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Abstract
We consider a system of multicolored disordered lattice gas in a volume Λ of Zd driven by a disordered Markov generator

similar to that of Faggionato and Martinelli [A. Faggionato, F. Martinelli, Probab. Theory Related Fields, 127 (2003), 535–608].
The aim of our work is to give a new and elementary computation of the spectral gap of multicolored disordered lattice gas
which is an important step towards obtaining the hydrodynamic limit.
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1. Introduction

In this work, which is inspired on work by Faggionato and Martinelli [8], we are interested in the
movement of free electrons in a crystal in the presence of impurities. Contrary to the case of non-presence
of impurities where the crystal creates a periodic electromagnetic field which influences the transport of
electrons, here one of the modelings of impurities, consists with regards the field a randomness and the
electrons as particles evolving/moving on a network made up of sites, subjected to a principle of exclusion
where the random walks describing the jumps between the sites, locally depend on the random chemical
potential field (the disorder), and for the decomplexification of the model we neglect the interactions
between the electrons.

More precisely, this phenomenon can be described as follows: a particle sitting on a site x of the
cubic lattice Zd waits an exponential time and then attempts to jump to a neighbor site y. If the site y
is occupied then the jump is canceled, otherwise it is achieved with a rate cαxy depending only on the
values (αx,αy) of some external quenched disorder field {αx}x∈Zd that, for simplicity, is assumed to be a
collection of i.i.d. bounded random variables. Given an external chemical potential λ, the Hamiltonian of
the system is defined as H(η) = −

∑
x(αx + λ)ηx, where ηx is the particle occupation number at site x. In
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these last years, several investigations are motivated to determine the speed of convergence to equilibrium
of conservative stochastic dynamics. To attack this question it is necessary to estimate the spectral gap of
the corresponding Markov generator or by proving a Poincaré inequality. In this direction the important
achievements are the diffusive estimates established for Kawasaki dynamics in high temperature by Lu
and Yau [9] and by Cancrini and Martinelli [3]. Also, Boudou et al. [2] developed a general technique
based on a Bochner-type identity, to estimate spectral gap of class of Markov generator. Moreover, Caputo
[4] prove Poincaré inequalities in product spaces with one or more conservation laws. In the preceding
works they relate to the monocolor case.

Previous works of Dermoune and Heinrich [5, 6] were a first step to get the hydrodynamic limit of
this colored disordered simple exclusion process similar to [8].

As observed in [1, 11, 12] their approach can be generalized for multicolored disordered lattice gas of
exclusion processes. More precisely, we propose the explicit form for the canonical measures and spectral
gap who does not depend on disorder α, although this last one plays an important role in the study of
hydrodynamic limit.

The rest of this paper is organized as follows: In Section 2 we introduce the preliminaries and the
notations whose we deal on dynamics in a volume Λ, Markov generator, grand canonical, canonical
measures and spectral gap. Section 3 is devoted for state the main results and its proofs. Finally, we make
a conclusion.

2. Preliminaries and notations

In the multicolored case similar to that of Dermoune and Martinez [7], the finite set of colors is
I = {0, 1, . . . ,n} and in I0 = I∪ {0}, the value 0 expresses the absence of color (or that a site is empty). The
set of configurations is IΛ0 . In this approach we study the projection on the monocolour system and we
derive an estimate of the closeness between grand canonical and canonical Gibbs measures.

Consider a finite subset Λ of the d-dimensional lattice Zd. To each site x, we assign a disorder, that is
a random variable αx. A configuration means an application η = {ηx, x ∈ Λ} ∈ ΩΛ := {0, 1, ..,n}Λ , such
that

ηx =

{
0, if there is no particle at x,
i, if there is a particle of color ”i”at x, with i = 1,n.

As in [8], we assume that the αx‘s are i.i.d, and bounded by some constant B. The corresponding product
measure (Resp. expectation) on ΩD = [−B,B] Λwill be denoted by P(Resp. E). We set for simplicity

ηix = 1{ηx=i},

where ηix × η
j
x = 0 for i 6= j .

Dynamics in the volume Λ. For a (particles) configuration {ηx, x ∈ Λ} which is simply denoted by η, if {x,y}
is a pair of sites, we denoted by ηx,y the configuration derived from η by permuting ηx with ηy. Namely,
η
x,y
x = ηy, ηx,y

y = ηx and the rest is unchanged. The dynamics of the particles are given by a Markov
process {η(t), t ∈ R+} and can then be described as follows: a particle at x waits an exponential time and
attempts to jump to a neighbor site y. If this site is occupied then the jump is aborted, otherwise it is
realized with a probabilistic rate

cαx,y(η) = fe(αx,
ηx

i
,αy,

ηy

i
),

where fe is a bounded function on (R× {0, 1})2 satisfying the following conditions:
1. fe(a, s,a′, s′) = fe(a′, s′,a, s) ( symmetry condition);
2. ss′ 6= 0 =⇒ fe(a, s,a′, s′) = 0 ( exclusion condition);
3. ss′ = 0 =⇒ fe(a, s,a′, s′) > δ > 0 ( uniform bound condition);
4. fe(a, s,a′, s′) = fe(a, s′,a′, s) exp(−(s′ − s)(a′ − a) ( balance condition) (see [8]).

Markov generator. These conditions allow us to define a disordered Markov generator L. Disordered
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means depending on the random collection α = {αx, x ∈ Λ}, which is also called disorder. The mentioned
generator L := LαΛ is given for a bounded function f on ΩΛ by

Lf(η) =
∑
x,y∈Λ

cαx,y(η) [f(η
x,y) − f(η)] .

Grand canonical and canonical measures. We consider the product Gibbs measure µ = µα,λ1,...,λn
Λ on ΩΛ

defined by

µ(ηix) =
exp(αx + λi)

1 + exp(αx + λ)
(
for x ∈ Λ, and i = 1,n

)
. (2.1)

In the following theorem, we construct Gibbs’s measures such that the dynamics is time reversible for
several external chemical potentials.

Theorem 2.1. Set ηix = 1{ηx=i}. Let µα,λ1,...,λn
Λ be a disordered probability measure on ΩΛ such that, for almost

all α, under µα,λ1,...,λn
Λ , the random variables η 7→ ηx, x ∈ Λ, are independent. Then, for almost all α, the uniform

bound condition 3 and the detailed balance condition 4 holds if and only if there exists (λ1, . . . , λn) ∈ Rn such that

(I)
∑n
i=1 e

λi = eλ;
(II) µα(ηix) = eαx+λi/(1 + eαx+λ1 + · · ·+ eαx+λn)(x ∈ Λ).

Proof. See [12].

We define the Hamiltonian Hα,λ1,...,λn
Λ of the system as well as the empirical and annealed chemical

potential λ1, . . . , λn in the volume Λ as follows:

Hα,λ1,...,λn
Λ (η) = −

∑
x∈Λ

[αxηx +

n∑
i=1

λiη
i
x],

where λ is such that eλ =
∑n
i=1 e

λi .
Then the corresponding grand canonical Gibbs measure on ΩΛ coincides with µα,λ1,...,λn

Λ , namely

µα,λ1,...,λn
Λ ({η}) = Z1 exp(−Hα,λ1,...,λn

Λ (η)),

where Z1 is a normalizing constant. For each (m1, . . . ,mn) ∈ [0, 1]n such that
∑n
i=1mi 6 1, we define

also the canonical measures ναΛ,m1,...,mn
as follows. Let NiΛ(η) be the number of particles of color ”i” in

the volume Λ and m ∈
{

0, 1
|Λ|

, . . . , 1
}

. Then

ναΛ,m1,...,mn
({η}) = µα,λ1,...,λn

Λ ( {η}|N1
Λ = |Λ|m1, . . . ,NnΛ = |Λ|mn).

Spectral gap. Note that I−P is a non-negative, bounded self-adjoint operator on L2(ν). Any constant is an
eigenfunction with eigenvalue 0 and the spectral gap λ = λ(|Λ|) is defined as

λ(|Λ|) = inf
f∈L2(ν),ν(f)=0

ν(f(I−P)f)

ν(f2)
,

where ν(f) stands for the expectation
∫
fdν. Note that this linear operator P on L2(ν) preserves positivity,

and is of norm less or equal to one, and satisfies PI = I. These properties ensure that P− I is a Markov
generator. Moreover, note that P− I has reversible (and thus invariant) measure ν since ν(f(P− I)g) =
ν(g(P− I)f for all f, g ∈ L

.
2(ν).

In the continuation, we assume that the random variables η 7→ ηx, x ∈ Λ are independent with respect
to µ (w.r.t µ) and we will use the notation

ξx(η) = 1[η(x) 6=0]

for x ∈ Λ so that ξ(η) ∈ {0, 1}Λ denotes the configuration of occupied sites associated to η.
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Goal. Previous works [5, 6] were first steps to get the hydrodynamic limit of this colored disordered
simple exclusion process similar to [8]. The aim of the present paper is the calculation of the spectral gap
for multicolored disordered lattice gas of exclusion processes which plays an important role in the study
of hydrodynamic limit with cαx,y(η) = 1. Set the Dirichlet form defined by

D(f) =
1
|Λ|

∑
x,y∈Λ

ν(|f(ηx,y) − f(η)|2)

and
Pf =

1
|Λ|

∑
y∈Λ

ν(f|ηy)
(
for every f ∈ L2(ν)

)
.

Let be s1 < s2 < · · · < s3|Λ| eigenvalues of 3|Λ| by 3|Λ| blocks symmetric matrix A, so that s1 = s1(|Λ|)

is the smallest eigenvalue of matrix A =

 Y Z Z
Z Y Z
Z Z Y

 , where Y =
(
yij
)

is a |Λ| by |Λ| with yii = 1 +

1
|Λ| (|Λ|− 1)

,yij =
1

|Λ| (|Λ|− 1)
, ∀i 6= j and Z =

(
zij
)

is a |Λ| by |Λ| with zii =
|Λ|− 1
|Λ|

, zij = 0, ∀i 6= j.

3. Main result

We are now able to state our main result.

Theorem 3.1. For |Λ| > n. The spectral gap is equal to smallest eigenvalue of matrix A.

Note that by definitions of ν and µ, and by the fact that ηix and ηjy are independent w.r.t. µ for all
i, j ∈ {1, . . . ,n} , we have:

ν
(
ηixη

j
y

)
=
µ(ηix)µ(η

j
y)

µ (S)
× µ

(
NiΛ\{x,y} = Ni − δii − δ

i
j,N

j
Λ\{x,y} = Nj − δji − δ

j
j

)
, (3.1)

ν
(
ηixη

i
y

)
=
µ(ηix)µ(η

i
y)

µ (S)
× µ

(
NiΛ\{x,y} = Ni − 2δii,N

j
Λ\{x,y} = Nj − 2δjj

)
, (3.2)

and

ν
(
ηix
)
=
µ(ηix)

µ (S)
× µ

(
NiΛ\{x} = Ni − δii,N

j
Λ\{x}

= Nj − δji

)
, (3.3)

where δji is the Kronecker symbol. We put

θi,jx,y = µ
(
NiΛ\{x,y} = Ni − δii − δ

i
j,N

−
Λ\{x,y} = Nj − δji − δ

j
j

)
,

θi,ix,y = µ
(
NiΛ\{x,y} = Ni − 2δii,N

j
Λ\{x,y} = Nj − 2δjj

)
,

and
θix = µ

(
NiΛ\{x} = Ni − δii,N

j
Λ\{x}

= Nj − δji

)
.

Moreover, as it is shown in Caputo [4], it is sufficient to prove the Theorem 3.1 for f =
∑
x∈Λ
∑n
i=1 f

i
xη
i
x,

where ηix = ηix − ν(η
i
x), with the row (fix, x ∈ Λ, i = 1,n) of real numbers.

The following theorem proposes the explicit form of the canonical measures for a multicolored disor-
dered lattice gas.

Theorem 3.2. We have for |Λ| > n

1) ν
(
ηixη

j
y

)
= NiNj

|Λ|(|Λ|−1)e

αx(1−ξx(η))+αy(1−ξy(η))+
n∑
k=1
k6=i,j

λkN
k

;
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2) ν
(
ηixη

i
y

)
=
Ni(Ni−1)
|Λ|(|Λ|−1)e

αx(1−ξx(η))+αy(1−ξy(η))+
n∑
k=1
k6=i,j

λkN
k

;

3) ν
(
ηix
)
= Ni

|Λ|
e

αx(1−ξx(η))+
n∑
k=1
k6=i

λkN
k

.

Proof of Theorem 3.2.

Computation of µ (S) , θi,jx,y, θi,ix,y, and θix. We have

µ (S) =
∑

V1∪···∪Vn∪V0=Λ
|V1|=N1,...,|Vn|=Nn,|V0|=|Λ|−N

∏
z∈V1

µ
(
η1
z

)
× · · · ×

∏
z∈V−

µ (ηnz )×
∏
z∈V0

(1 − µ (ηz)).

The sum is taken on
{
V1, . . . ,Vn,V0

}
such that V1, . . . ,Vn,V0 ⊂ Λ, where Vi is the set of sites occupied

by particles of color ”i” with i = 1,n, V0 is the set of empty sites, and N =
n∑
i=1

Ni. The formula (2.1)

implies that:

µ (S) =
∑

V+∪V−∪V0=Λ

e

n∑
i=1
λiN

i ∏
z∈V1

eαz

(1 + eαz+λ)
× · · · ×

∏
z∈Vn

eαz

(1 + eαz+λ)
×
∏
z∈V0

1
(1 + eαz+λ)

=
e

n∑
i=1

λiN
i

∏
z∈Λ

(1 + eαz+λ)

∑
V1∪···∪Vn∪V0=Λ

∏
z∈V1∪···∪Vn

eαz .

Note that the number of
{
V1, . . . ,Vn,V0

}
is the number of permutations with repetition, therefore ac-

cording to the fact that ∑
z∈V1∪···∪Vn

αz =
∑
z∈Λ

αzξz = u,

where
ξz (η) = 1[η(x) 6=0],

we have

µ (S) =
e

n∑
k=1
λkN

k∏
z∈Λ

(1 + eαz+λ)

|Λ|!
N1!× · · · ×Nn! (|Λ|−N)!

eu. (3.4)

Using the following notations∑
z∈Λ\{x,y}

αzξz (η) = ux,y and
∑

z∈Λ\{x}

αzξz (η) = ux

we find with the same manner that

θi,jx,y =
eλ
i(Ni−1)+λj(Nj−1)∏

z∈Λ\{x,y}
(1 + eαz+λ)

(|Λ|− 2)!
N1!× · · · × (N

i
− 1)!(Nj − 1)!× · · · ×Nn! (|Λ|−N)!

eux,y , with i 6= j,

θi,ix,y =
eλi(N

i−2)+λjNj∏
z∈Λ\{x,y}

(1 + eαz+λ)

(|Λ|− 2)!
N1!× · · · × (N

i
− 2)!(Nj)!× · · · ×Nn! (|Λ|−N)!

eux,y ,
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and

θix =
eλi(N

i−1)+λjNj∏
z∈Λ\{x}

(1 + eαz+λ)

(|Λ|− 1)!
N1!× · · · × (Ni − 1)!Nj!× · · · ×Nn! (|Λ|−N)!

eux .

Then we can write

µ(ηix)µ(η
j
y)θ

i,j
x,y =

eλiN
i+λjN

j∏
z∈Λ

(1 + eαz+λ)

(|Λ|− 2)!
N1!× · · · × (N

i
− 1)!(Nj − 1)!× · · · ×Nn! (|Λ|−N)!

eux,y+αx+αy , (3.5)

µ(ηix)µ(η
i
y)θ

i,i
x,y =

eλiN
i+λjN

j∏
z∈Λ

(1 + eαz+λ)

(|Λ|− 2)!
N1!× · · · × (N

i
− 2)!(Nj)!× · · · ×Nn! (|Λ|−N)!

eux,y+αx+αy , (3.6)

and

µ(ηix)θ
i
x =

eλiN
i+λjN

j∏
z∈Λ

(1 + eαz+λ)

(|Λ|− 1)!
N1!× · · · × (Ni − 1)!Nj!× · · · ×Nn! (|Λ|−N)!

eux+αx . (3.7)

We replace (3.4), (3.5), (3.6), (3.7) in (3.1), (3.2), (3.3) respectively, we conclude that

ν
(
ηixη

j
y

)
=

NiNj

|Λ| (|Λ|− 1)
e

αx(1−ξx(η))+αy(1−ξy(η))+
n∑
k=1
k6=i,j

λkN
k

,

ν
(
ηixη

i
y

)
=
Ni(Ni − 1)
|Λ| (|Λ|− 1)

e

αx(1−ξx(η))+αy(1−ξy(η))+
n∑
k=1
k6=i,j

λkN
k

,

and

ν
(
ηix
)
=
Ni

|Λ|
e

αx(1−ξx(η))+
n∑
k=1
k6=i,j

λkN
k

,

which achieves the proof.

Proof of Theorem 3.1.

Step1. We only take three colors. Now, we take the matrix representations ν(f2) and ν(fPf) used in [6].
Let for x,y ∈ Λ and i,j ∈ {1, 2, 3}

(Cijxy) = ν(η
i
x;ηjy), R

ij
xy =

C
ij
xy√

C
ij
xxC

ij
yy

,

where C = (Cijxy) is a 3 |Λ| by3 |Λ| covariance matrix and R = (Rijxy) the corresponding correlation matrix.
Let (fix, x ∈ Λ, i = 1, 3) ∈ R3|Λ|, we will identify f =

∑
x∈Λ f

1
xη

1
x + f

2
xη

2
x + f

3
xη

3
x, where ηix = ηix − ν(η

i
x),

hence we can write

ν(f2) = fCfT , (3.8)

ν(fPf) =
1
|Λ|
fCDCfT , (3.9)

where D =
(
D
ij
xy

)
is the 3 |Λ| by3 |Λ| symmetric matrix defined by

Dijxx =
(2δji − 1)Cijxx

det(Cxx)
, Dijxy = 0 for x 6= y,
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where δji denotes the Kronecker symbol. Now, we shall find a non-negative matrix Q and a row g such
that

ν(f2) = gQgT , ν(fPf) =
1
|Λ|
gQ2gT

if we set furthermore

h = Q
1
2g and Γ = I−Q,

ν(f2) = hhT ,ν(f(I−P)f = h

[
(|Λ|− 1) I

|Λ|
+
Γ

|Λ|

]
hT .

(3.10)

We seek for 3 |Λ| by 3 |Λ| upper triangular matrix U such that D = UTU, where

D =

 D11 D12 D13

D13 D22 D23

D13 D23 D33

 and U =

 U11 0 0
U12 U22 0
U13 U23 U33


so that U must satisfy the following block identities

U21 = U31 = U32 = 0,

D11 = U11U11 +U12U12 +U13U13,

D12 = U12U22 +U13U23,

D13 = U13U33,

D22 = U22U22 +U23U23,

D23 = U33U23,

D33 = U33U33.

This implies that Uijxy = 0, if x 6= y and

U33
xx =

√
D33
xx, U23

xx =
D23
xx√
D33
xx

, U13
xx =

D13
xx√
D33
xx

, U22
xx =

√
D22
xx −

∣∣D23
xx

∣∣2
D33
xx

, (3.11)

U12
xx =

D12
xx −

D13
xxD

23
xx

D33
xx√

D22
xx −

∣∣D23
xx

∣∣2
D33
xx

, U11
xx =

√√√√√√√√D11
xx −

D12
xx −

D13
xxD

23
xx

D33
xx

D22
xx −

∣∣D23
xx

∣∣2
D33
xx

−
|D13
xx|

2

D33
xx

. (3.12)

Since D has a dominating diagonal. Set g = fU−1 and Q = UCUT , so that (3.8) and (3.9) yield (3.10) and
thus (3.11), (3.12).

Using Theorem 3.2 for i,j ∈ {1, 2, 3} , we find

inf
f∈L2(ν),ν(f)=0

ν(f(I−P)f

ν(f2)
= inf
h 6=0

hAhT

hhT
.

There exists an orthogonal matrix P such that A = P−1SP where S = Diag(s1, s2, . . . , s3|Λ|) is a diagonal
matrix whose diagonal elements are eigenvalues of A. If P is partitioned as P = (e1, e2, . . . , e3|Λ|) where
ei is an eigenvector of A, then A can be written as

A =

3|Λ|∑
i=1

eie
T
i .
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If h 6= 0 we have

h =

3|Λ|∑
i=1

hiei,

we deduce
hAhT

hhT
=

∑3|Λ|

i=1 sih
2
i∑3|Λ|

i=1 h
2
i

> s1

∑3|Λ|

i=1 h
2
i∑3|Λ|

i=1 h
2
i

= s1.

Now, if we choose h = e1, therefore

inf
h 6=0

hAhT

hhT
= s1,

which achieves the proof.

Step 2. Now, we seek the exact value of the smallest eigenvalue of matrix A. Let A =

Y Z Z

Z Y Z

Z Z Y

 .

For simplicity put |Λ| = m, α =
1

m (m− 1)
, and β =

m− 1
m

, so Y is a m×m matrix with entries

yii = 1 +α, yij = α if i 6= j and Z is a m×m matrix with entries zii = β, zij = 0 if i 6= j.
Let

P (λ) = det (A − λI3m) =

∣∣∣∣∣∣
Y − λIm Z Z

Z Y − λIm Z

Z Z Y − λIm

∣∣∣∣∣∣ ,
where I3m (Im) denotes the identity matrix of size 3m× 3m (m×m), be the characteristic polynomial of
A. According to the fact that Y − λIm and Z commute, P (λ) take the form

P (λ) = det
(
(Y − λIm)3 − (Y − λIm)Z2 −Z2 (Y − λIm) +Z3 +Z3 −Z2 (Y − λIm)

)
= det

(
(Y − λIm)3 − 3Z2 (Y − λIm) + 3Z3 −Z3

)
= det

(
(Y − λIm)3 −Z3 − 3Z2 (Y − λIm −Z)

)
= det

(
(Y − λIm −Z)

(
(Y − λIm)2 +Z (Y − λIm) − 2Z2

))
,

since
(Y − λIm)2 = (Y − λIm −Z+Z)2 = (Y − λIm −Z)2 + 2Z (Y − λIm −Z) +Z2,

then

(Y − λIm)2 +Z (Y − λIm) − 2Z2 = (Y − λIm −Z)2 + 2Z (Y − λIm −Z) +Z2 +Z (Y − λIm −Z) +Z2 − 2Z2

= (Y − λIm −Z) (Y − λIm + 2Z)

and

P (λ) = det (Y − λIm −Z)2 (Y − λIm + 2Z) = (det (Y − λIm −Z))2 det (Y − λIm + 2Z) .

Now to compute det (Y − λIm −Z) = Pm, we have

Pm =

∣∣∣∣∣∣∣∣∣∣∣∣

1 +α−β− λ α α . . α

α 1 +α−β− λ α . . α

α α . . . α

. . . . . .

. . . . . .
α . . . . 1 +α−β− λ

∣∣∣∣∣∣∣∣∣∣∣∣
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and by using the linear transformation on the rows, we obtain:

Pm =

∣∣∣∣∣∣∣∣∣∣∣∣

1 −β− λ −(1 −β− λ) 0 0 . 0
α 1 +α−β− λ α . . α

α α . . . α

. . . . . .

. . . . . .
α . . . . 1 +α−β− λ

∣∣∣∣∣∣∣∣∣∣∣∣

= (1 −β− λ)

∣∣∣∣∣∣∣∣∣∣∣∣

1 +α−β− λ α α . . α

α 1 +α−β− λ α . . α

α α . . . α

. . . . . .

. . . . . .
α . . . . 1 +α−β− λ

∣∣∣∣∣∣∣∣∣∣∣∣

+ (1 −β− λ)

∣∣∣∣∣∣∣∣∣∣∣∣

α α α . . α

α 1 +α−β− λ α . . α

α α . . . α

. . . . . .

. . . . . .
α . . . . 1 +α−β− λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

We define Pm recursively. After a linear transformation on the rows, the second determinant Qm−1
on the right-hand side becomes

Qm−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −(1 −β− λ) 0 0 . 0
α 1 +α−β− λ α . . α

α α . . . α

. . . . . .

. . . . . .
α . . . . 1 +α−β− λ

∣∣∣∣∣∣∣∣∣∣∣∣
,

which implies that

Qm−1 = (1 −β− λ)Qm−2 and Pm = (1 −β− λ)Pm−1 + (1 −β− λ)Qm−1,

hence

Qm−1 = (1 −β− λ)m−3Q2 where Q2 =

∣∣∣∣ α α

α 1 +α−β− λ

∣∣∣∣ = α (1 −β− λ) ,

so that
Qm−1 = α (1 −β− λ)m−2 ,

and
Pm = (1 −β− λ)Pm−1 +α (1 −β− λ)m−1 , (3.13)

then
Pm−1 = (1 −β− λ)Pm−2 +α (1 −β− λ)m−2 ,

which we substitute in (3.13) so

Pm = (1 −β− λ)
(
(1 −β− λ)Pm−2 +α (1 −β− λ)m−2

)
+α (1 −β− λ)m−1

Pm = (1 −β− λ)
(
(1 −β− λ)Pm−2 +α (1 −β− λ)m−2

)
+α (1 −β− λ)m−1

= (1 −β− λ)2 Pm−2 + 2α (1 −β− λ)m−1 .

We repeat this procedure for Pm−2,Pm−3, . . . ,P3, to obtain



A. B. Touati, L. Benaon, H. Zeghdoudi, J. Nonlinear Sci. Appl., 11 (2018), 723–733 732

Pm = (1 −β− λ)m−2 P2 + (m− 2)α (1 −β− λ)m−1 ,

since

P2 =

∣∣∣∣ 1 +α−β− λ α

α 1 +α−β− λ

∣∣∣∣ = (1 −β− λ) (1 + 2α−β− λ) ,

then,

Pm = det (Y − λIm −Z) = (1 −β− λ)m−1 (1 + 2α−β− λ) + (m− 2)α (1 −β− λ)m−1

= (1 −β− λ)m−1 (1 +mα−β− λ) .

With the same manner, we obtain that

det (Y − λIm + 2Z) = (1 + 2β− λ)m−1 (1 +mα+ 2β− λ) .

Finally
P (λ) = (1 −β− λ)2m−2 (1 +mα−β− λ)2 (1 + 2β− λ)m−1 (1 +mα+ 2β− λ) .

We substitute the real values of α and β, then

P (λ) =

(
1
m

− λ

)2m−2( 1
m

+
1

m− 1
− λ

)2(
1 + 2

m− 1
m

− λ

)m−1(
1 +

1
m− 1

+ 2
m− 1
m

− λ

)
.

We conclude that the smallest eigenvalue of A is s1 =
1
m

.

4. Conclusion

We conclude that the spectral gap does not depend on the disorder α, color and then, finding the exact

value of the spectral gap is the smallest eigenvalue (s1) of A, which s1 =
1
|Λ|

.

For future studies, we can consider more general cases such as follows.

- Calculation of the spectral gap of a generalized exclusion process for a multicolored disordered
system.

- Calculation of the spectral gap such that the matrix A is random.

- Calculation of the spectral gap for lattice gas evolving in a bounded cylinder of length 2N+1 and
interacting via a Neuman Kac interaction of range N, in contact with particles reservoirs at different
densities (see [10]).
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