qjp; is a demiclosed (1 —rj — 3;)-strongly quasi-nonexpansive mapping;
(iii) Gyq, is a demiclosed (1 — 8y — Mk )-strongly quasi-nonexpansive mapping.
It is easy to see that
(i) Fix(Mia,) = Fix(My);
(ii) Fix(Qjp;) = Fix(Q;);
(iii) Fix(Gkn,) = Fix(Gy).
Let O = {(x,y,2) € QiciczHi 1 x € N Fix(Mix,),y € ﬂle Fix(Qjp;), z € =1 Fix(Gn,)), A1(x) =
Az(y) = As(z)}.
It is easy to see that O = A # (). Then Theorem 3.5 follows from Theorem 3.3. O

Remark 3.6.

(i) Theorem 3.5 improves and generalizes [24, Theorem 3.2] and [22, Theorem 3.3]. In [22, Theorem
3.3], V = (fy,f2) is a contraction mapping and F = (I3, I).

(ii) Theorem 3.5 extends [14, Theorem 4.1] from variational inequality over split equality fixed points
of m demicontractive mappings to variational inequality over split equality of three families of
demicontractive mappings.

Corollary 3.7. Foreachie€{1,2,...,m},j €{1,2,...,0},k €{1,2,...,s}, let
(i) My : Hy — Hy be a demiclosed quasi-nonexpansive mapping;
(ii) Qj:Ha — Hy be a demiclosed quasi-nonexpansive m mapping;
(iif) Gk : H3 — Ha be a demiclosed quasi-nonexpansive mapping.
Let
(1) Mix, = (1 =A)L +AiM for Ai € (0,1);
(ii) Qjp; = (1—B3)l2+ B5Qj for B € (0,1);
(iii) Gin, = (1 —mi)Is + MG for ni € (0,1).
Let (C1,C2,-..,Cm) € Am, (01,02,...,0¢) € Ay, (w1, Wy, ..., ws) € Ag. Suppose that

4 s
A={xyz)e K Hi:xe ﬂ Fix(Mi),y € [ Fix(Q;), z € [ Fix(Gy), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1
Let x1 € Hy, y1 € Hy, z1 € Ha, and let the sequences {(xn, Yn, zn)nenN be defined by

D) xn41 = % YVilxn) + (I — o Fr) 3105 GMin, (xn — $AT (2A1(xn) = Az(yn) — As(zn))) foralln € IN;
(i) Ynr1 = onYValyn) + (I — poenF2) ¥ 51 0;Q55; (Yn — $A5(2A2(yn) — A1(xn) — As(zn))) foralln € N;
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(ili) zZnt1 = anYValzn) + (Is — panFa) ¥ ;1 WkGiny (zn — $A3(2A3(zn) — A1(xn) — A2(yn))) forall n €
IN.

Then 1i_1)n (Xn,Yn,zn) € VI(UF —yV, A).
n o0

Proof. Since a quasi-nonexpansive mapping is a 0-demicontractive mapping, Corollary 3.7 follows from
Theorem 3.5. O

Remark 3.8.

(i) Corollary 3.7 improves and generalizes [13, Theorem 3.1]. [13, Theorem 3.1] established a strong
convergence theorem for VI(L —vyf, A), where L is a strongly positive bounded self-adjoint linear
operator, f is a contraction mapping, and A is a multiple sets split fixed point of quasi-nonexpansive
mappings. Since a strongly positive bounded self-adjoint operator is a Lipschitz continuous and
strongly monotone operator.

(ii) Corollary 3.7 generalizes [5, Corollary 5.1] which established a weak convergence of multiple sets
split fixed point theorem of quasi-nonexpansive mappings.

(iif) Corollary 3.7 also extends [27, Theorems 3.2 and 3.4]. In [27, Theorems 3.2 and 3.4], V = (f1,fz) is a
contraction mapping and F = (Ij, I).

Theorem 3.9. Foreachi€{1,2,...,m},j€{1,2,...,8,ke{1,2,...,s}, let

(i) My : Hy — Hy be a oi-strictly pseudo-nonspreading mapping;
(i) Qj:H2 — Hy be a vj-strictly pseudo-nonspreading mapping;
(iif) Gk : H3 — Ha be a demiclosed &y.-strictly pseudo-nonspreading mapping.

Let
(i) Miy, = (1 7\ )Ii +AiM; for Ay € (o3, 1);
(ii) Q]-Bj = )12 4+ B;Q;j for B; € (v5,1);

(iii) Gy, = (1 nk)13 + Mk Gy for n € (8, 1).
Let (C1,Co,...,Cm) € Am, (01,02,...,0¢) € Ay, (w1, Wy, ..., ws) € Ag. Suppose that

[4 s
A={(xy,z ® Hi:x e ﬂ Fix(My),y € ﬂ Fix(Qj), z € ﬂ Fix(Gy), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1

Let x1 € Hy, y1 € Ha, z1 € Ha, and let the sequences {(xn, Yn, zn)men be defined by
(i) xnt1 = anyVi(xn)+ (I — ponFy) Zlnzl CiMi?\i (xn — %AT (2A1(xn) _AZ(UTL) Az(zn)) f01’ alln € IN;
(i) Yns1 = cn¥Valyn) + (L —penF2) T 85Qjp; (Yn — $A3(2A2(yn) — A1 (xn) — As(zn)) for alln € N;
(il) zZnt1 = anYVa(zn) + (Is — panFa) ¥ 1 WkGiny (zn — $A3(2A3(zn) — A1(xn) — A2(yn))) forall n €
IN.

Then li_1>n (Xn,Yn,zn) € VI(UF —yV, A).
n o0

Proof. By assumptions and Lemma 2.4, for each i € {1,2,...,m},j € {1,2,...,0,k € {1,2,...,s}, and for
Ai € (0,1),B5 € (15,1) and Ny € (8x,1) we have that

(i) Fix(Mia,) = Fix(My), Fix(Q]B = Fix(Qj), Fix(Gyy, ) = Fix(Gy);

(ii) Mia,, Q]B] and Gy, are demlclosed

(i) [[Mirx —Minyl? < [l =yl + 25 (x = Miag, y — Mingy) — (A = o) [[x = Miax = (y =M y) 1%
(iv) 1Qjp;x — Qjp;ylI* < [x— y\|2+17[3 < — Qi %y —Qjp,y) — (B —15)lIx— Qjp,x — (y — Qjp,y)II%
) 1Gkpyx — Qipyl2 < k=Yl + 12— (x— Gien X, Y — Gy} — (e — )X — Greny X — (4 — Gy )12
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It is easy to see that for each i € {1,2,...,m},j € {1,2,...,8},k € {1,2,...,s}, and for A; € (0y,1),B; €
(r5,1) and ny € (8x, 1) that
(i) My, is a demiclosed (A; — oy)-strongly quasi-nonexpansive mapping;
(ii) Qjp; is a demiclosed (B;j — rj)-strongly quasi-nonexpansive mapping;
(iii) Gyn, is a demiclosed (ny — Ok )-strongly quasi-nonexpansive mapping.

Let

[4 s
X Y,z ® H X e m le l?\‘)/g € m FlX(Q] ﬁj)l z e ﬂ FiX(Gk5k)/Al (X) = AZ(U) - A3(Z)}
1<i<3 j=1 k=1

It is easy to see that Q = A # (). Then Theorem 3.9 follows from Theorem 3.3. O

Remark 3.10.

(i) Theorem 3.9 improves and generalizes [10, Theorem 3.1]. [10, Theorem 3.1] established a weak
convergence theorem for split equality multiple sets fixed point of strictly pseudo-nonspreading
mappings. The simultaneous iteration in Theorem 3.9 is different from the simultaneous iterations
in [10, Theorem 3.1].

(ii) In [14, Theorem 3.7], the authors studied variational inequality problem over split equality fixed
point for m strictly pseudo-nonspreading mappings, but Theorem 3.9 studies variational inequality
problem over split equality fixed point for three finite families of strictly pseudo-nonspreading

mappings.
Theorem 3.11. Foreachi€{1,2,...,m},j €{1,2,...,¢,k€{1,2,...,s}, let
(i) My : Hy — Hy be a oy-strictly pseudo-nonspreading mapping;
(ii) Qj:Ha — Hy be a vj-strictly pseudo-contractive mapping;
(iif) Gk : H3 — Ha be a demiclosed &\-demicontractive mapping.
Let
(1) Mix, = (1 =A)L +AiM; for A € (03, 1);
(i) Qjp; = (1—B5)2+ B;Qj for Bj € (0,1 —1;5);
(iii) Giny = (1—m)I3 + MGy for mi € (0,1 — ).
Let (C1,Co, ..., Cm) € Am, (01,02,...,0¢) € A, (w1, Wy, ..., ws) € As. Suppose that

4 s
A={(xy,z ® Hi:x € ﬂ Fix(Mi),y € ﬂ Fix(Qj), z € ﬂ Fix(Gy), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1
Let x1 € Hy, y1 € Ha, z1 € Ha, and let the sequences {(xn, Yn, zn)men be defined by
(i) Xn+1 = anyYVi(xn) + (It — ponF1) X0 GMin, (xn — $AT(2A1(xn) — A2(yn) — Az(zn))) foralln € N;
(i) Ynt1 = an¥Valyn) + (b —pomFa) 35 85Q;p; (yn — $A3(2A2(yn) — As (xn) — As(zn)) for alln € N;
(iii) Hz\?ﬂ = onYVs(zn) + (Is — panF3) X 34 Wk Gk, (zn — %Ag‘ (2A3(zn) —A1(xn) —Az(yn))) foralln €
Then Tlli_r>rc1>o(xn,yn,zn) € VI(uF—vV, A).

Proof. We see in the proof of Theorem 3.9 that M;,, is a demiclosed (A; — 01 )-strongly quasi-nonexpansive
mapping and Fix(Mi,,) = Fix(M;) for each i € {1,2,..., m}.

Since for each j € {1,2,...,{}, Q; : Hy — Hy is a rj-strictly pseudo-contractive mapping. It is easy to
see that Q; is a Tj-demicontractive mapping for each j € {1,2,...,¢}. For each j € {1,2,...,{}, by Lemma
2.13, Qj is demiclosed.

It follows from Lemma 2.3 for each j € {1,2,...,¢},k € {1,2,...,s}, Bj € (0,1 —7;) and ny. € (0,1 — &)
that



L. J. Lin, J. Nonlinear Sci. Appl., 11 (2018), 394416 404

(i) Qjp; is a demiclosed (1 —r; — B;)-strongly quasi-nonexpansive mapping;
(ii) Gy, is a demiclosed (1 — dx — 1y )-strongly quasi-nonexpansive mapping.

Let

¢ s
Q={(xy,z2) € (X Hi:xe ﬂ Fix(Mia,),y € () Fix(Qjp,), z € (1] Fix(Grs, ), A1(x) = Az(y) = As(z)}.
1<i<3 j=1 k=1

It is easy to see that Q = A # (). Then Theorem 3.11 follows from Theorem 3.3.

Corollary 3.12. Let Vi : Hy — Hy be Li-Lipschitz continuous, F; : Hy — Hj be ki-Lipschitz continuous and
ni-strongly monotone with ky > 0, andn; > 0. Foreachi € {1,2,...,m},j €{1,2,...,0,k€{1,2,...,s}, let

(i) My : Hy — Hy be a oi-strictly pseudo-nonspreading mapping;

(i) Qj:Hy — Hy be a vj-strictly pseudo-contractive mapping;

(iii) Gy : Hy — Hy be a demiclosed &y-demicontractive mapping.

O

Let
(i) Mix, = (1 —=A)L1 +AM; for Ay € (04, 1);
(i) Qjp; = (1 —Bj)l1 + B3Q;j for B € (0,1 —15);
(iii) Gy, = (1 —=mi)I1 + MGk for ni € (0,1 — d).
Let (Cl/ CZ/ ey Cm) e Amr (61/ e2/ ey ee) e Aer (wlr w2/ ey

A={(x,xx):x€HyxeE ﬂ Fix(M ﬂ ﬂ Fix(Qj) ﬂ ﬂ Fix(Gy)} # 0.
k=1

i=1

ws) € Ag. Suppose that

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)InenN be defined by
(i) Xnt1 = oxnyYVilxn) + (It — ponFr1) 10 GiMin, (xn — §(2xn —yn —2zn)) foralln € N;
(i) Yns1 = otnyVa(yn) + (I1 — pnonF2) Zle 0;Qjp; (yn — £2yn —xn —zn)) foralln € N;
(iii) zn41 = xnyYVs(zn) + (I1 — potn F3) Zi:l kaknk(Zn - %(Zln —Xn _Un))for alln € IN.

Then li_r>n (Xn,Yn,zn) € VI(UF —yV, A).
n o

Proof. Let H; = Hp = H3z = Hy, A; = I} = Ay = A3 in Theorem 3.11, then Corollary 3.12 follows from
O

Theorem 3.11.
Theorem 3.13. Let V; : H; — Hj be Li-Lipschitz continuous, F; : H; — Hj be k;-Lipschitz continuous and
ni-strongly monotone with k; > 0, and n; > 0. Foreachi€{1,2,...,m},j €{1,2,...,0},k €{1,2,...,s}, let

(i) M : Hy — Hj be a oj-strictly pseudo-nonspreading mapping;
(i) Qj:Hz — Ha be a rj-strictly pseudo-contractive mapping;
(iii) Gy : H3 — H3 be a demiclosed &y -demicontractive mapping.

Let
(i) Mix, = (1 —=A)L +AM; for A; € (Uill),’

(i) Qjp; = (1—B5)l2+ B;Qj for B5 € (0,1 —1y);
) (1—m)I3 + MGy for mye € (0 1— 5k)
(

(iii) Gyn, =
0¢) € Ag, (w1, wy, ..., ws) € Ag. Suppose that

Let C]/ CZ/ /Cm) € Am/ (61/ 921---/

m 4
A ={(x,%,x) :x € Hy,x € (| Fix(M), B1(x) € [ Fix(Qj), Ba(x)
i=1 j=1

€ () Fix(Gy)} # 0.
k=1

Let x; € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Un, zZn)Inen be defined by
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(1) xn+1 = anyVilxn) + (It — poen Fr) le GiMix, (xn — %(an —Yn —2zn)) foralln € N;

(i) Yns1 = anyYVa(yn) + (It — ponF2) Zf’:1 0; (I — WBT(E — Qjg;)B1)(Yn — $(2yn —xn —zn)) for
alln € IN;

(iii) zn41 = anYVa(zn) + (I1 — panF3) 3¢ g wi (L — HB 18,7 B2 (13 — Gieny )B2) (zn — 5224y —xn —yn)) for
all n € N.

Then li_1>n (Xn,Yn,zn) € VI(UF —yV, A).
n o0

Proof. Theorem 3.11 shows that foreachj € {1,2,...,8}, k € {1,2,...,s}, 35 € (0,1—7;), and ny € (0,1—0x),
(i) Qjp, is a demiclosed (1 —r; — B;)-strongly quasi-nonexpansive mapping;
(ii) Gy, is a demiclosed (1 — dx —x)-strongly quasi-nonexpansive mapping.
Let
@) Vip; = ( H311|‘ZBT(12—Q5[5]-)B1);
(i) Wien, = (It — 5,2 B3 (Is — G, ) Ba)-
By Proposition 2.8, for 35 € (0,1 —1j), and for nyx € (0,1 —06x),
@) Fix(vﬁj) = B 'Fix(Q;) and Fix(Wiy, ) = B, 'Fix(Gy).

(ii) Vjp; : H1 — Hj is a demiclosed (1 —r; — 3;)-strongly quasi-nonexpansive mapping, and Wiy, :
H; — Hj is a demiclosed (1 — 6x —nk)-strongly quasi-nonexpansive mapping.

Theorem 3.11 shows that Mj,, is a demiclosed (A; — 01)-strongly quasi-nonexpansive mapping for
Ai € (0y,1), and Fix(Mjy,) = Fix(My).

Let
m 4 s
Q ={(x,%x) :x € H,x € [| Fix(Mip,), x € [ | Fix(Vjg,),x € (1] Fix(Wien, )}-
i=1 j=1 k=1
It is easy to see that Q = A # (). Then Theorem 3.13 follows from Corollary 3.12. O]

Theorem 3.14. Foreachi€{1,2,...,m},j €{1,2,..., 8,k €{1,2,...,s}, let

(i) Pi:Hy — Hy bea oi-Lipschitz continuous demiclosed quasi-pseudocontractive mapping;
(ii) Rj:Hz — Hy be a pj-Lipschitz continuous demiclosed quasi-pseudocontractive mapping;
(iif) Wy : Hz — H3 be a dx-Lipschitz continuous demiclosed quasi-pseudocontractive mapping.

Foreachi€{1,2,...,m},j€{1,2,...,0}, andk € {1,2,...,s}, let
(i) My =(1-8&) +&Pi(1—vi)lhi +v1Py;

(11) QJ = (1—O'j)12+0'jRj(1—Vj)Iz+VjRj;

(i) Gy = (1—px)Iz + Pk Wi (1 — 1) 13 + 81 W,

where 0 < & < yi < ———
(tﬂl ‘Y'L 1 l+ 2/

ke{l1,2,...,s}, and let

ie{l,2,...,m}0<wj<vj< H\/#ip%’j €{1,2,...,0,and 0 < px < & <

m’
(i) Mix, = (1=A)L +AiM; for Ay € (0,1);
(i) Qjp; = (1—B5)12+ B;Qj for Bj € (0,1);

(iii) Gyny = (1—m)Iz + MGy formy € (0,1).

Let (C1,C2,-.,Cm) € Am, (01,02,...,0¢) € Ay, (w1, wy,...,ws) € Ag. Suppose that

14 s
A={xyz) e ) Hi:xe ﬂ Fix(P;),y € [ | Fix(R;), z € )] Fix(Wi)), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1

Let x1 € Hy, y1 € Hy, z1 € Ha, and let the sequences {(xn, Yn, zn)nenN be defined by
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— LA (2A1(xn) — Az(yn) — As(zn))) foralln € N;
— 2A5(2A2(yn) —A1(xn) —Asz(zn)) for alln € IN;
£A3(2A3(zn) — A1(xn) — Az(yn))) forall n €

(1) Xn41 = XnYVi(xn) + (I — nanF1) X5 GiMin, (xn
(i) Yni1 = onYValyn) + (I —ponFa) ¥ j_1 6 Q;ﬁl
(iii) zn41 = onYVa(zn) + (I3 —panF3) 3§ 4 kaknk(Zn
IN.

Then li_r>n (Xn,Yn, zn) € VI(UF —yV, A).
n o

| m\m w\m

Proof. By Lemma 2.11, foreachi € {1,2,...,m},j €{1,2,..., 8}, ke{1,2,...,s},

(i) Fix(My) = Fix(Py), Fix(R;) = Fix(Q;), Fix(Wy ) = Fix(Gy);
(i) My, Qj, and Gy are demiclosed at 0;
(iii) My, Qj, and Gy are quasi-nonexpansive mappings.

Let

{ s
Q={(xy,2) ® Hi:x € ﬂle ),y € ﬂFix(Qj), z€ ﬂFix(Gk),Al( ) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1
It is easy to see that O = A # () and Theorem 3.14 follows from Corollary 3.7. O

Remark 3.15. Since firmly quasinonexpansive mapping, pseudo-contractive mappings, k-strict pseudo-
contractive mapping, k-strict pseudo-nonspreading mapping, demi-contractive mappings, and directed
operators are special cases of quasi-pseudo-contractive mappings, we see that Theorem 3.14 extends
many results on fixed point problems, multiple sets split fixed point problems and split equality fixed
point problems existing in the literature.

Corollary 3.16. Foreachi€{1,2,...,m},j €{1,2,...,0,k €{1,2,...,s}, let

(i) Pi:Hy — Hy bea oi-Lipschitz continuous demiclosed quasi-pseudocontractive mapping;
(ii) Rj:Hz — Hy be a pj-Lipschitz continuous demiclosed quasi-pseudocontractive mapping;
(iif) Wy : Hz — H3 be a dx-Lipschitz continuous demiclosed quasi-pseudocontractive mapping.

Foreachie{1,2,...,m},j €{1,2,...,8}, and k € {1,2,...,s}, let
(i) My =(1-8&) +&Pi(1—vi)l1 +v1Py;

(ii) Qj = (1—O'j)Iz—i—O'jRj(l—V]')Iz-{—VjRj;

(iii) Gx = (1—px)lz3+ pka(l — &)z + o Wi

where 0 < & < yi < ie{1,2,.. m},0<wj<v]-<1+\/++T%,je{l,2,...,€},and0<pk<£k<

1+ +2’

m,ke{l 2,...,s}, and let

(i) Mix, = (1 =A)L +AM; for A; € (0,1);
(i) Qjp; = (1—B5)L2+B;Q; for By € (0,1);
(i) Gin, = (1 —m )3 + MGy for mi € (0,1).

Let (C]/ CZ/---/Cm) € A‘nl/ (61162/“'/6€) € A(’,/ (wl/wZ/---/ws) € AS-
Suppose that

I4 s
A={(xy,z ® Hi:x € m Fix(Py),y € ﬂ Fix(Rj), z € m Fix(Wy)), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1
Let x1 € Hy, y1 € Ha, z1 € Ha, and let the sequences {(xn, Yn, zn)nen be defined by
(i) Xn+1 = anx1+ (1 —an) X1y GMin (xn — $AT(2A1(xn) — A2(yn) — As(zn))) foralln € N;
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(i) Yn+1 = oy + (1—on) ¥ {1 05Qjp; (Un — $A5(2A2(yn) — A1(xn) — As(zn))) foralln € N;
(iii) zn+1 = onz1 + (1 —on) Y g Wk Gy (zn — %Ag‘ (2A3(zn) —A1(xn) —A2(yn))) foralln € IN.

Then lim (Xn,Yn,zn) = PA(X1,Y1,21).
n—,oo

Proof. Let V(x,y,z) = (Vi(x), Va(y), V3(z)) = (x1,Y1,21) for any (x,y,z 6 ®1<ics Hisand let F=1; x I x
I3, then Vis *-LlpSChltZ continuous. We choose u=1,y=1,and Tt = 5. Then Corollary 3.16 follows from
Theorem 3.14. O

Remark 3.17. Chang et al. [9] introduced an iteration process to study the split equality fixed point of
quasi-pseudocontractive mappings and established a weak convergence theorem, they also established
a strong convergence theorem under the assumption that both the quasi-pseudocontractive mappings
which are considered by them are semicompactness, but we don’t have the assumption of semi-compact
on any one of operators in Theorem 3.14 and Corollary 3.16. We give a different proof to establish strong
convergence theorem for the split equality fixed point of quasi-pseudocontractive mappings.

Theorem 3.18. Foreachi € {1,2,...,m},j€{1,2,..., 8}, ke{1,2,...,s}, let

(i) Mi : Hi — Hj be a hemicontinuous, locally bounded pseudocontractive mapping;
(ii) Qj:Hz — Hz be a hemicontinuous, locally bounded monotone mapping;
(iii) Gy : Hz — H3 be a demiclosed &y - demicontractive mapping.

Letr >0, for x € Hy, and u € Hj, and set

(i) Si(x) ={z€Hy: {y—z Mz) —l<y —z,(1+1)z—x) <0, Vy € Hi };

(i) Pj(w)={z€eD;j: (y—2zQjz)) +i{y—zz—u) >0, Vy € Dj};

(iii) GkT]k = (1—ny)I3 + NGy for i 6 (0,1—dy).

Let (Cl/ CZ/ /Cm) S Am/ (61/ 92/ --/92) € AEI (wll wZ/--'le) S AS- Suppose that

¢ s
{xyz)e Q) Hiixe ﬂle ),y € () VI(Q;,D5), z € () Fix(Gi), A1(x) = Az(y) = As(z)} # 0.

1<i<3 j=1 k=1

Let xq € Hy, y1 € Hp, z1 € H3, and let the sequences {(xn, Un, zZn)Inen be defined by

(i) Xni1 = oanyVi(xn) + (I — panF1) X0 GiSilxn — $AT(2A1(xn) — A2(yn) — Az(zn))) foralln € N;

(i) Yn+1 = anyVa(yn) + (I — poen F2) Zf:l 0;P; (Yn — %AE(ZAZ(UTL) —A1(xn) —Az(zn))) foralln € IN;

(iti) zni1 = oanYVs(zn) + (I3 — otnF3) 354 Wk Giny (zn — $A%(2A3(zn) — A1(xn) — A2(yn))) foralln €
IN.

Then lgll (Xn,Yn,zn) € VI(uUF —vyV, A).
n o0

Proof. We see in Theorem 3.5, for each 1 € (1 —Ay), Giy, is a demiclosed (1 — &y — i )-strongly quasi-
nonexpansive mapping. By theorem 2.6, and Theorem 2.7, we show that for eachi € {1,2,...,m}, and j €
{1/2/' . .,S},

(i) Si and Pj are single-valued;
(ii) Si and Pj are firmly nonexpansive;

(iii) Fix(P;) = VI(Q;, D;), and Fix(S;) = Fix(M;).

Then for each i € {1,2,...,m}, andj € {1,2,...,s}, S; and P; are averaged. Therefore S; and P; are
nonexpansive mappings. Then by Lemma 2.1, S; and P; are demiclosed. By Proposition 2.2, we show
that

(i) Siisa pi-strongly quasi-nonexpansive mapping for some p; > 0;
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(ii) Pj is a demiclosed y;-strongly quasi-nonexpansive mapping for some y; > 0.

Let

¢ s
Q={xy,z ® Hi:x € ﬂ Fix(Si),y € ﬂ Fix(P;), z € ﬂ Fix(Gyn, ), A1(x) = Az(y) = Az(z)}.
1<i<3 j=1 k=1

It is easy to see that QO = A # (). Then Theorem 3.18 follows from Theorem 3.3. O

We apply Theorem 3.3 and argue as Theorems 3.5 and 3.13, we can study the variational inequality
problem over split fixed point of three finite families of demicontractive mappings.

Theorem 3.19. Let Vi : Hy — Hj be Li-Lipschitz continuous, F; : Hy — Hy be ki-Lipschitz continuous and
ni-strongly monotone with k; > 0, andn; > 0. Foreachi € {1,2,...,m},j €{1,2,..., 8}, ke {1,2,...,s}, let

(i) M : Hy — Hj be a demiclosed o;-demicontractive;
(i) Qj:Ha — Hy be a demiclosed v;-demicontractive mapping;
(iif) Gk : H3 — Ha be a demiclosed dy.-demicontractive mapping.

Let
(i) Mix, = (1—=A)L +AM; for Ay € (0,1 —0y);

(i) Qjp; = (1 —Bj)l2+ B3Qj for B € (0,1 —1;5);
(i) Gine = (1= )3 + MGy for M € (0,1 — 8y ).

Let (C1,C2,--.,Cm) € Am, (01,02,...,0¢) € Ay, (w1, Wy, ..., ws) € As. Suppose that

m 14
A={(xxx):x €Hx € ﬂFix( ﬂ ix(Qj), Ba(x ﬂle Gy)} #0.
i=1 j=1

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)nenN be defined by

(i) Xn+1 = anyYVilxn) + (I — ponF1) X GMin (xn — § (2% —yYn —zn)) forall n € IN;
(i) Yn+1 = otn¥YVa(yn) + (I1 — pan F2) Zle 0;(I1 — ”B . BT (12 = Qjp;)B1) (Yn — £(2yn —xn —zn)) for all
n € IN;
(111) Zn+1 = OCnYV3(Zn) + (Il - UCXHFB) Z]i:l wk(Il - mB;(IB - Gknk)BZ)(Zn - %(2111 —Xn _yn))for all
n € N.

Then li_r>n (Xn,Yn,zn) € VI(UF —yV, A).
n o

Remark 3.20. Theorem 3.19 improves and generalizes [24, Theorem 3.2]. In [24, Theorem 3.2], the authors
studied multiple sets split fixed point of demicontractive mappings and quasi-nonexpansive mappings.

4. Variational inequality over split equality solutions for finite families of nonlinear mappings

Let B : Hy — H; be a multivalued mapping. The effective domain of B is denoted by D(B), that
is, D(B) = {x € H; : Bx # 0}. We say B : H; — Hj is monotone on Hj if (x —y,u—v) > 0 for all
x,y € D(B),u € Bx, and v € By. B is maximal monotone on Hj if B is a monotone operator on H; and
its graph is not properly contained in the graph of any other monotone operator on H;. For a maximal
monotone operator B : Hy — Hj and T > 0, we may define a single-valued mapping J2 : H; — D(B) by
J8 = (I+7B)~!, and it is called the resolvent mapping of B for r.

For each 1 € {1,2,...,m}, let C; be a closed convex subset of Hy, let My; : H; — Hj be a maximum
monotone multivalued mapping such that D(My;) C Cj, Lz : Ci — Hj be a yqi-inverse strongly monotone
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operator, hy; € Tp(H1), 911 € To(H1), and let gi; be Fréchet differentiable with oy;-Lipschitz continuous
Fréchet derivative Vgq;.

For each j € {1,2,...,{}, let D; be a closed convex subset of Hy, My; : Hy — Hy be a maximum
monotone operator such that D(My;) C Dj, Lyj : Dj — Ha be a yj-inverse strongly monotone operator,
hy; € To(H2), 925 € To(H2), and let go; be Fréchet differentiable with oy;-Lipschitz continuous Fréchet
derivative Vgy;. For each k € {1,2,...,s}, let Ex be a closed convex subset of H3, M3, : H3 — H3
be a maximum monotone operator such that D(Msy) C Ey, L3k : Ex — H3z be a yzk-inverse strongly
monotone operator, hsx € Tp(H3z), gsx € To(Hs), and let g3k be Fréchet differentiable with o3y -Lipschitz
continuous Vgzk. Foreachk €{1,2,...,s}, let Gk : H3 — H3 be a demiclosed 6x-demicontractive mapping.
Throughout this section we use these notations and assumptions unless specified otherwise.

Theorem 4.1. Let ({1, (o, ..., Cm) € Am, (01,02,...,0¢) € Ay, (w1, Wy, ..., ws) € Ag and let ¢ > 0. Suppose
that

¢
A ={(xy,z) ® H; xeth+Lh 10,z € mFIXGk ﬂMz]—H_z) 1o,
1<i<3 k=1 j=1

A1(x) = Az2(y) = As(z) } 75 0.
Let x1 € Hy, y1 € Hy, z1 € Hg, and let the sequences {(Xn, Yn, zn)IneN be defined by

(i) Xni1 = oy Vilxn) + (I — pomF1) 1% GIYY (T — CLig) (xn — SAT(2A1 (%n) — Az (yn) — As(zn))) for

allm € IN;

(i) Ynt+1 = anyYVa(yn) + (I2 — paxn Fa) Z) 165 IMZ’(Iz— CLoj) (Yn — 5A5(2A2(yn) — A1 (xn) — As(zn))) for
allmn € IN;

(iti) znt1 = anYValzn) + (Is — RonF3) 351 WkGiny (zn — $A3(2A3(zn) — A1(xn) — A2(yn))) forall n €
N.

Then li_r>n (Xn,Yn,zn) € VI(uF —vyV, A).
n o

Proof. Argue as [25, Theorem 4.1], we see that ]24“(11 —(L11) and ]2/[” (I — CLy;) are averaged for each
1e{l,2,,...,m}and eachj €{1,2,...,4}.
It is easy to see that
(@) Fix(J" (I — CLas)) = (Ma + Ly) 10;
(if) Fix(J} ¥ (I — CLyy)) = (My; + Lyj) 10,
By Proposition 2.2,

(1) ]IC\A“ (It — CLy4) is a Ai-strongly quasi-nonexpansive mapping for some A; > 0;

(ii) ]2/[2" (I, — CLy;) is a Bj-strongly quasi-nonexpansive mapping for some f3; > 0.

For each i € {1,2,,...,m}, and each j € {1,2,...,{}, since ]EA“(Il — (Ly;) and ]24”(12 — (Lp;) are
averaged, ]24“(11 —(L1;) and ]2/[21(12 — (Ly;) are nonexpansive. By Lemma 2.1, ]EA“(Il —(L11) and
]M2J (I, — CLy;) are demiclosed.

It follows from Lemma 2.3 for each k € {1,2,...,s}, Ny € (0,1 —0x) that Gy, is a demiclosed (1 — &y —

Nk )-strongly quasi-nonexpansive mapping. Let

Q={xe ﬂle (I — (L)), z € ﬂ Fix(Gin, ),y € ﬂle 12 (1 — CLyy)), At(x) = Aa(y) = As(2)).
k=1 j=1

It is easy to see that A = Q # () and Theorem 4.1 follows from Theorem 3.3. O
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Theorem 4.2. Let (C], G, .., Cm) € Am, (91,92,. . .,ee) S Ae, ((,Ul, wo, .. .,ws) c As, let Vi : H1 — H1 be
Li-Lipschitz continuous, F; : Hy — H; be ki-Lipschitz continuous and ni-strongly monotone with x; > 0, and
Mi > 0, and let k > 0. Suppose that

m 4
A={(x,x,x) :x € H,x € ﬂ(Mu—i—Lh 10, B4 (x ﬂ Mo; + ;) 10, By(x ﬂle Gy)} # 0.
i=1 j=1 k=1

Let x; € Hy, y1 € Hy, z1 € Hy, and let the sequences {(Xn, Yn, zn)IneN be defined by
() Xnt1 = anyVi(xn) + (I — o Fr) X1 GIRH (T — kLig) (% — §(2%n —Yn —zn)) foralln € N;

(i) Yns1 = onyVa(yn) + (It — panF2) Zle 0;(I1 — mB’f(Iz — (¥ (1, — KL2j))B1)) (Yn — 5 (Yn —xn —
zn)) foralln € IN;

(iii) Zn+l1 = ocan3(Zn) + (Il - P“anB) Z]i:l wk(Il ||Bl IE ( Gknk)BZ)( %(ZZTL —Xn _Un)) fOT’
allm € IN.
Then liﬁm (Xn,Yn, zn) € VI(UF —yV, A).
n o0

Proof. Theorem 3.5 shows that for nx € (0,1 — k), Gy, is a demiclosed (1 — 8, —ny)-strongly quasi-
nonexpansive mapping. In Theorem 4.1, we show that

(i) JM(I; — kLy;) is a A¢-strongly quasi-nonexpansive mapping for some A; > 0;
(ii) ]],:Az" (I, — kLyj) is a Bj-strongly quasi-nonexpansive mapping for some f3; > 0.
Let
i) U = (I — HB Hz B (12 — T I — kL2;))By);
(i) Wiy, = (I — ”Bzuz B3 (I3 — G, )B2).
By Proposition 2.8, for nx € (0,1 —0x),
(i) Fix(U;) = By 'Fix(JX'? (I — kL)) and Fix(Wi, ) = B; 'Fix(Gy);

(i) U; : Hy — Hj is a demiclosed (3;-strongly quasi-nonexpansive mapping, and Wy, : Hy — Hj is a
demiclosed (1 — &y —nx)-strongly quasi-nonexpansive mapping.

Let
m 4 s
Q ={(x,%,x) :x € Hy,x € () Bix(JM(I; — kLy;)), x € () Fix(Uy), x € ) Fix(Wien, )}-
i=1 j=1 k=1
It is easy to see that QO = A # (). Then Theorem 4.2 follows from Theorem 3.3. O

Remark 4.3. In [21] the authors introduced an iteration to study the following problem:
Find x € M~10 such that Lx € Fix(T),

where M : H; — Hj is a maximum monotone operator, and T : H — H» is a nonexpansive operator.
Theorems 4.1 and 4.2 improve and generalize [21, Theorems 4.2 and 4.3]. In [21, Theorems 4.2 and 4.3],
the authors established weak convergence theorems of this problem .

Theorem 4.4. Let ((1,0, ..., m) € A, (01,02,...,0p) € A, (w1, wo,...,ws) € Ag, let Vi : Hi — Hj be
Li-Lipschitz continuous, F; : Hy — Hj be ki-Lipschitz continuous and i-strongly monotone with ki > 0, and
Mi > 0, and let k > 0. Suppose that

S

m [4
A ={(x%x):x € Hy,x € [ (M1i+L1:) 710, B1(x) € () (Maj +Lp5)'0,Ba(x) € [ ] (Ma +Lai) )} # 0.
i=1 j=1 k=1

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zZn)nenN be defined by



L. J. Lin, J. Nonlinear Sci. Appl., 11 (2018), 394416 411

(i) Xni1 = oanyVi(xn) + (I — o Fr) X1 GIRY (I — kLiy) (% — §(2%n —Yn —zn)) forall n € N;
(i) Yn+1 = otnyYVa(yn) + (I1 — pon F2) Zf’:l 05 (11 — IR ||zB*(I (]’.:/lzi (I — kL25))B1)) (Yn — 5 (yn —xn —
zn)) forallm € IN;
(111) Zn4+1 = (XnYV3(Zn) + (Il - FL(XTLFB) Z]i:l wk(ll ||B Hz Bz( - ]QAsk(I3 - KLSk))BZ)(Zn - %(Zzn —Xn —
Yn)) foralln € N.

Then li_1>n (Xn,Yn,zn) € VI(UF —yV, A).
n o0

Proof. Theorem 4.1 shows that

i) J« (I —kLyi) is a Aj-stron uasi-nonexpansive mapping for some A; > 0;
() J& (I — kL1¢) is a Ai-strongly quasi-nonexpansive mapping f Ai>0
(i) TR (I, — KLy;) is a Bj-strongly quasi-nonexpansive mapping for some f3; > 0;
(iii) T (I3 — kLY, ) is a 8y-strongly quasi-nonexpansive mapping for some &y > 0.

Let
@) Mi=J¥" (I = kLyy);
(i) Q5 = (I — B (L — J& (I — KLa3))B1);
(ifi) Wi = (I — i B3 (1 — T (Is — kLax))Ba).
By Proposition 2.8,

(i) Fix(Mi) = H; — H; is a demiclosed Ai-strongly quasi-nonexpansive mapping, and Fix(M;) =
((Mai +Li1)7'0);
i) Qj: l—lll — Hj is a demiclosed (3;-strongly quasi-nonexpansive mapping, and Fix(Q;) = (Bl_l(sz +
Ly5)°0);
(iii) and Wy : H; — Hj is a demiclosed di-strongly quasi-nonexpansive mapping, and Fix(Wy) =
(B! (Max + Lax)10).

Let
m ¢ s
Q ={(x,%x) :x € Hy,x € | Fix(My),x € () Fix(Q;),x € ] Fix(Wi)}.
i=1 j=1 k=1
It is easy to see that O = A # (). Then Theorem 4.4 follows from Corollary 3.4. O

Theorem 4.5. Let (C1,C2,...,Cm) € Am, (01,02,...,0¢) € Ay, (w1, wo, ..., ws) € Ag, and let k > 0. Suppose
that

m s ¢
A={xy,z) € Q) Hi:xeHyxe ((Mi+Li)'0,z€ [ (Mar+1La) " ﬂ Mpj + La;) 0,
1<i<3 i=1 k=1 j—1

A1(x) = Aa(y) = As(z)} # 0.
Let x1 € Hy, y1 € Hy, z1 € Ha, and let the sequences {(xn, Yn, zn)nenN be defined by
(@) Xnr1 = onyVa(xn) + (I — ponFr) X1 GIRY (T — kLas) (% — $AT(2A1 (xn) — Aa(yn) — As(zn))) for
alln € IN;

(i) Yns1 = otnyYVa(yn) + (I2 — ponF2) Zjezl ejII.:AZj (I — kLoj) (yn — $A% (2A2(yn) — A1(xn) — As(zn))) for
allm € IN;

(ifl) Zni1 = onYV3(zn) + (I3 — ponFa) T 53 iV (I3 — kL ) (zn — $A3(2A3(2n) — A1(xn) — Az(yn)))
forallm € IN.

Then li_1>n (Xn,Yn,zn) € VI(UF —yV, A).
n o0
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Proof. We apply Theorem 4.1 and argue as in Theorem 4.4, we can prove Theorem 4.5. O
Remark 4.6. Theorems 4.1 and 4.5 improve and generalize [23, Theorem 4.2].

Corollary 4.7. In Theorem 4.4, let Hy = Hy, = H3 = Hy, I1 =1, =13, ({1,02,...,Cm) € A, (01,02,...,0¢) €
Ag, and (w1, wo, ..., ws) € Ag. Suppose that

m [4 s
A ={(x%x) :x € H,x € [ (M1i+ L)) '0[ ) [ (Mz5 +L25) "0 (][] (Mo + Lax)10)} # 0.
i=1 j=1 k=1

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)IneN be defined by

(1) Xn41 = XnYVilxn) + (I — panFr) 30 CiI'QA“(Il — kL13) (xn — §(2xn —yn —2zn)) forall n € N;
(i) Yni1 = nYValyn) + (I — ponF2) Y5, 9-] I (L — kLyj) (Yn — 5 (Yn — Xn —zn)) forall n € N;
)
(ifi) zny1 = anyYVa(zn) + (11 — ponF3) X5 i J ¥ (1) — kLay ) (zn — £(2zn —xn —yn)) foralln € N.

Then li_r>n (Xn, Yn,zn) € VI(UF —yV, A).
n o

Proof. Let By = I; = B, = I, = I3 in Theorem 4.4, then ||B1|| = ||B2|| = 1 and Corollary 4.7 follows from
Theorem 4.4. O

Theorem 4.8. Let ((1,0,..., m) € A, (01,02,...,00) € Ag, (wy, wo,...,ws) € Ag, let Vi : Hi — Hjp be
Li-Lipschitz continuous, F; : Hy — Hj be ki-Lipschitz continuous and -strongly monotone with x; > 0, and

ni > 0. Suppose that

m [4
A ={(x,%x) :x € H,x € (] Ci,B1(x) ﬂ Dj, Ba(x ﬂle Gy} # 0.

i=1 j=1

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)nenN be defined by

(i) xns1 = oanyVa(xn) + (I — panF1) 3103 GPe (xn — §(2%n —yn —zn)) forall n € N;
(i) Yyn+1 = otn¥YValyn) + (I1 — poen F2) Zle 0;(I1 — WBT@ — Pp,)B1)(Yn — §(Yn — xXn —zn)) for all
n e N;
(111) Zn+1 = anyv3(zn) + (Il - FL(XTLF3) Z]i:l wk(Il ||B Hz B2(13 - Gknk)BZ)(Zn - %(Zzn —Xn _yn))for all
n € N.

Then li_r>n (Xn,Yn,zn) € VI(uF —vyV, A).
n o

Ap.
Proof. Let L1; = 0,15 = 0,My; = dic,, My = aLDj in Theorem 4.2, then ]2LC‘1 = Pc,, ]KLD’ = PD]., and
theorem 4.8 follows from Theorem 4.2. O

Remark 4.9. Theorem 4.8 improves and generalizes [4, Theorem 3.1]. In [4, Theorem 3.1], the authors
established a strongly convergence theorem for split feasibility problem and fixed point problem of k-
strictly pseudo-contractive mapping.

Corollary 4.10. Lett (C1,(2,...,Cm) € Am, (01,02,...,0¢) € Ay, (wy, wy,...,ws) € Ag, let Vi : Hy — Hy be
Li-Lipschitz continuous, F; : Hy — Hj be ki-Lipschitz continuous and ni-strongly monotone with x; > 0, and

ni > 0. Suppose that
A ={(x,x,x):x € Hy,x € Ni%; Ci, B1(x eﬂ) 1Dj,Ba(x) € Ny Ex} #0.
Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)InenN be defined by

(1) xnt1 = onyVi(xn) + (1 —panFr) 3%, GiPc,(xn — %(ZXn —Yn —2zn)) foralln € IN;
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(i) Yns1 = onyValyn) + (I — penF2) X5 05(h — 5ipBi (I — Poy)B1) (Yn — 5 (Un — Xn — 2n)) for all
neN;

(111) Zn+1 = (XnYV3(Zn) + (Il - H-(XnF3) Z]i:l wk(Il - WB;(Il - PEk)BZ)(Zn - %(Zzn —Xn _yn))for all
n € N.

Then liﬁm (Xn,Yn,zn) € VI(UF —yV, A).
n o0

Proof. For each k € {1,2,...,s}, let Gax = Pg,. Since Pg,_ is a firmly nonexpansive mapping, P, is
averaged and Pg, is demiclosed. By Proposition 2.2, Gy is a y-strongly quasi-nonexpansive mapping for
some 0y > 0. Hence Gy is a di-demicontractive mapping for some 0, > 0. Then Corollary 4.10 follows
from Theorem 4.8. O

Theorem 4.11. Let ((1,0p,...,0m) € Am, (91,62, ...,0p) € Ag, (w1, wsy,...,ws) € Ag, let Vi : Hi — Hy be
Li-Lipschitz continuous, Fi : Hy — Hj be ki-Lipschitz continuous and n;-strongly monotone with x; > 0, and
My > 0 and let k > 0. Suppose that

m 4
A= . H i h i i P B i ho; i P
{(x,x,x) :x € Hy,x € Qargirellglll( 11+ g1i(u)), Bi(x) € jqarg&llgllz( 25 +g25) (1)

Ba(x) € (1) Fix(Gy)} # 0.

k=1
Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)nen be defined by
(i) xnt1 = xnYVi(xn) + (I —panFr) 310 Giprox,,, (I —kVgii) (xn — §(2xn —yn —2zn)) foralln € N;
(i) Ynt+1 = anyYVa(yn) + (It — pon F2) Zle 0;(I — ﬁBT(Iz — (prox, (I = kVg2;))B1)) (yn — £(yn —
Xn —2zn)) for allm € IN;
(iil) zn41 = xnYVa(zn) + (I — pon F3) 3y g wie(Iy — mBE(Is — Gy )B2) (zn — § (220 — Xn —yn)) for all
n e N.

Then liﬁm (Xn,Yn,zn) € VI(UF —yV, A).
n o
Proof. Apply Lemma 2.3 and argue as the proof II of [25, Theorem 4.2], we see that for each i €
{1,2,...,m},j €{1,2,...,4},
(i) Ohy, ah; are maximum monotone operator;

(ii) Vgiiisa =

O1i

1

inverse strongly monotone operator, Vgp; is a oy, Inverse strongly monotone operator;

; dho;
(iii) prox,, (I —kVgi) = 1M — kY1), prox,,, (I = kVgp;) = T (1 — KV go;j);
(iv) argminyep, (hii + g11)(x) = (dhyi + Vg11) 710, arg minyep, (hoj + goj) (x) = (dhaj + Vigo;) 0.

Then Theorem 4.11 follows from Theorem 4.2. O

Remark 4.12. Since a strictly pseudo-contractive mapping is a demi-contractive mapping. It is easy to see
that Theorem 4.11 extends [4, Theorem 2.9].

Theorem 4.13. Let ({1, 0o, ..., m) € A, (01,00,...,0¢) € Ag, (w1, wo,...,ws) € Ag, let Vi : Hi — Hy be
Li-Lipschitz continuous, F; : Hy — Hj be ki-Lipschitz continuous and i-strongly monotone with x; > 0, and
ni > 0 and let k > 0. Suppose that

m 4
A={(x%x):x € Hy,x € () arg min (hy; + g1 (u)), B1(x) € N arg;reli]g (haj + g25)(y),
i—1 U= =1 2
Ba(x) € () arg min (hai + gai) ()} # 0.
k=1 50

Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)nen be defined by
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(i) Xn+1 = anYVilxn) + (It — ponFy) Z?ll CiPI‘OXKhH(Il - KVQH)(Xn - %(27(11 —Yn — Zn))fOT alln € N;

(i) Yni1 = onyYValyn) + (I — ponF2) Y, 05(1; — e BT (2 = prox, g, (12— kVg2i)B1)) (yn — §(yn —
Xn —2zn)) for all n € IN;

(iii) zn41 = xnyYVal(zn)+ (I1 —poanFs) 3§ g wi (I — WBE(L% —prox,p,, (I3 —kVgak)B2))(zn — §(2zn —
n—Yn)) foralln € IN.

Then li_r>n (Xn, Yn,zn) € VI(UF —yV, A).
n o
Proof. For each k €{1,2,...,s}, let Gy = proth3k(Iz — KV gs3k). We show in Theorems 4.1 and 4.11 that

(i) prox,;,, (I1 —kVgsk) = JOMk (I — kV gsi);
(i) argminyer, (hak + gak)(x) = (Ohsi +Vgsi) 7'0;
(iii) JOM*(I; —kVgar) is a di-strongly quasi-nonexpansive mapping for some oy > 0.

Then Theorem 4.13 follows from Theorem 4.4. O

Corollary 4.14. In Theorem 4.13, let H1=Hy=H3 = Hy, I1 = Ip =13, and ({1, (2, ..., {m) €Am, (01,02,...,0,)€
Ag, (w1, wo, ..., ws) € Ag,k > 0. Suppose that

4

S
A={xxx):xeHyxe ﬂ arg T mm (h1i +g1i(u ﬂ ﬂ arg mm (hZJ + g2j)( )ﬂ ﬂ argzneli}? (hak + g3k ) (2)}
i=1 j=1 k=1 8

£ ().
Let x1 € Hy, y1 € Hy, z1 € Hy, and let the sequences {(xn, Yn, zn)nenN be defined by

(i) xn+1 = anyVilxn) + (It — ponF1) 315 Giprox,,, (I —kVgi) (xn — £(2xn —yn —2zn)) foralln € N;

(i) Yns1 = anyValyn) + (I1 — panF2) Zle 05(I2 — prox,, (I — kVgaj)(yn — £(Yn — xXn —zn)) for all
n € IN;

(i) zn1 = onyValzn) + (I — panF3) 3§ g wic(l3 —prox,, (I — kVgak) (zn — §(22n — Xn —yn)) for all
n € N.

Then lim (xn,Yn,zn) € VI(uF —vV, A).

n—oo

Proof. Let By = I; = By in Theorem 4.13, then Corollary 4.14 follows from Theorem 4.13. O

Remark 4.15. Corollaries 3.4, 3.12, 4.7, 4.10, and 4.14 have real applications in the large scale of nonlinear
problems and optimization problems. Indeed if the scale of nonlinear problems is large, we can group
these problems into finite families of nonlinear problems, then we use simultaneous iteration to find the
solutions of these problems.

Theorem 4.16. Foreachi <€ {1,2,...,m},j €{1,2,...,¢,ke€{1,2,...,s}, let k >0, let

(i) fi:Ci x Ci = R be a bifunction which satisfies conditions (A1)-(A4);
(ii) Qj:Ha — Hy be a hemicontinuous, locally bounded monotone mapping;
(iii) hsk € To(Hs), g3k € To(Hs), gsk be Fréchet differentiable with os-Lipschitz continuous Fréchet derivative
Vgs.

Forr > 0,x € Hy, and u € Hy, let

(i) M;:H; — C; bedeﬁnedbyM {ZEC (z,u)+%(u Z,2—X) > O,VuECi};
(ii) Pj:Hp — Dj be defined by P;(u {zeD (y—2,Q;(2)+1{y—zz—u) >0, Vy e Dj}.



L. J. Lin, J. Nonlinear Sci. Appl., 11 (2018), 394416 415

Let (C1,C2,-..,Cm) € Am, (01,02,...,0¢) € Ay, (wy, wy,...,ws) € Ag,m > 0. Suppose that

m 4
A={(xy,z) € ® Hi:x € m EP(fi),y € ﬂ VI(Q;,Dj), z € m arg mm (h3k+g3k)( ),
1<i<3 i=1 j=1 k=1

A1(x) = Aa(y) = As(2)} # 0.
Let x1 € Hy, y1 € Ha, z1 € Ha, and let the sequences {(xn, Yn, zn)nenN be defined by

(i) Xn+1 = anyYVilxn) + (I — ponF1) X GMi(xn — A5 (2A1(xn) — A2(yn) — As(zn))) for all n € N;
(i) Ynr1 = onYValyn) + (I — panF2) Y51 03P (yn — $A3(2A2(yn) — A1(xn) — As(zn))) for alln € N;
(iii) zn41 = OcnYVB.(Zn) + (I3 — ponF3) 3 g g wi (I3 — prox,y, . (Is —kVgak)(zn — EA3(2A3(zn) — A1(xn) —
Az(yn))) forallm € IN.

Then li_r>n (Xn,Yn,zn) € VI(UF —yV, A).
n o

Proof. 1t follows from Theorem 2.5 that for each i € {1,2,...,m},

(i) M, is single-valued;
(ii) Mj is firmly nonexpansive;
(i) {x e H1: Miyx=x}={x € Cy: fi(x,u) =20, Yu € Ci}.
By Theorem 2.6,
(i) Pj is single-valued;
(ii) Pj is a firmly nonexpansive mapping;
(iii) {x € H: Pjx =x} = VI(Q;j, D;).
As in the proof of Theorem 3.18, we see that

(i) My is a Ai-strongly quasi-nonexpansive mapping for some A; > 0;
(ii) Pj is a demiclosed P;-strongly quasi-nonexpansive mapping for some (3; > 0.

We show in Theorems 4.13 that

(@) prox,p,, (I —«Vgsi) = J2™* (I — kVgar);
(ii) argminyen, (hak + gax)(x) = (dhak + Vgai )~ 10;

(iii) JO"*(I; — kVgay) is a di-strongly quasi-nonexpansive mapping for some 6y > 0.

Then Theorem 4.16 follows from Theorem 3.3. O
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