Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 11 (2018), 486489

Research Article

ISSN : 2008-1898

0% Scienceg

Yo,

Journaj
%
;
@
o
S o
Uopyed\\'

of,

Journal of Nonlinear Sciences and Applications

PiEiicinoss
Journal Homepage: www.isr-publications.com/jnsa

Hitting probabilities for non-convex lattice
{ ") Check for updates ‘

G. Caristi®*, M. Pettineo®, A. Puglisi?

aDepartment of Economics, University of Messina, via dei Verdi, 75 98122, Messina, Italy.
bDepartment of Mathematics, University of Palermo, via Archirafi, 34-Palermo, Italy.

Communicated by C. Vetro

Abstract

In this paper, we consider three lattices with cells represented in Figures 1, 3, and 5 and we determine the probability that a
random segment of constant length intersects a side of the lattice considered.
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1. Introduction

Caristi and Stoka [7] and [8] introduced in the Buffon-Laplace type problems so-called obstacles. They
considered two lattices with axial symmetry and in a first moment [7] they study with eight triangular and
circular sector obstacles and in the second moment [8] they analyze twelve obstacles. Several other authors
considered different lattices with different types of obstacles and studied the probability that a random body
test intersect the fundamental cell [2, 5], and [4]. In particular, in [1], the authors studied a Laplace type
problem with obstacles for two Delone hexagonal lattices and in [6] for a regular lattice of Dirichlet-Voronoi.
In this study, starting from the results obtained by Duma and Stoka [9] for Buffon type problems with a non-
convex lattice we consider a Laplace type problem for three lattices with triangular obstacles, circular sector
obstacles and triangular and sectors circular together. We study the probability that a random segment of
constant length intersects the fundamental cells in Figures 1, 3, and 5.

2. Obstacles triangular

Let %R; (a,b; m) be the lattice with the fundamental cell C; represented in Figure 1, where a < b and
m < a/2. From Figure 1 we have

areaCy = 3ab — gmz. (2.1)

We compute the probability that a random segment s of constant length | < 5 —m intersects a side of
lattice M4, i.e., the probability Pi(il)t that the segment s intersects a side of fundamental cell C;.
The position of segment s is determined by its center and by the angle ¢ that it formed with the side BC

(or AF) of the cell C;.
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To compute P;i,+ we consider the limiting positions of segment s, for a fixed angle of ¢, in the cell C;.
We obtain the Figure 2
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Figure 1 .
Figure 2
and the formula "
areaél (@) = areaCq — Z areaa; (@). (2.2)
i=1
Theorem 2.1. We have ,
Ll a2
2 2(a+b)1-5 - Fm?]
int 7t (3ab — 3m2)
Proof. By Figure 2 we have
ml ml m?2
areaAA1A3 = — CosQ, areaaq (@) = areaas (@) = 5 cose——-,
l l 12
areaa; (@) = (b—m)lcos @, areaaq (@) = % sin @ — % sin @ — 1 sin2¢@,
bl ml .
areaag (@) = - Cos @ — mlcos @, areaas (@) = areaay (@) = areaajg (@) = > (sin @ + cos @),
. ml . 2 al . ml .
areaay (@) = alsm—7 sin@ — - sin2¢, areaag (@) = > sin @ — > sin ¢,
bl ml
areadg (@) = — cos @ — — oS @.
2 2
We can write that »
12
A () = Z areaa; (@) = 2alsin ¢ + 2blcos @ — 5 sin2¢ — m?2. (2.3)
i=1
Replacing this relation in formula (2.2) follows
areaCy (@) = areaC; — A1 (o). (2.4)

We denote with My, the set of segments s that they have center in the cell C;, and with N; the set of segments
s entirely contained in the cell Cq, so we have [11],
(1) p(Nq)

int =1- H(Ml), (2.5)

where p is the Lebesgue measure in the euclidean plane.
To compute the measure pu (M;) and p (N7) we use the kinematic measure of Poincare [10]:

dk =dxAdyAde,

where x, y are the coordinate of center of s and ¢ the fixed angle.
For ¢ € [0, 5] we have

u(Mq) = Jz d(pjj dxdy = Jz (areaCqy)de = Earec1C1. (2.6)
0 {(xy)eCy} 0 2

In the same way, considering formula (2.4) we can write
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7T

w(Np) = J7 d(pJ'J dxdy = JZ [areaCq (@)l do
0 {(xy)eCyip)} 0

x . 2.7)
= JOZ [areaC; — A1 (@)l de = gareaCl - JOZ (A1 (@)l de.
Replacing in the (2.5) the relations (2.6) and (2.7) we obtain
m __ 2 3
Pint = rareacs L [A1 (@)l de. (2.8)
Considering formula (2.3) we have
z 2
Jz [A1(@)lde =2(a+D) f%fgm; (2.9)
0
The relations (2.1), (2.8) and (2.9) give us the result. O
Remark 2.2. For m = 0 the obstacles become points and the probability Pi(111)t becomes:
12
piy — Alat Bl (2.10)

3mab
So, we find a result of a previous paper [3].

3. Obstacles circular sectors
We consider the lattice 23, (a, b; m) with the fundamental cell C, represented in Figure 3.
By this figure we have that the formula (2.2) is valid for the cell C,. Then we have

areaCs (@) = 3ab — %mZ.

As in the paragraph 1, we compute the probability Pi(i)t
cell Co.

Considering the limiting positions of segment s, for a fixed angle ¢, in the cell C,. We obtain the Figure

that a segment s intersects a side of fundamental

4

: S|
& cay
Figure 3 Figure 4
and the formula "
area62 (@) = areaCyp — Z areab; ().
i=1
Theorem 3.1. We have 2 mmi5nt)
o _ 2[2(a+b) B R }
7 (3ab — 2fFm?)
Remark 3.2. For m = 0 the obstacles become points and the probability Pi(i)t become:

() _4lat+b)l-12

3mab 31)

4. Obstacles triangular and circular sectors

We consider the lattice i3 (a, b; m) with the fundamental cell C3 represented in Figure 5.
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From Figure 5 we have
, 3mm?

areaCsz =3ab —m- — i

o)

int that a segment s intersects a side of

As in the previous paragraphs, we compute the probability P
fundamental cell Cs,

Considering the limiting positions of segment s, for a fixed angle ¢, in the cell C,. We obtain Figure 6

Figure 5
Figure 6

and the formula ”

areaég (@) = areaCs — Z areacy (@) .
i=1

Theorem 4.1. We have

57t—14) m?
pl3) 4(a+b)l—12 - mOm

e <3ab—m2— %)

int =

Remark 4.2. If m = 0, the obstacles become points and the probability Pi,,+ becomes

@) _ 4(a+b)1—12
3mab

Remark 4.3. The relation (2.10), (3.1) and (4.1) give us the evident formula

(4.1)
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