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Abstract
In 2013, the mixed complex intersection bodies of star bodies was introduced. Following this, in the paper, we establish

Aleksandrov-Fenchel and Brunn-Minkowski type inequalities for the mixed complex intersection bodies, which in special case
yield some of the recent results.
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1. Introduction

The intersection operator in Rn and the class of intersection bodies were defined by Lutwak [22].
For a star body K, there is a unique star body IK which is called the intersection bodies. Whose radial

function satisfies, for u ∈ Sn−1

ρ(IK,u) = v(K∩ Eu),
where Sn−1 denotes the surface of the unit ball, v denotes the (n− 1)-dimensional dual volume and Eu
denotes the hyperplane through that is orthogonal to u.

The closure of the class of intersection bodies was studied by Goodey et al. [12]. The intersection oper-
ator and the class of intersection bodies played a critical role in Gardner [5] and Zhang [25] solution of the
famous Busemann-Petty problem in three dimensions and four dimensions, respectively (see also Gardner
et al. [11]). Please see Koldobsky’s book [19] for the details about the solution of the famous Busemann-
Petty problem. During the past 30 years significant advances have been made in our understanding of
the intersection operator and the class of intersection bodies by Koldobsky, Campi, Goodey, Gardner,
Grinberg, Lutwak, Fallert, Weil, Zhang, Ludwig and others (see, e.g., [1–4, 6–10, 12–18, 21, 23, 26–30]).

For star bodies K1, . . . ,Kn−1, there is a unique star body I(K1, . . . ,Kn−1) which is called the mixed
intersection bodies, whose radial function satisfies (see [22])

ρ(I(K1, . . . ,Kn−1),u) = ṽ(K1 ∩ Eu, . . . ,Kn−1 ∩ Eu)

for u ∈ Sn−1, where ṽ denotes the (n− 1)-dimensional dual mixed volume.
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The problem of real domain is extended to complex space, which is an important research direction
and interest of mathematics. Hence, a very natural question is proposed: can the mixed intersection of
real domain space be extended to the complex domain space?

Recently, Koldobsky et al. [20] first introduced the mixed complex intersection bodies of complex star
bodies. Let K1, . . . ,K2n−2 be star bodies in Cn. The mixed complex intersection body IC(K1, . . . ,K2n−2) is
defined by ([24])

ρ(IC(K1, . . . ,K2n−2), ξ)2 =
1

(2n− 2)π

∫
S2n−1∩Hξ

ρ(K1,ω) · · · ρ(K2n−2,ω)dS(ω), (1.1)

where Hξ denotes a (2n− 2)-dimensional subspace of R2n orthogonal to the vector ξ and dS(ω) is the
standard spherical Lebesgue measure on S2n−1. Putting K1 = · · · = K2n−2 = K in (1.1), it reduces to

ρ(ICK, ξ)2 =
1

(2n− 2)π

∫
S2n−1∩Hξ

ρ(K,ω)2n−2dS(ω),

and call ICK as the complex intersection bodies of K.
In 2015, Wang et al. [24] established Minkowski inequality and Brunn-Minkowski inequality for the

mixed complex intersection bodies, respectively.

Theorem 1.1. If K and L are star bodies in Cn, then

V(IC(K, 2n− 3;L))2n−2 6 V(ICK)2n−3V(ICL), (1.2)

with equality if and only if K and L are dilates.

Here, IC(K, 2n− 3;L) denotes the mixed complex intersection body IC(K, . . . ,K︸ ︷︷ ︸
2n−3

,L), and V(K) for the

n-dimensional volume of the body K.
The sum +C denotes the complex radial sum defined by Koldobsky et al. [20]: The complex radial

sum is a complex star body that has radial function

ρ(K+C L, ·)2 = ρ(K, ·)2 + ρ(L, ·)2.

Theorem 1.2. If K and L are star bodies in Cn, then

V(IC(K+C L))
1/n(n−1) 6 V(ICK)1/n(n−1) + V(ICL)1/n(n−1), (1.3)

with equality if and only if K and L are dilates.

According to the classical dual theory in convex geometry, on getting (1.2) and (1.3), a natural conjec-
ture is whether the Aleksandrov-Fenchel inequality for the complex mixed intersection body exists? In the
paper, we establish Aleksandrov-Fenchel inequality and Brunn-Minkowski type inequality for complex
mixed intersection bodies, respectively.

Theorem 1.3. If K1, . . . ,K2n−2 are star bodies in Cn and 1 6 r 6 2n− 2, then

V(IC(K1, . . . ,K2n−2))
r 6

r∏
j=1

V(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2)), (1.4)

with equality if and only if K1, . . . ,Kr are dilates of each other.

Here, IC(Kj, r;Kr+1, . . . ;K2n−2) denotes the complex mixed intersection body of star bodies

IC(Kj, . . . ,Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,K2n−2).

Taking r = 2n− 2, K1 = · · · = K2n−3 = K and K2n−2 = L in (1.4), it becomes (1.2).
Theorem 1.3 is just a special case of Theorem 3.4 established in Section 3.
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Theorem 1.4. Let C = (M1, . . . ,Mi) and K,L,M1, . . . ,Mi be star bodies in Cn. If 0 6 i < 2n− 2, then

V(IC(K+C L, 2n− 2 − i;C)2/n(2n−i−2)

6 V(IC(K, 2n− 2 − i;C)2/n(2n−i−2) + V(IC(L, 2n− 2 − i;C)2/n(2n−i−2),
(1.5)

with equality if and only if K and L are dilates.

Here, IC(K, 2n− 2 − i;C) denotes the complex mixed intersection body IC(K, . . . ,K︸ ︷︷ ︸
2n−2−i

,M1, . . . ,Mi).

Let B denote a ball in Cn. Taking for C = (M1, . . . ,Mi) = (B, . . . ,B) and i = 0 in (1.5), it becomes (1.3).
Theorem 1.4 is just a special case of Theorem 4.2 established in Section 4.

2. Notations and preliminaries

2.1. Complex star bodies
It is well known that origin symmetric convex bodies in Cn are the unit balls of norms on Cn. We

denote by ‖ · ‖K the norm corresponding to the body K:

K = {z ∈ Cn : ‖z‖K 6 1}.

We identify Cn with R2n using the standard mapping

ξ = (ξ1, . . . , ξn) = (ξ11 + iξ12, . . . , ξn1 + iξn2) 7→ (ξ11, ξ12, . . . , ξn1, ξn2).

Since norms on Cn satisfy the equality

‖λz‖ = |λ|‖z‖, ∀z ∈ Cn, λ ∈ C,

origin symmetric complex convex bodies correspond to those origin symmetric convex bodies K in R2n

that are invariant with respect to any coordinate-wise two-dimensional rotation, namely for each θ ∈
[0, 2π] and each ξ = (ξ11, ξ12, . . . , ξn1, ξn2) ∈ R2n

‖ξ‖K = ‖Rθ(ξ11, ξ12), . . . ,Rθ(ξn1, ξn2)‖K, (2.1)

where Rθ stands for the counterclockwise rotation of R2 by the angle θ with respect to the origin. The
Minkowski functional of complex star body K, ‖x‖K, defined by ‖x‖K = min{λ > 0 : x ∈ λK},∀x ∈ R2n is
a continuous function.

We shall say that K is a complex convex body in R2n if K is a convex body and satisfies equation (2.1).
If the Minkowski functional of a star body K in R2n is Rθ-invariant (i.e., satisfies equations (2.1)), we say
that K is a complex star body in R2n.

2.2. Dual mixed volumes
The unit ball B in Cn is given by

B = {ξ ∈ Cn :

n∑
i=1

(ξ2
i1 + ξ

2
i2) 6 1}.

Its unit sphere can be denoted by S2n−1. The volume of B is denoted by ω2n.
A compact set K ⊂ Cn is called a star body if its radial function ρ(K, ·) defined by

ρ(K, ξ) = max{λ : λξ ∈ K, }, ξ ∈ S2n−1

is positive and continuous.
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Let K1, . . . ,K2n be star bodies in Cn, the dual mixed volume Ṽ(K1, . . . ,K2n) has the following integral
representation [25]:

Ṽ(K1, . . . ,K2n) =
1

2n

∫
S2n−1

ρ(K1,u) · · · ρ(K2n,u)dS(u), (2.2)

where dS(u) is the standard spherical Lebesgue measure on S2n−1.
We write Ṽ(K1, . . . ,K2n−2;L, 2) for Ṽ(K1, . . . ,K2n−2,L,L), where the Ki(i = 1, . . . , 2n− 2) appear once

and L appears twice. For i > 0, j > 0 and i + j 6 2n, we write W̃i(K, 2n − i − j;L, j) for the dual
mixed volume Ṽ(K, . . . ,K,B, . . . ,B,L, . . . ,L), where K appears (2n− i− j) times, B appears i times, and
L appears j times. The dual mixed volume W̃i(K, 2n − i − j;K, j) will be written as W̃i(K). Moreover,
Ṽ(K, . . . ,K︸ ︷︷ ︸

2n−i

,M1, . . . ,Mi) is written as Ṽi(K,C) and where C = (M1, . . . ,Mi) and Ṽ(K, . . . ,K︸ ︷︷ ︸
2n−i−2

,D1, . . . ,Di,L,L)

is written as Ṽ(K, 2n− 2 − i;D;L, 2) and where D = (D1, . . . ,Di).

2.3. Complex intersection bodies
For ξ ∈ Cn, ξ = 1, denote by

Hξ = {z ∈ Cn : (z, ξ) =
n∑
k=1

zkξ̄k = 0},

the complex hyperplane through the origin, perpendicular to ξ. Under the standard mapping from Cn to
R2n, the hyperplane Hξ turns into a (2n− 2)-dimensional subspace of R2n orthogonal to the vectors

ξ = (ξ11, ξ12, . . . , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, . . . ,−ξn2, ξn1).

A direct conclusion of (1.1) is the following:

ICB =
(ω2n−2

π

)1/2
B. (2.3)

If K1 = · · · = K2n−i−2 = K and K2n−i−1 = · · · = K2n−2 = L, the mixed complex intersection body
IC(K1, . . . ,K2n−2) is written as IC(K, 2n− 2 − i;L, i). If L = B, IC(K, 2n− 2 − i;B, i) is written as IC(K)i.
We simply write ICK rather than IC(K)0 and is called complex intersection body of K, which was defined
by Koldobsky et al. [20]. Moreover, IC(K,M1, . . . ,Mj), where K appears (2n − 2 − j) times, which is
written as IC(K, 2n− 2 − j;M) and M = (M1, . . . ,Mj).

3. Aleksandrov-Fenchel inequality for complex mixed intersection bodies

In order to establish the Aleksandrov-Fenchel inequality for complex mixed intersection bodies, we
need Lemmas 3.1-3.3.

Lemma 3.1 (Aleksandrov-Fenchel inequality). If K1, . . . ,K2n are star bodies in Cn and 1 6 r 6 2n, then

Ṽ(K1, . . . ,K2n)
r 6

r∏
j=1

Ṽ(Kj, . . . ,Kj︸ ︷︷ ︸
r

,Kr+1,Kr+2, . . . ,K2n). (3.1)

with equality if and only if K1, . . . ,Kr are all dilations of each other.

A special case of (3.1) is the following useful result.

Lemma 3.2. Let K and L be star bodies in Cn. If 0 6 i < 2n− 2 and 1 6 j 6 2n− i, then

W̃i(K, 2n− 2 − j;L, j)2n−i 6 W̃i(K)
2n−i−jW̃i(L)

j, (3.2)

with equality if and only if K and L are dilates.
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Inequality (3.2) is also proved by Wang et al. in [24].

Lemma 3.3 ([24]). If K1, . . . ,K2n−2,L1, . . . ,L2n−2 are star bodies in Cn, then

Ṽ(K1, . . . ,K2n−2; IC(L1, . . . ,L2n−2), 2) = Ṽ(L1, . . . ,L2n−2; IC(K1, . . . ,K2n−2), 2). (3.3)

Noting that if K,L1, . . . ,L2n−2 are star bodies in Cn, and 0 6 i < 2n− 2, then

Ṽ(K, 2n− i− 2;B, i; IC(L1, . . . ,L2n−2), 2) = Ṽ(L1, . . . ,L2n−2; IC(K)i, 2). (3.4)

From (2.3), we have that if K1, . . . ,K2n−2 are star bodies in Cn, then

W̃2n−2(IC(K1, . . . ,K2n−2)) =
ω2n−2

π
Ṽ(K1, . . . ,K2n−2;B, 2). (3.5)

The Aleksandrov-Fenchel inequality for complex mixed intersection bodies stated in the introduction
will be established: If K1, . . . ,K2n−2 are star bodies in Cn and 1 6 r 6 2n− 2, then

V(IC(K1, . . . ,K2n−2))
r 6

r∏
j=1

V(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2)),

with equality if and only if K1, . . . ,Kr are dilates of each other.
In fact a general version of the Aleksandrov-Fenchel inequality for complex mixed intersection bodies

holds as the following.

Theorem 3.4. If K1, . . . ,K2n−2 are star bodies in Cn, 0 6 i 6 2n− 2 and 1 6 r 6 2n− 2, then

W̃i(IC(K1, . . . ,K2n−2))
r 6

r∏
j=1

W̃i(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2)), (3.6)

with equality if and only if K1, . . . ,Kr are dilates of each other.

Proof. First consider the case i = 2n− 2. Taking for K2n−1 = K2n = B in (3.1), we have

Ṽ(K1, . . . ,K2n−2;B, 2)r 6
r∏
j=1

Ṽ(Kj, r;Kr+1,Kr+2, . . . ,K2n−2;B, 2),

with equality if and only if K1, . . . ,Kr are dilates of each other.
From (3.5), the above inequality reduces to

W̃2n−2(IC(K1, . . . ,K2n−2))
r 6

r∏
j=1

W̃2n−2(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2)),

with equality if and only if K1, . . . ,Kr are dilates of each other.
This shows that Theorem 3.4 is correct for the case i = 2n− 2.
In the following we assume i < 2n− 2, from (3.3), obtain that for star body M in Cn

Ṽ(M, 2n− 2 − i; IC(K1, . . . ,K2n−2), 2) = Ṽ(K1, . . . ,K2n−2; IC(M)i, 2). (3.7)

From Lemma 3.1, it follows that

[Ṽ(K1, . . . ,K2n−1;B, i; IC(M)i, 2)]r 6
r∏
j=1

Ṽ(Kj, r;Kr+1,Kr+2, . . . ,K2n−2; IC(M)i, 2), (3.8)

with equality if and only if K1, . . . ,Kr are all dilations of each other.
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Moreover, from (3.4), we have

Ṽ(Kj, r;Kr+1,Kr+2, . . . ,K2n−2; IC(M)i, 2) = Ṽ(M, 2n− i− 2;B, i; IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2), 2). (3.9)

From (3.9) and in view of Lemma 3.2, we obtain that

[Ṽ(M, 2n− i− 2;B, i; IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2), 2)]2n−i

6 W̃i(M)2n−2−iW̃i(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2))
2,

(3.10)

with equality if and only if M is a dilation of IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2).
Combine this with (3.7), (3.8), (3.9), and (3.10), it follows

Ṽ(M, 2n− i− 2;B, i; IC(K1, . . . ,K2n−2), 2)r(2n−i)

6 W̃i(M)r(2n−i−2)
r∏
j=1

W̃i(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2))
2.

(3.11)

Now taking M = IC(K1, . . . ,K2n−2) to (3.11), it changes to

W̃i(IC(K1, . . . ,K2n−2))
r 6

r∏
j=1

W̃i(IC(Kj, r;Kr+1,Kr+2, . . . ,K2n−2)). (3.12)

From equality conditions of (3.8) and (3.10), it follows that the equality in (3.12) holds if and only if
K1, . . . ,Kr are all dilations of each other. The proof is completed.

Remark 3.5. Let us point out the complete analogy with the real case: replacing formally C by Rn in
Theorem 3.4 gives the following result (see [28]):

Let K1, . . . ,Kn be star bodies in Rn. If 0 6 i 6 n and 1 6 r 6 n, then

W̃i(I(K1, . . . ,Kn−1))
r 6

r∏
j=1

W̃i(I(Kj, r;Kr+1,Kr+2, . . . ,Kn−1)),

with equality if and only if K1, . . . ,Kr are all dilations of each other.
Taking for r = 2n− 2, K1 = · · · = K2n−j−2 = K and K2n−j−1 = · · · = K2n−2 = L in (3.6), it becomes to

the following result.

Corollary 3.6. If K,L are star bodies in Cn, 0 6 i 6 2n− 2 and 1 6 j 6 2n− 2, then

W̃i(IC(K, 2n− 2 − j;L, j))2n−2 6 W̃i(ICK)2n−j−2W̃i(ICL)j,

with equality if and only if K and L are dilates.

This is just a new result established by Wang et al. [24].
On the other hand, taking for r = 2n− 2, K1 = · · · = K2n−j−2 = K, and K2n−j−1 = · · · = K2n−2 = B in

(3.6), it becomes to the following result.

Corollary 3.7. If K is star body in Cn, 0 6 i 6 2n− 2, and 1 6 j 6 2n− 2, then

W̃i(IC(K)j)2n−2 6 ωj2n

(ω2n−2

π

)j(2n−i)/2
W̃i(ICK)2n−j−2, (3.13)

with equality if and only if K is a ball.

Let us point out the complete analogy with the real case: replacing formally Cn by Rn in (3.13) gives
the following result (see [28]):

If K is star body in Rn, and 0 6 i < n and 0 < j < n− 1, then

W̃i(IjK)n−1 6 ωj(n−i)n−1 ωjnW̃i(IK)
n−j−1,

with equality if and only if K is a ball.
Here IjK denotes the mixed projection body I(K, . . . ,K︸ ︷︷ ︸

n−i

,B, . . . ,B︸ ︷︷ ︸
i

) in Rn.
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4. Brunn-Minkowski inequality for complex mixed intersection bodies

In order to prove Theorem 4.2, in addition to using Lemma 3.3, we need the following lemma.

Lemma 4.1. Let K,L,N,M1, . . . ,Mi be star bodies in Cn and M = (M1, . . . ,Mi). If 0 6 i 6 2n− 2, then

[Ṽ(K+C L, 2n− i− 2;M;N, 2)]2/(2n−i−2)

6 [Ṽ(K, 2n− i− 2;M;N, 2)]2/(2n−i−2) + [Ṽ(L, 2n− i− 2;M;N, 2)]2/(2n−i−2),
(4.1)

with equality if and only if K and L are dilates.

Proof. By (2.2) and Minkowski integral inequality, we obtain

[Ṽ(K+C L, 2n− i− 2;M;N, 2)]2/(2n−i−2)

=

(
1

2n

∫
S2n−1

(ρ(K, ξ)2 + ρ(L, ξ)2)(2n−i−2)/2ρ(N, ξ)2
i∏
k=1

ρ(Mk, ξ)dξ

)2/(2n−i−2)

6

(
1

2n

∫
S2n−1

ρ(K, ξ)2n−i−2ρ(N, ξ)2
i∏
k=1

ρ(Mk, ξ)dξ

)2/(2n−i−2)

+

(
1

2n

∫
S2n−1

ρ(L, ξ)2n−i−2ρ(N, ξ)2
i∏
k=1

ρ(Mk, ξ)dξ

)2/(2n−i−2)

= [Ṽ(K, 2n− i− 2;M;N, 2)]2/(2n−i−2) + [Ṽ(L, 2n− i− 2;M;N, 2)]2/(2n−i−2).

From the equality condition of Minkowski integral inequality, it follows the equality in (4.1) holds if and
only if K and L are dilates.

Theorem 4.2. Let 0 6 i 6 2n− 2, while 0 6 j 6 2n− 3, and K,L,M1, . . . ,Mi,M ′
1, . . . ,M ′

j be star bodies in Cn.
If C = (M1, . . . ,Mi) and D = (M ′

1, . . . ,M ′
j), then

Ṽi(IC(K+C L, 2n− 2 − j;D),C)4/(2n−i)(2n−j−2)

6 Ṽi(IC(K, 2n− 2 − j;D),C)4/(2n−i)(2n−j−2) + Ṽi(IC(L, 2n− 2 − j;D),C)4/(2n−i)(2n−j−2),
(4.2)

with equality if and only if K and L are dilates.

Proof. Suppose Q be star body in Cn, from the identity (3.3),

Ṽ(Q, 2n− 2 − i;C; IC(K+C L,D)j, 2) = Ṽ(K+C L, 2n− j− 2;D; IC(Q,C)i, 2). (4.3)

Inequality (4.1) in Lemma 4.1 shows that

Ṽ(K+C L, 2n− j− 2;D; IC(Q,C)i, 2)2/(2n−j−2)

6 Ṽ(K, 2n− j− 2;D; IC(Q,C)i, 2)2/(2n−j−2) + Ṽ(L, 2n− j− 2;D; IC(Q,C)i, 2)2/(2n−j−2),
(4.4)

with equality if and only if K and L are dilates.
But from (3.3), it follows

Ṽ(K, 2n− j− 2;D; IC(Q, 2n− i− 2;C), 2)2/(2n−j−2) = Ṽ(Q, 2n− i− 2;C; IC(K, 2n− j− 2;D), 2)2/(2n−j−2),

and hence, inequality (3.1) gives

Ṽ(K, 2n− j− 2;D; IC(Q, 2n− i− 2;C), 2)2/(2n−j−2)

6 Ṽi(Q,C)2(2n−i−2)/(2n−i)(2n−j−2)Ṽi(IC(K, 2n− j− 2;D),C)4/(2n−i)(2n−j−2),
(4.5)
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with equality if and only if K, D, and IC(Q, 2n− i− 2;C) are dilates.
In exactly the same way, it can be seen that

Ṽ(L, 2n− j− 2;D; IC(Q, 2n− i− 2;C), 2)2/(2n−j−2)

6 Ṽi(Q,C)2(2n−i−2)/(2n−i)(2n−j−2)Ṽi(IC(L, 2n− j− 2;D),C)4/(2n−i)(2n−j−2),
(4.6)

with equality if and only if L, D, and IC(Q, 2n− i− 2;C) are dilates.
Combine (4.3), (4.4), (4.5), and (4.6), and the result is

Ṽ(Q, 2n− i− 2;C; IC(K+C L, 2n− 2 − j;D), 2)2/(2n−j−2) 6 Ṽi(Q,C)2(2n−i−2)/(2n−i)(2n−j−2)

×
(
Ṽi(IC(K, 2n− 2 − j;D),C)4/(2n−i)(2n−j−2) + Ṽi(IC(L, 2n− 2 − j;D),C)4/(2n−i)(2n−j−2)

)
.

(4.7)

Take IC(K+C L, 2n− 2 − j;D) for Q, and noting that

Ṽ(Q, 2n− i− 2;C; IC(K+C L, 2n− 2 − j;D), 2) = Ṽi(IC(K+C L, 2n− 2 − j;D),C)

and
Ṽi(Q,C) = Ṽi(IC(K+C L, 2n− 2 − j;D),C).

This shows that the last inequality is the inequality of the theorem.
From the conditions of equality of inequalities (4.4), (4.5), and (4.6), it follows the equality in (4.7)

holds if and only if K and L are dilates.

Remark 4.3. The most interesting case of the inequality of Theorem 4.2 is the special case where D =
(B, . . . ,B). In this case (4.2) reads

Ṽi(IC(K+C L)j,C)4/(2n−i)(2n−j−2)

6 Ṽi(IC(K)j,C)4/(2n−i)(2n−j−2) + Ṽi(IC(L)j,C)4/(2n−i)(2n−j−2),
(4.8)

with equality if and only if K and L are dilates.
Taking for C = (B, . . . ,B) in (4.8), it reduces to the following interesting result.

W̃i(IC(K+C L)j)
4/(2n−i)(2n−j−2) 6 W̃i(IC(K)j)4/(2n−i)(2n−j−2) + W̃i(IC(L)j)4/(2n−i)(2n−j−2), (4.9)

with equality if and only if K and L are dilates.
This is just a new inequality established by Wang et al. [24].

Let us point out the complete analogy with the real case: replacing formally Cn by Rn in (4.9), it gives
the following result: If K and L are star bodies in Rn and 0 6 i < n, 0 6 j < n− 2, then

W̃i(Ij(K+̃L))1/(n−i)(n−j−1) 6 W̃i(IjK)1/(n−i)(n−j−1) + W̃i(IjL)1/(n−i)(n−j−1),

with equality if and only if K and L are dilates.
Here K+̃L denotes the usual radial sum of star bodies K and L in Rn.
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[23] M. Moszyńska, Quotient star bodies, intersection bodies, and star duality, J. Math. Anal. Appl., 232 (1999), 45–60. 1
[24] W. Wang, R. He, J. Yuan, Mixed complex intersection bodies, Math. Inequal. Appl., 18 (2015), 419–428. 1, 1, 3, 3.3, 3,

4.3
[25] G. Zhang, A positive solution to the Busemann-Petty problem in R4, Ann. of Math., 149 (1999), 535–543. 1, 2.2
[26] C.-J. Zhao, Extremal Problems in Convex Bodies Geometry, Dissertation for the Doctoral Degree at Shanghai Univ.,

Shanghai, (2005). 1
[27] C.-J. Zhao, Lp-mixed intersection bodies, Sci. China, 51 (2008), 2172–2188.
[28] C.-J. Zhao, On intersection and mixed intersection bodies, Geom. Dedicata, 141 (2009), 109–122. 3.5, 3
[29] C.-J. Zhao, G.-S. Leng, Brunn-Minkowski inequality for mixed projection bodies, J. Math. Anal. Appl., 301 (2005),

115–123.
[30] C.-J. Zhao, G.-S. Leng, Inequalities for dual quermassintegrals of mixed intersection bodies, Proc. Indian Acad. Sci. Math.

Sci., 115 (2005), 79–91. 1

https://projecteuclid.org/euclid.pjm/1103051502
https://doi.org/10.1112/S0025579300014212
https://doi.org/10.1112/S002557930000752X
https://doi.org/10.1006/aima.1997.1657
http://www.jstor.org/stable/2118606?origin=crossref&seq=1#page_scan_tab_contents
https://doi.org/10.1090/S0002-9947-1994-1201126-7 
https://doi.org/10.1090/S0273-0979-1994-00493-8 
https://doi.org/10.1090/S0273-0979-1994-00493-8 
https://mathscinet.ams.org/mathscinet-getitem?mr=1356221
https://doi.org/10.1090/S0273-0979-02-00941-2 
https://doi.org/10.1016/S0764-4442(99)80007-X
https://doi.org/10.1016/S0764-4442(99)80007-X
http://www.jstor.org/stable/120978
http://www.jstor.org/stable/120978
https://doi.org/10.1007/BF02621871
https://doi.org/10.1007/BF02621871
https://doi.org/10.1112/S0025579300014601
https://doi.org/10.1112/S0024611599001653
https://doi.org/10.1353/ajm.1998.0030
https://doi.org/10.1353/ajm.1998.0030
https://doi.org/10.1006/aima.1998.1718
https://doi.org/10.1006/aima.1998.1719
https://doi.org/10.1007/PL00001659
http://www.ams.org/books/surv/116/
https://doi.org/10.1112/jlms/jdt014
https://doi.org/10.1353/ajm.2006.0046
https://doi.org/10.1016/0001-8708(88)90077-1
https://doi.org/10.1006/jmaa.1998.6238
http://www.jstor.org/stable/120974
https://www.dissertationtopic.net/doc/1590873
https://www.dissertationtopic.net/doc/1590873
https://doi.org/10.1007/s11425-008-0074-3 
https://doi.org/10.1007/s10711-008-9346-x
https://doi.org/10.1016/j.jmaa.2004.07.013
https://doi.org/10.1016/j.jmaa.2004.07.013
https://doi.org/10.1007/BF02829841 
https://doi.org/10.1007/BF02829841 

	Introduction
	Notations and preliminaries
	Complex star bodies
	Dual mixed volumes
	Complex intersection bodies

	Aleksandrov-Fenchel inequality for complex mixed intersection bodies
	Brunn-Minkowski inequality for complex mixed intersection bodies

