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Abstract

This article mainly studies the order-reduction of the classical Crank-Nicolson finite difference (CNFD) scheme for the Riesz
space fractional order differential equations (FODEs) with a nonlinear source function and delay on a bounded domain. For this
reason, the classical CNFD scheme for the Riesz space FODE and the existence, stability, and convergence of the classical CNFD
solutions are first recalled. And then, a reduced-order extrapolating CNFD (ROECNFD) scheme containing very few degrees of
freedom but holding the fully second-order accuracy for the Riesz space FODEs is established by means of proper orthogonal
decomposition and the existence, stability, and convergence of the ROECNFD solutions are discussed. Finally, some numerical
experiments are presented to illustrate that the ROECNFD scheme is far superior to the classical CNFD one and to verify the
correctness of theoretical results. This indicates that the ROECNFD scheme is very effective for solving the Riesz space FODEs
with a nonlinear source function and delay.
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1. Introduction

Because the fractional order differential equations (FODEs) have been a research hot-spot in science
and engineering in recent years (see, e.g., [13, 15, 17]), this article mainly studies the order-reduction of
the classical Crank-Nicolson finite difference (CNFD) scheme for the Riesz space FODEs with a nonlinear
source function and delay on a bounded domain.

For convenience and without loss of generality, we take into account the following FODEs with a
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nonlinear source function and delay on the bounded domain [−s, T ]× [0, L]:

∂u(t, x)
∂t

= K(t, x)
∂αu(t, x)
∂|α|α

+ f(t, x,u(t, x),u(t− s, x)), (t, x) ∈ (0, T)× (0,L),

u(t, 0) = u(t,L) = g(t), t ∈ (0, T),
u(t, x) = ϕ(t, x), (t, x) ∈ [−s, 0]× (0,L),

(1.1)

where K(t, x) is the dispersion coefficient, 1 < α 6 2, s > 0, g(t) is a given boundary value function,
ϕ(t, x) is a given initial function, and f(t, x,u, v) on D =: [0, T ]× [0, L]×R×R is a given continuous
real-value function that satisfies the Lipschitz condition, i.e., there exist two non-negative real numbers
β1 > 0 and β2 > 0 such that

|f(t, x,u1, v1) − f(t, x,u2, v2)| 6 β1|u1 − u2|+β2|v1 − v1|, ∀u1, v1,u2, v2 ∈ R. (1.2)

In addition, the above ∂αu(t, x)/∂|α|α is known as the Riesz space fractional order derivative and defined
by

∂αu(t, x)
∂|α|α

= −
1

2 cos(απ2 )Γ(2 −α)

∂2

∂x2

(∫x
0
(x− y)1−αu(t,y)dy+

∫L
x

(y− x)1−αu(t,y)dy

)
,

where Γ(·) is the Euler gamma function. For convenience and without loss of generality, we assume that
g(t) = 0 in the following analysis.

The Riesz space FODEs (1.1) hold very important physical background, such as, which can be used
to describe phenomena in seepage hydraulics groundwater hydraulics, groundwater dynamics, and fluid
dynamics in porous media (see, e.g., [3, 8, 27, 32]). However, they usually have no analytic solution
so that they mainly depend on numerical solutions (see, e.g., [12, 14, 16, 26]). In recently, a classical
CNFD scheme for the equations (1.1) has developed in [35], but it includes many degrees of freedom
(i.e., unknowns). Thus, due to the truncated error amassing in the calculating process, it would appear
floating point overflow after computing some steps so that it can’t gain desired results. Therefore, in
the case of ensuring the classical CNFD numerical solutions with the desired accuracy, how to decrease
the unknowns of the classical CNFD scheme so as to simplify calculation and retard the truncated error
amassing in the calculating process is an urgently solved problem in the practical applications, which is
main objective in this paper.

Proper orthogonal decomposition (POD) method is considered as an effective and feasible optimized
technique to reduce the order of numerical models (see [2, 7, 25, 30]). It is essentially to look for a series
of orthogonal basis for the known data in the sense of least square. The POD method can greatly reduce
the unknowns in the numeric models. It has been extensively used in analysis of signal together with
pattern recognition (see [5]), statistical computation (see [9]), and computational fluid dynamics (see [29]).
In recent years, it also has been successfully applied to the order-reduction for the Galerkin method (see,
e.g., [10, 11]), the finite element method (see, e.g., [18, 22]), the FD scheme (see, e.g., [24, 31]), finite volume
element method (see, e.g., [21, 23]), and reduced basis methods (see, e.g., [1, 6, 28]) for PDEs. However,
the most existing POD reduced order methods (see, e.g., [1, 2, 5–7, 9–11, 18, 21–25, 28–31]) are built by the
POD basis formed with the classical solutions at the all time nodes on [0, T ], before repetitively computing
the reduced order solutions at the same time nodes. As a matter of fact, they are some valueless repetitive
calculations. In order to eliminate the repetitive calculations, some POD reduced order extrapolated FD
schemes have been addressed (see, e.g., [19, 20, 33, 34]).

However, for all we know, there has not been any research that the reduced-order extrapolating CNFD
(ROECNFD) scheme for the Riesz space FODEs with a nonlinear source function and delay is built by
the POD method. Hence, in this article, we develop the ROECNFD scheme only containing very few
unknowns via the POD technique. Particularly, we only utilize the classical CNFD solutions at the initial
a few time nodes as the snapshots to generate the POD bases and build the ROECNFD scheme for seeking
out the ROECNFD solutions at all time nodes. This is equivalent to utilizing the existing information (on
the quite short time interval [0, T0], T0 � T ) to forecast the future physical law (on the time interval
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[T0, T ]). In addition, we here use the error estimations to guide the selection of POD bases. Because the
ROECNFD scheme holds simultaneously both advantages of the POD technique and the CNFD scheme
easily operating and holding the fully second-order accuracy, it is development and improvement over
the existing reduced order methods as the above-mentioned.

The plan for the remainder of this paper is as follows. In Section 2, we first recall the classical CNFD
scheme for the Riesz space FODEs with a nonlinear source function and delay, and form snapshots by
the initial few classical CNFD solutions. In Section 3, we obtain a set of POD bases associated with
the snapshots and establish the ROECNFD scheme. In Section 4, we discuss the existence, stability, and
convergence of the ROECNFD solutions and provide the flowchart for solving the ROECNFD scheme.
In Section 5, we use some numerical experiments to show that the ROECNFD scheme is superior to
the classical CNFD one and to verify that the results of numerical computations are consistent with the
theoretical analysis and that the ROECNFD scheme is very efficient for solving the Riesz space FODEs
with a nonlinear source function and delay because it can greatly reduce the degrees of freedom and
alleviate the calculation load as well as save the CPU time-consuming and the storage requirements in the
computational process. Section 6 finally provides the main conclusions and discussions.

2. The classical CNFD scheme for the Riesz space FODEs with a nonlinear source function and delay

In this section, we recall the classical CNFD scheme for the equations (1.1), which is presented in [35].
Let N and M be two positive integers, τ = T/N be the time step-size and h = L/M be the spatial step-size.
The classical CNFD scheme with the predictor-corrector for the equations (1.1) is stated as follows:

ūni = un−1
i + γ

[
i+1∑
k=0

ω
(α)
k un−1

i−k+1 +

M−i+1∑
k=0

ω
(α)
k un−1

i+k−1

]
+ τf(tn, xi,un−1

i ,un−mi ),

uni = un−1
i + γ

[
i+1∑
k=0

ω
(α)
k un−1

i−k+1 +

M−i+1∑
k=0

ω
(α)
k un−1

i+k−1

]
+
τ

2
f(tn, xi,un−1

i ,un−mi )

+ γ

[
i+1∑
k=0

ω
(α)
k ūn−1

i−k+1 +

M−i+1∑
k=0

ω
(α)
k ūn−1

i+k−1

]
+
τ

2
f(tn, xi, ūn−1

i , ūn−mi ),

(2.1)

where uni ’s are approximate solution of u(tn, xi) (i = 1, 2, . . . ,M), γ = −τK/[2hα cos(απ/2)], ω(α)
0 =

αg
(α)
0 /2, ω(α)

k = αg
(α)
k /2 + (2 −α)g

(α)
k−1/2, g(α)0 = 1, g(α)k = [1 − (1 +α)/k]g

(α)
k−1 (k = 1, 2, . . .).

The sequences
{
ω

(α)
k

}∞
k=0

and
{
g
(α)
k

}∞
k=0

have the following properties (see, e.g., [17, 35]).

Lemma 2.1. When 1 < α 6 2, the sequences
{
ω

(α)
k

}∞
k=0

and
{
g
(α)
k

}∞
k=0

satisfy

(1) g(α)0 = 1, g(α)1 = −α, g(α)2 = α(α − 1)/2 > 0, 1 > g
(α)
2 > g

(α)
3 > · · · > 0,

∑∞
k=0 g

(α)
k = 0, and∑m

k=0 g
(α)
k < 0 (m > 1);

(2) ω(α)
0 = α/2, ω(α)

1 = (2 − α − α2)/2 < 0, ω(α)
2 = α(α2 + α − 4)/4, 1 > ω

(α)
3 > ω

(α)
4 > · · · > 0,∑∞

k=0ω
(α)
k = 0, and

∑m
k=0ω

(α)
k < 0 (m > 2).

Set

A =



ω
(α)
1 ω

(α)
0 0 · · · 0 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 · · · 0 0

ω
(α)
3 ω

(α)
2 ω

(α)
1 · · · 0 0

...
...

...
. . .

...
...

ω
(α)
M−2 ω

(α)
M−3 ω

(α)
M−4 · · · ω

(α)
1 ω

(α)
0

ω
(α)
M−1 ω

(α)
M−2 ω

(α)
M−3 · · · ω

(α)
2 ω

(α)
1


, F(V) =



f(tn, x1, v1,un−m1 )
f(tn, x2, v2,un−m2 )
f(tn, x3, v3,un−m3 )

...
f(tn, xM−2, vM−2,un−mM−2 )

f(tn, xM−1, vM−1,un−mM−1 )


,

Un = [un1 ,un2 , ...,unM−2,unM−1]
T , Ūn = [ūn1 , ūn2 , ..., ūnM−2, ūnM−1]

T , D = −γ
[
A+AT

]
.
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Thus, the CNFD scheme (2.1) can be rewritten as the following matrix form.

Ūn = Un−1 +DUn−1 + τF(Un−1),

Un = Un−1 +
1
2
D(Un−1 + Ūn−1) +

τ

2
[
F(Un−1) + F(Ūn−1)

]
.

(2.2)

Further, the vector form CNFD scheme (2.2) can simplified as the following:

Un = Un−1 +
1
2
D(2Un−1 +DUn−1 + τF(Un−1))

+
τ

2
[
F(Un−1) + F(Un−1 +DUn−1 + τF(Un−1))

]
, n = 1, 2, . . . ,N,

(2.3)

subject to the initial condition

U0 = [u0
1,u0

2, . . . ,u0
M−2,u0

M−1]
T , u0

i = ϕ(0, ih), uki = ϕ(kτ, ih), i = 1, 2, . . . ,M− 1,k < 0.

Obviously, the vector form CNFD scheme (2.3) has a unique series of solution vectors {Un}Nn=1. The
following stability and convergence of the series of solution {Un}Nn=1 have been provided in [35, Theorems
4.2 and 4.3].

Theorem 2.2. When ‖I +D‖∞ 6 1, the series of solution {Un}Nn=1 for the CNFD scheme (2.3) is stable and
convergent. Further, the errors between the series of solution {Un}Nn=1 for the CNFD scheme (2.3) and Ũ(tn) =
[u(tn, x1),u(tn, x2), . . . , u(tn, xM−1)]

T (n = 1, 2, . . . ,N) formed by the analytic solution for the Riesz space
FODEs (1.1) are as follows:

max
16i6n

‖Ũ(ti) −U
i‖∞ = O(τ2,h2), n = 1, 2, . . . ,N,

where I represents the unit matrix, ‖Ã‖∞ = max16i6m
∑m
j=1 |ai,j| (for any matrix Ã = (ai,j)m×m), and

‖Ui‖∞ = max16j6M−1 |u
i
j | (for any Ui = (ui1,ui2, . . . ,uiM−1)

T ∈ RM−1).

Remark 2.3. It is easily known from Lemma 2.1 that the condition ‖I+D‖∞ 6 1 is reasonable. Thus, so
long as the time step-size τ, the spatial step-size h, the coefficient of dispersion K(t, x), the source function
f, the initial function ϕ, and parameters α and s are given, the series of solution {Un}Nn=1 can be obtained
by solving the vector form CNFD scheme (2.3). The first l solution vectors U1,U2, . . . ,Ul (l � N) in the
series of solution {Un}Nn=1 for the CNFD scheme (2.3) are extracted to form a set of snapshots.

3. Establishment of the ROEFD scheme

3.1. Fabrication and properties of POD basis
For the first l solution vectors U1,U2, . . . ,Ul (l� N) extracted in Section 2, let Au = (U1,U2, · · · ,Ul)

(apparently Au ∈ R(M−1)×l), λj > 0 (j = 1, 2, · · · , r =: rank(Au)) be the positive eigenvalues of AuATu
arranged non-increasingly and Uu = (φ1,φ2, · · · , φr) ∈ R(M−1)×r be the orthonormal eigenvectors of
AuA

T
u corresponding to the positive eigenvalues. Then, a POD basis Φ =: (φ1,φ2, · · · , φd) (d 6 r)

attained from the initial d vectors in Uu satisfies the following formula (see, e.g., [24, 31]):

‖Au −ΦΦTAu‖2,2 =
√
λd+1,

where ‖Au‖2,2 = supx∈RM−1 ‖Aux‖2/‖x‖2 and ‖x‖2 is the Euclidean norm of x ∈ RM−1. Further, there
hold

‖Un −ΦΦTUn‖2 = ‖(Au −ΦΦTAu)ε
n‖2 6 ‖Au −ΦΦTAu‖2,2‖εn‖2 6

√
λd+1, n = 1, 2, . . . , l, (3.1)

where εn (n = 1, 2, · · · , l) are the unit vectors with n-th element being 1. Hence, the POD basis Φu =
(φ1,φ2, · · · ,φd) is optimal.
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Remark 3.1. Because the order M − 1 of the matrix AuATu is far larger than the order l of the matrix
ATuAu, i.e., the number of the spatial internal nodes M − 1 is far larger than that of the snapshots l,
but both positive eigenvalues λi (i = 1, 2, . . . , r) are identical. As a consequence, we may first seek the
eigenvalues λi and the eigenvectors ψi (i = 1, 2, . . . , r) of ATuAu, we then compute out the eigenvectors
ϕi of AuATu via the formula ϕi = Auψi/

√
λi (i = 1, 2, . . . , r) such that the formulation of POD basis

becomes simpler.

3.2. Establishment of the ROEFD scheme for the Riesz space FOCNDE
From Section 3.1, we can obtain the initial l (l 6 N) FOECNFD solutions Und = ΦuΦ

T
uU

n =:

Φuβ
n
d (n = 1, 2, . . . ,L), where Und = (und,1,und,2, · · · , und,M−2, und,M−1)

T and βnd = (βn1 , βn2 , . . . ,βnd)
T .

Now, by replacing Un in (2.3) with Und = Φuβ
n
d (n = l+ 1, l+ 2, . . . ,N), we can attain the ROECNFD

scheme as follows:

Φβnd =ΦuΦ
T
uU

n, n = 1, 2, . . . , l,

Φuβ
n
d =Φuβ

n−1
d +

1
2
D(2Φuβn−1

d +DΦuβd
n−1 + τF(Φuβ

n−1
d ))

+
τ

2

[
F(Φuβ

n−1
d ) + F(Φuβd

n−1 +DΦuβd
n−1 + τF(Φuβ

n−1
d ))

]
, n = l+ 1, l+ 2, . . . ,N,

Und =Φβnd , n = 1, 2, . . . ,N,

(3.2)

where Un (n = 1, 2, . . . , l) are the known classical CNFD solution vectors for the classical CNFD scheme
(2.3). The ROECNFD scheme (3.2) is simplified into the following:

βnd =ΦTuU
n, 1 6 n 6 l,

βnd = βn−1
d +

1
2
ΦTuD

[
2Φuβn−1

d +DΦuβd
n−1 + τF(Φuβ

n−1
d )

]
+
τ

2
ΦTu

[
F(Φuβ

n−1
d ) + F(Φuβd

n−1 +DΦuβd
n−1 + τF(Φuβ

n−1
d ))

]
, l+ 1 6 n 6 N,

Und =Φuβ
n
d , 1 6 n 6 N.

(3.3)

Remark 3.2. Because the classical CNFD scheme (2.3) contains (M − 1) unknowns at each time node,
whereas the ROECNFD scheme (3.3) at the same time node only has d unknowns (d � M − 1), the
ROECNFD scheme (3.3) is superior to the classical CNFD scheme (2.3).

4. The existence, stability, and convergence of the ROECNFD solutions and the flowchart for solving
the ROECNFD scheme

4.1. The existence, stability, and convergence of the ROECNFD solutions
The result of the existence, stability, and convergence of the ROECNFD solutions are stated as follows.

Theorem 4.1. Under the conditions of Theorem 2.2, the ROECNFD scheme (3.3) has a unique set of solutions
{Und}

N
n=1, which is stable and convergent and has the following error estimates

max
16i6n

‖Ui −Uid‖∞ 6 E(n)
√
λd+1, n = 1, 2, . . . ,N, (4.1)

where Ui (i = 1, 2, . . . ,N) is the series of the CNFD solutions for the classical CNFD scheme (2.3), E(n) = 1
(0 6 n 6 l), and E(n) = [1 + τ(β1 +β2)(2 +β1τ+ ‖D‖∞)/2]n−l (l + 1 6 n 6 N). Moreover, the errors
between the analytic solution vectors Ũ(tn) = [u(tn, x1),u(tn, x2), . . . , u(tn, xM−1)]

T (n = 1, 2, . . . ,N) for the
Riesz space FODEs (1.1) and the ROECND solutions Und for the ROECNFD scheme (3.3) have the following
estimates

max
16i6n

‖Ũi −Uid‖∞ 6 Q
[
τ2 + h2 + E(n)

√
λd+1

]
, n = 1, 2, . . . ,N. (4.2)
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Proof. By using Und =Φβnd (n = 1, 2, . . . ,N), the ROECNFD scheme (3.2) is restored into the following:

Und =ΦuΦ
T
uU

n, 1 6 n 6 l, (4.3)

Und = Un−1
d +

1
2
D(2Un−1

d +DUn−1
d + τF(Un−1

d ))

+
τ

2
[
F(Un−1

d ) + F(Un−1
d +DUn−1

d + τF(Un−1
d ))

]
, l+ 1 6 n 6 N.

(4.4)

Because the classical CNFD solutions Un (n = 1, 2, . . . , l) are known and stable, from (4.3), we attain
a unique series of solutions Und = ΦuΦ

T
uU

n (n = 1, 2, . . . , l), which are stable since ‖Und‖2 6 ‖Un‖2.
Furthermore, when the Un−1

d in the right hand side of (4.4) are known, from (4.4), we can compute out
Un−1
d (n = l + 1, l + 2, . . . ,N). Therefore, the ROECNFD scheme (4.4) exists a unique set of solutions

{Und}
N
n=l+1. Because (4.4) is the same form as (2.3), by using the same techniques as proving Theorem

2.2, we can demonstrate that the ROECNFD solutions {Und}
N
n=l+1 are stable. Thus, the ROECNFD scheme

(3.3) has a unique set of stable solutions {Und}
N
n=1. Furthermore, by using Lax’s stability theorem (see e.g.,

[4, 36]), we attain that the ROECNFD solutions {Und}
N
n=1 are convergent.

When n = 1, 2, · · · , l, from the properties of norm and (3.1), we immediately obtain the following error
estimates

‖Ui −Uid‖∞ 6 ‖Ui −Uid‖2 = ‖Ui −ΦuΦTuUi‖2 6
√
λd+1, 1 6 i 6 n 6 l.

Thus, we have

max
16i6n

‖Ui −Uid‖∞ 6
√
λd+1, 1 6 n 6 l. (4.5)

Let en = Un −Und . By subtracting (4.4) from (2.3), we gain

en = en−1 +
1
2
D(2en−1 +Den−1 + τF(U

n−1) − τF(Un−1
d )) +

τ

2
[
F(Un−1)

+F(Un−1 +DUn−1 + τF(Un−1)) − F(Un−1
d ) − F(Un−1

d +DUn−1
d + τF(Un−1

d ))
]

=
τ

2
[
F(Un−1 +DUn−1 + τF(Un−1)) − F(Un−1

d +DUn−1
d + τF(Un−1

d ))
]

+ (I+D+
1
2
D2)en−1 +

τ

2
(I+D)

[
F(Un−1) − F(Un−1

d )
]

, l+ 1 6 n 6 N.

(4.6)

When ‖I+D‖∞ 6 1, we have∥∥∥∥I+D+
1
2
D2
∥∥∥∥∞ =

∥∥∥∥1
2
[
I+ (I+D)2]∥∥∥∥∞ 6

1
2
(1 + ‖I+D‖∞) 6 1. (4.7)

Thus, by (1.2), from (4.6), we have

‖en‖∞ 6

∥∥∥∥I+D+
1
2
D2
∥∥∥∥∞ ‖en−1‖∞ +

τ

2
‖D‖∞ (β1‖en−1‖∞ +β2‖en−m‖∞)

+
τ

2
[(β1‖en−1‖∞ +β2‖en−m‖∞) +β1(‖I+D‖∞‖en−1‖∞

+τ (β1‖en−1‖∞ +β2‖en−m‖∞) +β2‖en−m‖∞] , n = l+ 1, l+ 2, . . . ,N.

(4.8)

Set Υ = (β1 +β2)(2 +β1τ+ ‖D‖∞)/2 and Λn = max16i6n ‖ei‖∞ = max16i6n ‖Ui −Uid‖∞. By (4.7) and
‖I+D‖∞ 6 1, from (4.8), we obtain

Λn 6 Λn−1 +
τ

2
‖D‖∞ (β1Λn−1 +β2Λn−1)

+
τ

2
[(β1Λn−1 +β2Λn−1) +β1(Λn−1 +τ (β1Λn−1 +β2Λn−1) +β2Λn−1]

6 (1 +Υτ)Λn−1, n = l+ 1, l+ 2, . . . ,N.

(4.9)
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From (4.9) and (4.5), we have

max
16i6n

‖Ui −Uid‖∞ 6 (1 +Υτ)n−lΛl 6 E(n)
√
λd+1, n = l+ 1, l+ 2, . . . ,N. (4.10)

Combining (4.5) with (4.10) yields (4.1) and combining Theorem 2.2 with (4.1) yields (4.2). This accom-
plishes the demonstration of Theorem 4.1.

Remark 4.2. The error factors
√
λd+1 and E(n) = [1 + τ(β1 +β2)(2 +β1τ+ ‖D‖∞)/2]n−l (l + 1 6 n 6

N) in Theorem 4.1 are caused by the order-reduction for the classical CNFD scheme (2.3) and by the
extrapolating iteration, respectively. They can, respectively, serve as the suggestions of choice of the
number d of POD bases and update of the POD basis in the actual numerical computations. Though
the ROECNFD solutions lose some accuracy contrasting the classical CNFD ones, they can greatly save
degrees of freedom so as to lessen the truncated error amassing and improve computational efficiency, as
shown in the numerical experiments in Section 5.
Remark 4.3. When ‖I+D‖∞ 6 1, we have ‖D‖∞ = ‖I+D− I‖∞ 6 ‖I+D‖∞ + ‖I‖∞ 6 2. Therefore,
Υ = (β1 + β2)(2 + β1τ+ ‖D‖∞)/2 6 (β1 + β2)(2 + 0.5β1τ) is a finite real-number such that Υτ is usually
quite small. In addition, a lot of numerical experiments have shown that the eigenvalues λj (j = 1, 2, . . . ,L)
of the matrix AuATu are usually decreasing quickly to be close to zero. Therefore, if only we choose d
such that [1 + τ(β1 +β2)(2 +β1τ+ ‖D‖∞)/2]N−l√λd+1 6 min{τ2,h2}, we can ensure that the ROECNFD
solutions attain the optimal order convergence.

4.2. Flowchart of solving ROECNFD scheme
In the following, we provide the flowchart for solving the ROESTCFE scheme of the Riesz space

FODEs with a nonlinear source function and delay on a bounded domain, which consists of the following
six steps.
Step 1. Extract the snapshots Ui(i = 1, 2, . . . , l) from the classical CNFD solutions for the following clas-

sical CNFD scheme (at the first l steps, usually l = 20):

Un = Un−1 +
1
2
D(2Un−1 +DUn−1 + τF(Un−1))

+
τ

2
[
F(Un−1) + F(Un−1 +DUn−1 + τF(Un−1))

]
, n = 1, 2, . . . , l,

subject to the initial condition

U0 = [u0
1,u0

2, . . . ,u0
M−2,u0

M−1]
T , u0

i = ϕ(0, ih), uki = ϕ(kτ, ih), i = 1, 2, . . . ,M− 1,k < 0.

Step 2. Assemble the snapshot matrix Au = [U1,U2, . . . ,Ul].
Step 3. Compute the eigenvalues λ1 > λ2 > · · · > λr > 0 and the corresponding eigenvectors ψj (j =

1, 2, . . . , r) for the matrix ATuAu, where r = dim{U1,U2, . . . ,Ul}.
Step 4. For the spatial step-size h, the time step-size τ, and the desired error δ = O(τ2,h2), determine the

number d of POD basis such that λd+1 6 δ2 is satisfied.
Step 5. Produce the POD basis Φ = [ϕ1,ϕ2, . . . ,ϕd] by ϕi = Auψi/

√
λi (i = 1, 2, . . . ,d) and attain the

ROECNFD solutions by solving the following ROECNFD scheme:

βnd =ΦTuU
n, 1 6 n 6 l,

βnd = βn−1
d +

1
2
ΦTuD(2Φuβn−1

d +DΦuβd
n−1 + τF(Φuβ

n−1
d ))

+
τ

2
ΦTu

[
F(Φuβ

n−1
d ) + F(Φuβd

n−1 +DΦuβd
n−1 + τF(Φuβ

n−1
d ))

]
, l+ 1 6 n 6 N,

Und =Φuβ
n
d , 1 6 n 6 N,

which only includes d unknowns.
Step 6. If ‖Und −Un+1

d )‖∞ 6 ‖Un−1
d −Und)‖∞ (n = l, l+ 1, . . . ,N− 1), end. Else, let Ui = Un−l−id (i =

1, 2, . . . , l) and return to Step 2.
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5. Numerical experiments

In this section, we give some numerical experiments to illustrate the superiority of the ROECNFD
scheme (3.3) for the Riesz space FODEs.

In the Riesz space FODEs (1.1) with a nonlinear source function and delay, we take 0 6 t 6 750,
i.e., T = 750, 0 6 x 6 16000, i.e., L = 16000, K = 1, α = 1.5, s = 0.01, the boundary value function
g(t) = 0.22, the nonlinear source term f(t, x,u(t, x),u(t − 0.01)) = u(t, x)u(t − 0.01, x), and the initial
function ϕ(t, x) = 0.22 + 0.05{4[cosh(100x− 600000)]−2 − cosh(0.0025x− 16.25)]−2}. In this case, it is very
difficult to find the analytical solution for the Riesz space FODEs so that we can only find their numerical
solutions.

Let τ = h = 0.01. We first compute the initial l = 20 solution vectors Un (n = 1, 2, . . . , 20) by the
classical CNFD scheme (2.3) as the snapshots to form snapshot matrix Au = [U1,U2, . . . ,U20]. Then we
find the eigenvalues λ1 > λ2 > · · · > λ20 > 0 and the corresponding eigenvectors ϕj (j = 1, 2, . . . , 20)
according to Steps 3 and 5 in Subsection 4.2. By reckoning, we attain that

√
λ7 6 3.5× 10−4. Therefore,

we take the POD basis Φ = [ϕ1,ϕ2, . . . ,ϕ6] and find the ROECNFD solutions undi (n = 1, 2, . . . , 75000
and i = 1, 2, . . . , 1600000, i.e., 0 < t 6 750 and 0 6 x 6 16000) by means of the ROECNFD scheme (3.3),
depict graphically them in Figure 1. In order to compare with the ROECNFD solutions, we also compute
out the classical CNFD solutions uni (n = 1, 2, . . . , 75000 and i = 1, 2, . . . , 1600000, i.e., 0 < t 6 750
and 0 6 x 6 16000) by means of the classical CNFD scheme (2.3), depict graphically them in Figure 2.
Even if Figure 2 and Figure 1 are almost same, by checking carefully, we found that the results of the
ROECNFD solutions in Figure 1 are better than those of the classical CNFD solutions in Figure 2. Because
the classical CNFD scheme at each time node has one million and six hundred thousand unknowns,
whereas the ROECNFD scheme at the same time node only has six unknowns, the ROECNFD scheme
can greatly retard the truncated error amassing in the calculating process and improves the accuracy for
the ROECNFD numerical solutions. By operating records from solving the classical CNFD scheme and
the ROECNFD scheme in the same Laptop (Microsoft Surface Book: Int Core i7 Processor, 16GB RAM),
we find that the CPU time-consuming for solving the classical CNFD scheme on 0 6 t 6 750 is seven
hundred and sixty-two minutes, but the CPU time-consuming for solving the ROECNFD scheme is less
than six minutes, that is that the CPU time-consuming for solving the classical CNFD scheme is one
hundred and twenty-six times more than that for solving the ROECNFD scheme. This shows that the
ROECNFD scheme is far superior to the classical CNFD scheme.

Figure 1: The classical CNFD solutions when 0 6 t 6 750 and 0 6 x 6 16000.
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Figure 2: The ROENBE solutions when 0 6 t 6 750 and 0 6 x 6 16000.

Figure 3: The error photo between the classical CNFD solutions and the ROECNFD solutions on 0 6 t 6 750.

Figure 3 shows the error photo between the classical CNFD solutions and the ROECNFD solutions
on 0 6 t 6 750, which is consistent with the theoretical result of (4.1) in the Theorem 4.1, because both
theoretical and numerical errors are O(10−4) when τ = h = 0.01. This implies that the ROECNFD scheme
is efficient and feasible for solving the Riesz space FODEs (1.1).

6. Conclusions and discussion

In this article, we have built the ROECNFD scheme containing very few unknowns but possessing
fully second-order accuracy for the Riesz space FODEs with a nonlinear source function and delay on a
bounded domain, analyzed the the existence, stability, and convergence of the ROECNFD solutions. we
have also used some numerical experiments to check the feasibility and effectiveness of the ROECNFD
scheme and to verity that the numerical computing consequences are coincided with the theoretical anal-
ysis ones. Especially, the ROECNFD scheme has more advantageous than the classical CNFD scheme,
because the ROECNFD scheme can greatly save more CPU time-consuming and degrees of freedom
than the classical CNFD scheme. Moreover, because the ROECNFD scheme for the Riesz space FODEs
with a nonlinear source function and delay is first presented, it is improvement over the existing other
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reduced-order methods as mentioned in Section 1.
Even if we only research the order-reduction for the classical CNFD scheme of the Riesz space FODEs

with a nonlinear source function and delay on a bounded domain, because the classical CNFD scheme
can solve the Riesz space FODEs in the two and three-dimensional unbounded domain (see, e.g., [17]),
the ROECNFD scheme can be easily and effectively used to reduce the order for the Riesz space FODEs
in the two and three-dimensional domain.
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