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Abstract
Minimal surfaces are well known as a class of surfaces with vanishing mean curvature which minimize area within a given

boundary configuration since 19th century. This fact was implicitly proved by Lagrange for nonparametric surfaces in 1760,
and then by Meusnier in 1776 who used the analytic expression for the mean curvature. Mathematically, a minimal surface
corresponds to the solution of a nonlinear partial differential equation. By solving some differential equations, in this paper we
give a complete and explicit classification of minimal translation surfaces in an n-dimensional Minkowski space.
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1. Introduction

Minimal surfaces are among the most natural objects in differential geometry, and have been studied
during the last two and half centuries since J. L. Lagrange. In particular, minimal surfaces have en-
countered striking applications in other fields, like mathematical physics, conformal geometry, computer
aided design, among others. Even though it has been the subject of intense activity, many basic problems
remain open, for instance, the complete classification of minimal surfaces in 3-dimensional space. In
general, to consider the solutions of some differential equations is essential and important, for instance,
[5, 7–10, 12]. In order to search for more minimal surfaces, some natural geometric assumptions arise.
In the 3-dimensional Euclidean space E3, a surface is called a translation surface if it is given by an
immersion

r : U ⊂ E2 → E3 : (x,y)→ (x,y, z),

where z = f(x) + g(y), f(x) and g(y) are differentiable functions. The first study of translation surfaces
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is due to Scherk, in 1835 who proved that, besides the plane, the only minimal translation surface is the
so-called Scherk surface given by

z =
1
a

ln
∣∣∣ cos(ax)
cos(ay)

∣∣∣,
where a is a nonzero constant. In 1991, the minimal translation surfaces were generalized to minimal
translation hypersurfaces by F. Dillen, L. Verstraelen and G. Zafindratafa [4]. Since then, translation
surfaces (hypersurfaces) have been investigated intensively by geometers (see [1, 6, 7, 10, 11]).

In 1994, L. Verstraelen, J. Walrave and S. Yaprak studied minimal translation surfaces in Euclidean
space En for arbitrary codimension by proving that, besides the plane, the only minimal translation
surface in En is given by

r(s, t) =
(
s, t,

c3

m
ln

∣∣∣cos(
√
ms)

cos(
√
mt)

∣∣∣, · · · ,
cn

m
ln

∣∣∣cos(
√
ms)

cos(
√
mt)

∣∣∣),

where m =
∑n
k=3 c

2
k and ck are constant, see details in [13].

In n-dimensional Minkowski space En1 , there are two types of translation surfaces as follows (c.f.
[5, 7]):

I. r(s, t) = (s, t, x3(s, t), x4(s, t), · · · , xn(s, t)),

II. r(s, t) = (x3(s, t), x4(s, t), · · · , xn(s, t), s, t),

where xi(s, t) = fi(s) + gi(t), 3 6 i 6 n. The problem to classify minimal translation surfaces in an
n-dimensional Minkowski space becomes interesting and important. Generally, the classification prob-
lems for submanifolds in Minkowski space are more complicated than the Euclidean case because of the
indefiniteness of the metric. In this paper, we will deal with the similar problem for translation surfaces
as L. Verstraelen et al.’s work [13] in Minkowski space En1 . We obtain a complete classification of mini-
mal translation surfaces with type I and type II, respectively, in the n-dimensional Minkowski space En1 .
Specifically, we get the following classification theorems.

Theorem 1.1. Let M be a translation surface with type I in Minkowski space En1 . Then M is minimal if and only
if M is a part of the following:

1. a plane;
2. r(s, t) = p(s) + q(t), where p(s) and q(t) are lightlike vectors in Minkowski space En1 ;
3. a flat B-scroll over a null curve;
4. r(s, t) =

(
s, t, c3

2 (t2 − s2), · · · , cn2 (t2 − s2)
)
;

5. r(s, t) =
(
s, t, c3

m ln
∣∣∣ cos(

√
ms)

cos(
√
mt)

∣∣∣, · · · , cnm ln
∣∣∣ cos(

√
ms)

cos(
√
mt)

∣∣∣) for m > 0;

6. r(s, t) =
(
s, t, c3

m ln
∣∣∣ sinh(

√
−ms)

sinh(
√
−mt)

∣∣∣, · · · , cnm ln
∣∣∣ sinh(

√
−ms)

sinh(
√
−mt)

∣∣∣) for m < 0;

7. r(s, t) =
(
s, t, c3

m ln
∣∣∣ sinh(

√
−ms)

cosh(
√
−mt)

∣∣∣, · · · , cnm ln
∣∣∣ sinh(

√
−ms)

cosh(
√
−mt)

∣∣∣) for m < 0;

8. r(s, t) =
(
s, t, c3

m ln
∣∣∣ cosh(

√
−ms)

cosh(
√
−mt)

∣∣∣, · · · , cnm ln
∣∣∣ cosh(

√
−ms)

cosh(
√
−mt)

∣∣∣) for m < 0,

where m = c2
3 + · · ·+ c2

n−1 − c
2
n is constant.

Theorem 1.2. Let M be a translation surface with type II in Minkowski space En1 . Then M is minimal if and only
if M is a part of the following:

1. a plane;
2. a flat B-scroll over a null curve;
3. r(s, t) =

(
c3
m ln

∣∣∣ cosh(
√
mt)

cos(
√
ms)

∣∣∣, · · · , cnm ln
∣∣∣ cosh(

√
mt)

cos(
√
ms)

∣∣∣, s, t);

4. r(s, t) =
(
c3
m ln

∣∣∣ sinh(
√
mt)

cos(
√
ms)

∣∣∣, · · · , cnm ln
∣∣∣ sinh(

√
mt)

cos(
√
ms)

∣∣∣, s, t),

where m = c2
3 + · · ·+ c2

n is a positive constant.
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Remark 1.3. For n = 3, M is a minimal translation surface (spacelike or timelike) in Minkowski space E3
1.

In this case, Theorem 1.1 and Theorem 1.2 are generalizations of the 3-dimensional case (see [5, 7] for
details).

Remark 1.4. Noting that n > 3 in the cases (4) and (5) in Theorem 1.1, there is no corresponding minimal
translation surface in Minkowski 3-space E3

1 ([5]).

2. Preliminaries

Let En1 be n-dimensional Minkowski space with the metric

<,>= dx2
1 + dx

2
2 + · · ·+ dx2

n−1 − dx
2
n.

We denote M by a surface immersed in Minkowski space En1 parameterized by

r : U ⊂ E2 → E3 : (s, t)→
(
x1(s, t), x2(s, t), · · · , xn(s, t)

)
.

Then the components of the first fundamental form for surface M are given by

g11 =< rs, rs >= rs · rs, g12 =< rs, rt >= rs · rt, g22 =< rt, rt >= rt · rt.

A surface M is spacelike if the induced metric on surface M is positive, that is g11g22 − g
2
12 > 0; a surface

M is timelike if the induced metric on surface M is indefinite, that is, g11g22 − g
2
12 < 0, respectively.

Let {η3, · · · ,ηn} be normal frame field of the surface M immersed in Minkowski space En1 . Then the
components of the second fundamental form concerning the normal vector ηk are given by

b11(ηk) =< rss,ηk >= rss · ηk,
b12(ηk) =< rst,ηk >= rst · ηk,
b22(ηk) =< rtt,ηk >= rtt · ηk.

Recall that the component of the mean curvature vector Hηk is given by (c.f. [2, 3])

Hηk =
g22b11 + g11b22 − 2g12b12

2(g11g22 − g
2
12)

. (2.1)

Hence a surface M is minimal (or maximal for a spacelike surface) if and only if Hηk = 0 for all k =
3, . . . ,n.

3. A proof of Theorem 1.1

In this section, by considering some differential equations we will give the concrete parameterizations
of translation surfaces with type (I).

First of all, it is easy to check that

rs = (1, 0, f ′3(s), f
′
4(s), · · · , f ′n(s)),

rt = (0, 1,g ′3(t),g
′
4(t), · · · ,g ′n(t)).

We could build the normal frame fields in the normal space as follows

η3 = (−f ′3(s),−g
′
3(t), 1, 0, · · · , 0, 0),

...
ηn−1 = (−f ′n−1(s),−g

′
n−1(t), 0, 0, · · · , 1, 0),

ηn = (f ′n(s),g
′
n(t), 0, 0, · · · , 0, 1).
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It is easy to check that the components of the first fundamental form are in the following forms

g11 = rs · rs = 1 + f ′23 + · · ·+ f ′2n−1 − f
′2
n ,

g22 = rt · rt = 1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n , (3.1)

g12 = rs · rt = f ′3g ′3 + · · ·+ f ′n−1g
′
n−1 − f

′
ng
′
n,

and the components of the second fundamental form are given by

b11(ηk) = rss · ηk = f ′′k , b12(ηk) = rst · ηk = 0, b22(ηk) = rtt · ηk = g ′′k ,
b11(ηn) = rss · ηn = −f ′′n, b12(ηn) = rst · ηn = 0, b22(ηn) = rtt · ηn = −g ′′n

for k = 3, · · · ,n− 1.
Let H(ηi) be the mean curvature with respect to the normal vector ηi. Then the surface M is minimal

if and only if H(ηi) = 0 (i = 3, 4, · · · ,n), that is,

[1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n ]f
′′
k + [1 + f ′23 + · · ·+ f ′2n−1 − f

′2
n ]g
′′
k = 0. (3.2)

We first consider the case 1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n = 1 + f ′23 + · · ·+ f ′2n−1 − f

′2
n = 0. If we let

p(s) = (s, 0, f3, · · · , fn), q(t) = (0, t,g3, · · · ,gn),

then both p(s) and q(t) are two lightlike vectors in Minkowski space En1 . So the case (2) in Theorem 1.1
is obtained.

If 1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n = 0 and 1 + f ′23 + · · ·+ f ′2n−1 − f

′2
n 6= 0, by (3.2) we have that g ′′k = 0, so

gk = ckt for k = 3, · · · ,n. Then the surface M takes the form

r(s, t) = (s, 0, f3, · · · , fn) + t(0, 1, c3, · · · , cn),

which implies that M is a flat B-scroll over a null curve. Hence, we obtain the case (3) in Theorem 1.1.
If 1 + g ′23 + · · ·+ g ′2n−1 − g

′2
n 6= 0 and 1 + f ′23 + · · ·+ f ′2n−1 − f

′2
n = 0, similarly we obtain the case (3) in

Theorem 1.1.
We now consider the case 1 + g ′23 + · · ·+ g ′2n−1 − g

′2
n 6= 0 and 1 + f ′23 + · · ·+ f ′2n−1 − f

′2
n 6= 0. From (3.2),

there exist constants ck such that

−
f ′′k

1 + f ′23 + · · ·+ f ′2n−1 − f
′2
n

=
g ′′k

1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n

= ck (3.3)

for k = 3, · · · ,n. Hence

f ′′k = −ck[1 + f ′23 + · · ·+ f ′2n−1 − f
′2
n ], (3.4)

g ′′k = ck[1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n ]. (3.5)

If ck = 0, then from (3.4) and (3.5) we conclude that fk(s) = aks+ bk, and gk(t) = ckt+ dk for k =
3, · · · ,n. Thus, M is a plane in the Minkowski space En1 , which gives the case (1) in Theorem 1.1.

Now suppose that at least one of the ck 6= 0. By re-arranging the indices (if necessary) we can assume
that c3 6= 0. Then taking the ratio of the equation given in (3.5), we have

f ′′k
f ′′3

=
g ′′k
g ′′3

=
ck
c3

, k = 3, · · · ,n. (3.6)

Hence

f ′′k(s) =
ck
c3
f ′′3 (s), g ′′k(t) =

ck
c3
g ′′3 (t), k = 3, · · · ,n.
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After a translation of the variable s, we get

f ′k(s) =
ck
c3
f ′3(s), g ′k(t) =

ck
c3
g ′3(t), k = 3, · · · ,n. (3.7)

Putting k = 3 in (3.5), we have

f ′′3 = −c3[1 + f ′23 + · · ·+ f ′2n−1 − f
′2
n ], (3.8)

g ′′3 = c3[1 + g ′23 + · · ·+ g ′2n−1 − g
′2
n ]. (3.9)

Substituting (3.7) into (3.8) and (3.9), we have

f ′′3 = −
m

c3
(f ′3)

2 − c3, g ′′3 =
m

c3
(g ′3)

2 + c3, (3.10)

where m = c2
3 + · · ·+ c2

n−1 − c
2
n.

We now distinguish the following three cases:
Case 1. m = 0. In this case, by (3.10) we have

f ′′3 = −c3, g ′′3 = c3, (3.11)

and hence

f ′3 = −c3s+ d1, g ′3 = c3t+ d2. (3.12)

It follows from (3.7) that

f ′k = −cks+
ck
c3
d1, g ′k = ckt+

ck
c3
d2.

By integration, and after an affine transformation, we have

fk = −
ck
2
s2, gk =

ck
2
t2. (3.13)

So the case (4) in Theorem 1.1 is obtained.
Case 2. m > 0. In this case, from (3.10) we have

m

c3
f ′′3 = −[(

m

c3
f ′3)

2 +m],
m

c3
g ′′3 = (

m

c3
g ′3)

2 +m. (3.14)

By solving the equation (3.14), we have

f ′3 = −
c3√
m

tan(
√
ms), g ′3 =

c3√
m

tan(
√
mt).

From (3.7), we have

f ′k = −
ck√
m

tan(
√
ms), g ′k =

ck√
m

tan(
√
mt), (3.15)

and hence

fk =
ck
m

ln | cos(
√
ms) |, gk = −

ck
m

ln | cos(
√
mt) |,

which gives the case (5) in Theorem 1.1.
Case 3. m < 0. In this case from (3.10) we have

m

c3
f ′′3 = −[(

m

c3
f ′3)

2 − (
√
−m)2],

m

c3
g ′′3 = (

m

c3
g ′3)

2 − (
√
−m)2. (3.16)
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By solving the first equation of (3.16), we have

f ′3 = −
c3√
−m

coth(
√
−ms) or f ′3 = −

c3√
−m

tanh(
√
−ms), (3.17)

which together with (3.7) gives

f ′k = −
ck√
−m

coth(
√
−ms) or f ′k = −

ck√
−m

tanh(
√
−ms),

and hence

fk =
ck
m

ln | sinh(
√
−ms) | or fk =

ck
m

ln | cosh(
√
−ms) | . (3.18)

Similarly, by the second equation of (3.16), we have

gk = −
ck
m

ln | sinh(
√
−mt) | or gk = −

ck
m

ln | cosh(
√
−mt) | . (3.19)

Combining (3.18) and (3.19), the cases (6), (7) and (8) in Theorem 1.1 are obtained. This completes the
proof of Theorem 1.1.

4. A proof of Theorem 1.2

In this section, we consider the translation surfaces with type (II). Similar to the discussion on the
proof of Theorem 1.1, we give the normal vector field

η3 = (1, 0, · · · ,−f ′3(s),g
′
3(t)),

...
ηn = (0, 0, · · · , 1,−f ′n(s),g

′
n(t)).

The components of the first fundamental form and the second fundamental form are written respectively
as

g11 = f ′23 + · · ·+ f ′2n + 1, g22 = g ′23 + · · ·+ g ′2n − 1, g12 = f ′3g
′
3 + · · ·+ f ′ng ′n,

and

b11(ηk) = f
′′
k , b12(ηk) = 0, b22(ηk) = g

′′
k

for k = 3, · · · ,n.
Hence, it is easy to check that the surface M is minimal if and only if

[g ′23 + · · ·+ g ′2n − 1]f ′′k + [f ′23 + · · ·+ f ′2n + 1]g ′′k = 0. (4.1)

If g ′23 + · · ·+ g ′2n − 1 = 0, by (4.1) we have that g ′′k = 0. So g(k) = ckt for k = 3, · · · ,n. Then the surface
M is given by

r(s, t) = (f3, · · · , fn, s, 0) + t(c3, · · · , cn, 0, 1),

which implies that M is a flat B-scroll over a null curve. So the case (2) in Theorem 1.2 is given.
If g ′23 + · · ·+ g ′2n − 1 6= 0, from (4.1), there exist constants ck such that

f ′′k
f ′23 + · · ·+ f ′2n + 1

= −
g ′′k

g ′23 + · · ·+ g ′2n − 1
= ck (4.2)
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for k = 3, · · · ,n. Hence

f ′′k = ck[f
′2
3 + · · ·+ f ′2n + 1], g ′′k = −ck[g

′2
3 + · · ·+ g ′2n − 1]. (4.3)

If ck = 0, then from (4.3) we conclude that fk(s) = aks+ bk, gk(t) = ckt+ dk for k = 3, · · · ,n. Thus M is
a plane in the Minkowski space En1 and the case (1) in Theorem 1.2 is obtained.

Now suppose that at least one of the ck 6= 0, we also assume that c3 6= 0. Similar to the discussion of
the surfaces of type (I), we have

f ′k(s) =
ck
c3
f ′3(s), g ′k(t) =

ck
c3
g ′3(t), k = 3, · · · ,n. (4.4)

Substituting (4.4) into (4.3) for k = 3, we have

f ′′3 =
m

c3
(f ′3)

2 + c3, g ′′3 = −
m

c3
(g ′3)

2 + c3, (4.5)

where m = c2
3 + · · ·+ c2

n > 0. By solving the first equation of (4.5), we have

f ′3 =
c3√
m

tan(
√
ms),

which together with (4.4) gives

f ′k =
ck√
m

tan(
√
ms),

and hence

fk = −
ck
m

ln | cos(
√
ms) | .

Similarly, by the second equation of (4.5), we have

gk =
ck
m

ln | cosh(
√
mt) |, or gk =

ck
m

ln | sinh(
√
mt) | .

So the cases (3) and (4) in Theorem 1.2 are obtained. This completes the proof of Theorem 1.2.
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