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Abstract
The notion of Aleksandrov body in the classical Brunn-Minkowski theory is extended to that of Orlicz-Aleksandrov body in

the Orlicz Brunn-Minkowski theory. The analogs of the Brunn-Minkowski type inequality and the first variations of volume are
established via Orlicz-Aleksandrov body. We also make some considerations for the polar of Orlicz combination.

Keywords: Orlicz-Aleksandrov body, Brunn-Minkowski type inequality, Orlicz combination.

2010 MSC: 52A20, 52A40.
c©2018 All rights reserved.

1. Introduction and Preliminaries

1.1. Introduction
The definition of Aleksandrov body in [1] was introduced by Aleksandrov to solve Minkowski problem

in 1930. The Aleksandrov body given the relationship between the convex body containing the origin and
the positive continuous functions and characterizes the convex body via the positive continuous functions.
Aleksandrov body not only be used to solve Minkowski problem but also be applied to other areas of
convex geometric analysis. However, the Brunn-Minkowski theory (see [2–5, 8, 10–17, 20]) plays an
important role in convex geometric analysis.

The set of positive continuous functions on Sn−1 be denoted by C+(Sn−1) endowed with the topology
derived from the max norm. Given a function f ∈ C+(Sn−1), the unique maximal element of

{K ∈ Kn0 : hK(u) 6 f(u),u ∈ Sn−1},

the Aleksandrov body associated with the positive continuous function f ∈ C+(Sn−1) is denoted by

K(f) = max{K ∈ Kn0 : hK(u) 6 f(u),u ∈ Sn−1}.
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With the development of the Orlicz-Brunn-Minkowski theory. The Orlicz-Brunn-Minkowski theory
originated with the work of Lutwak, Yang and Zhang in 2010. More precisely, Orlicz projection bodies
and Orlicz centroid bodies were introduced by Lutwak, Yang, and Zhang in [15, 16], and they established
the fundamental affine inequalities for these bodies. Haberl, Lutwak, Yang and Zhang in [7] dealt with
the even Orlicz Minkowski problem. And most importantly, the general Aleksandrov body become a
major goal. Here, we introduce a new geometric body: Orlicz-Aleksandrov body (as follows).

For f ∈ C+(Sn−1),φ ∈ C,K ∈ Kn0 and ε > −min{φ(hK)/φ(f) : u ∈ Sn−1}, define h(ε,u) =
φ−1(φ(hK) + εφ(f)). We also define Orlicz-Aleksandrov body by

K(hK+̂φεf) = max{K ∈ Kn0 : hK(u) 6 h(ε,u),u ∈ Sn−1}.

Throughout this paper, we set φ : R→ [0,∞) be a convex function such that φ(0) = 0 and φ be strictly
increasing on [0,∞). The set is denoted by C. It is easy to conclude from [18] that φ ∈ C is continuous on
[0,+∞) and the left derivative φ

′
l and right derivative φ

′
r exist.

The purpose of this paper is to study the Aleksandrov body, we generalize the Brunn-Minkowski
inequality for the Orlicz-Aleksandrov bodies associate with positive continuous functions and Brunn-
Minkowski type inequality for polar of Orlicz combination, as follows.

In Section 2, we compute the Orlicz first variations of volume and obtain their integral representation.

Theorem 1.1. Let K ∈ Kn0 and f ∈ C+(Sn−1), then, for φ ∈ C,

lim
ε→0+

|K(hK+̂φεf)|− |K|

ε
=

∫
Sn−1

φ(f)/φ
′
r(h(K,u))dS(K,u).

And the Brunn-Minkowski type inequality is generalized to the Orlicz setting.

Theorem 1.2. Let f,g ∈ C+(Sn−1) and φ ∈ C, then for all 0 < λ < 1,

|λf+̂φ(1 − λ)g| > |f|λ|g|(1−λ).

In Section 3, we are mainly interesting in studying generalizations of the previous relation [5]. we
extend the Brunn-Minkowski type inequality to the Orlicz combination of convex bodies, we prove the
following result.

Theorem 1.3. Let K,L ∈ Kn0 , λ ∈ (0, 1) and φ ∈ C. Then

|(λK+φ (1 − λ)L)∗| 6 |φ−1(1)K∗|λ|φ−1(1)L∗|1−λ. (1.1)

Suppose φ(t) = tp,p > 1. The above volume case was already obtained by [8, 11].

1.2. Preliminaries
We collect some basic facts about convex bodies that are needed in our paper.
Let K be a convex body (compact convex subset with nonempty interiors) in Rn. Kn denotes the

set of convex bodies in Rn and denote by Kn0 the set of convex bodies containing the origin as interior.
|K|,V1(K,L) denoted volume and mixed volume, respectively. Support function hK of convex body is
defined by

hK(u) := h(K,u) = max
u∈Sn−1

{x · u : x ∈ K},

where x · u denoted the inner product of u and x (see [11]).
The Minkowski addition with respect to K and L in Rn is defined by (see[10])

aK+ bL = {ax+ by : x ∈ K,y ∈ L}, for all a,b > 0.

If K,L ∈ Kn0 can be defined as a convex body such that

haK+bL(u) = ahK(u) + bhL(u), for all u ∈ Sn−1.
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And Minkowski’s mixed volume inequality

V1(K,L)n > |K|n−1|L|,

with equality holds if and only if K and L are homothetic.
For convex body K ∈ Kn0 , let K∗ denotes the polar of the body K. Namely,

K∗ = {x ∈ Rn : x · y 6 1, for all y ∈ K}.

Obviously, we have K∗∗ = K. If K ∈ Kn0 , then the support and radial functions of K∗ is defined by
h(K∗, ·) = 1

ρ(K,·) .
We now turn to the Orlicz addition, which is an extension of Lp-addition. Let K,L ∈ Kn0 ,a,b > 0 and

φ ∈ C. The Orlicz combination aK+φ bL is the convex body with support function [6, 19]

h(aK+φ bL, x) = inf{λ > 0 : aφ(
h(K, x)
λ

) + bφ(
h(L, x)
λ

) 6 1}.

Since φ is strictly increasing, then

λ→ aφ(
h(K, x)
λ

) + bφ(
h(L, x)
λ

),

is strictly decreasing. Therefore, h(aK+φ bL, x) = λ0 if and only if

aφ(
h(K, x)
λ0

) + bφ(
h(L, x)
λ0

) = 1.

When φ(t) = tp, for all p > 1, the Orlicz combinationis precisely the Lp Minkowski combination aK+p
bL.

We say that K be a star body about the origin, if K has continuous and positive radial function ρ(K, ·).
The radial function of K, is defined by

ρ(K, x) = max{λ > 0 : λx ∈ K}, x ∈ Rn\{0}.

The class of star bodies about the origin o in Rn is denoted by Sn0 . Star body K can be uniquely determined
by its radial function ρ(K, ·). If λ > 0, we get that

ρ(K, λx) =
1
λ
ρ(K, x); ρ(λK, x) = λρ(K, x).

In order to maintain the consistency of the symbols in this paper, we redefine the dual Orlicz radial
combination aK+̃φbL(a,b > 0). Let K,L ∈ Sn0 and φ ∈ C by [21]

ρ(aK+̃φbL, x) = sup{λ > 0 : aφ(
λ

ρ(K, x)
) + bφ(

λ

ρ(L, x)
) 6 1}

for all x ∈ Rn. Since φ is strictly increasing, then

λ→ aφ(
λ

ρ(K, x)
) + bφ(

λ

ρ(L, x)
)

is strictly increasing. Therefore, ρ(aK+̃φbL, x) = λ0 if and only if

aφ(
λ0

ρ(K, x)
) + bφ(

λ0

ρ(L, x)
) = 1.
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If φ(t) = tp,p > 1, then the Orlicz radial combination reduces to Lutwak’s radial harmonic Lp-
combination aK+̃−pbL(a,b > 0), that is,

ρ(aK+̃pbL, x)−p = aρ(K, x)−p + bρ(L, x)−p.

According to Lemmas 3.5 and 4.1 in [21], it is easy to check that K+̃φεL→ K, as ε→ 0+. And

lim
ε→0+

ρ(K+̃φεL,u)n − ρ(K,u)n

ε
= −

n

φ
′
l(1)

φ(
ρ(K,u)
ρ(L,u)

)ρ(K,u)n

is uniform on Sn−1, where φ
′
l(1) denotes the left-continuous derivative of φ at 1.

According to Theorem 4.1 in [21], we easily obtain the following results.
Let K,L ∈ Sn0 and φ ∈ C, then, for all 1 6 i 6 n,

−
φ
′
l(1)
n

lim
ε→0+

|K+̃φεL|− |K|

ε
=

1
n

∫
Sn−1

φ(
ρ(K,u)
ρ(L,u)

)ρ(K,u)ndu.

From the above equality, we can define the dual Orlicz mixed volume Ṽφ(K,L) of K,L ∈ Sn0 by

Ṽφ(K,L) =
1
n

∫
Sn−1

φ(
ρ(K,u)
ρ(L,u)

)ρ(K,u)ndu.

If φ(t) = tp,p > 1, Ṽφ(K,L) turns to Ṽ−p(K,L) of the Lp-dual mixed volume of K and L.
We also establish the following dual Orlicz-Minkowski inequality via a similar method in [21]. Sup-

pose that K,L ∈ Sn0 and φ ∈ C, then

Ṽφ(K,L) > |K|φ(
|K|1/n

|L|1/n
).

If φ is strictly convex, equality holds if and only if K and L are dilates.
We further establish the following dual Orlicz-Brunn-Minkowski inequality: Let K,L ∈ Sn0 and φ ∈ C,

then

1 > aφ((
|aK+̃φbL|

|K|
)

1
n ) + bφ((

|aK+̃φbL|

|L|
)

1
n ). (1.2)

If φ is strictly convex, equality holds if and only if K and L are dilates.

2. Aleksandrov body

A function h ∈ C+(Sn−1) defines a family {Hu}Sn−1 of hyperplanes

Hu = {x ∈ Rn−1 : x · u = h(u)}.

We should be interested in the intersection of the halfspaces that are associated h via a family {Hu}Sn−1 .
This gives the convex body

K = ∩Sn−1{x ∈ Rn−1 : x · u 6 h(u)}.

Obviously,
hK 6 h.

Aleksandrov also proved that the inverse spherical image of K of the set

ωh = {u ∈ Sn−1 : h(K,u) < h(u)},

be a singular boundary point of K. Since the set of singular boundary points of a convex body has (n-
1)−dimensional Hausdorff measure zero[18]. It follows that S(K,ωh) = 0. Consequently, if h ∈ C+Sn−1,
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then h(Kh,u) 6 h(u) and h(Kh,u) = h(u) almost everywhere with respect to the surface area S(Kh, ·).
Moreover, there are

|Kh| =
1
n

∫
Sn−1

h(u)dS(Kh,u). (2.1)

The volume |h| of a function h ∈ C+(Sn−1) is defined as the volume of the Aleksandrov body associ-
ated with h. Since the Aleksandrov body associated with the support function hK of a convex body K is
the body K itself, we have

|hK| = |K|.

In order to prove Theorem 1.1, we need the following convergence lemma of Aleksandrov: If the
functions f0, f1, · · · ∈ C+(Sn−1) have associated with Aleksandrov body K0,K1, · · · ∈ Kn0 and limn→∞ fn =
f0, uniformly on Sn−1, then limn→∞ Kn = K0. This gives | · | : C+(Sn−1 → (0,∞) is continuous.

Proof of Theorem 1.1. We let Kε denote the Aleksandrov body of h(ε,u). Since

lim
ε→0+

h(ε, ·) = h(K, ·)

uniformly on Sn−1, it follows that Aleksandrov’s convergence lemma that limε→0+ Kε = K. Hence, we
conclude that

lim
ε→0+

S(Kε, ·) = S(K, ·),weakly on Sn−1.

and

lim
ε→0+

h(ε,u) − h(K,u)
ε

=
φ(f(u))

φ
′
r(h(K,u))

, uniformly on Sn−1.

According to Lemma 1 in [7], it easy to check that

lim
ε→0+

|Kε|− |K|

ε
=

∫
Sn−1

φ(f)/φ
′
r(h(K,u))dS(K,u).

As desired.

In view of Theorem 1.1, it is hard to get the Minkowski type inequality via the first variation of volume.
However, we define

V̂φ(K, f) = lim
ε→0+

|Kε|− |K|

ε
,

and obtain a lower bound as the following.

Theorem 2.1. Let K ∈ Kn0 and f ∈ C+(Sn−1), then, for φ ∈ C,

V̂φ(K, f) > n|f|
1
n |K|

n−1
n .

Proof. Since φ ∈ C, we know that φ−1 is strictly increase and concave function, suppose 0 < ε < 1, it
follows that, Kε as define in Theorem 2.1,

|Kε| =
1
n

∫
Sn−1

h(ε,u)dS(Kε,u)

=
1
n

∫
Sn−1

φ−1(φ(hK) + εφ(f))dS(Kε,u)

>
1
n

∫
Sn−1

φ−1((1 − ε)φ(hK) + εφ(f))dS(Kε,u)

>
1
n

∫
Sn−1

[(1 − ε)hK + εf]dS(Kε,u)

= (1 − ε)V1(Kε,K) + εV1(Kε,Kf)

> (1 − ε)|Kε|
n−1
n |K|

1
n + ε|Kε|

n−1
n |f|

1
n ,



L. Ji, Z. Zeng, J. Zhong, J. Nonlinear Sci. Appl., 11 (2018), 762–769 767

the above inequality implies
|Kε|

1
n > (1 − ε)|K|

1
n + ε|f|

1
n .

Thus,

V̂φ(K, f) = lim
ε→0+

|Kε|− |K|

ε

> lim
ε→0+

[(1 − ε)|K|
1
n + ε|f|

1
n ]n − |K|

ε

= n|f|
1
n |K|

n−1
n .

This proves the theorem.

We next show that the Brunn-Minkowski type inequality for Orlicz-Aleksandrov body.

Theorem 2.2. Let f,g ∈ C+(Sn−1) and φ ∈ C, then for all 0 < λ < 1,

|λf+̂φ(1 − λ)g|
1
n > λ|f|

1
n + (1 − λ)|g|

1
n .

Proof. Since φ ∈ C, we conclude that φ−1 is concave function, hence,

|K(λf+̂φ(1 − λ)g)| =
1
n

∫
Sn−1

h(K(λf+̂φ(1 − λ)g),u)dS(K(λf+̂φ(1 − λ)g),u)

=
1
n

∫
Sn−1

φ−1(λφ(f) + (1 − λ)φ(g))dS(K(λf+̂φ(1 − λ)g),u)

>
1
n

∫
Sn−1

λf+ (1 − λ)gdS(K(λf+̂φ(1 − λ)g),u)

> V1(K(λf+̂φ(1 − λ)g),Kf) + V1(K(λf+̂φ(1 − λ)g),Kg),

the above inequality yields

|λf+̂φ(1 − λ)g|
1
n = |K(λf+̂φ(1 − λ)g)|

1
n > λ|f|

1
n + (1 − λ)|g|

1
n .

This completes the proof.

Corollary 2.3. Let K,L ∈ Kn0 and φ ∈ C, then for all 0 < λ < 1,

|λK+̂φ(1 − λ)L|
1
n > λ|K|

1
n + (1 − λ)|L|

1
n .

We also establish the proof of Theorem 1.2 as follows.

Proof of Theorem 1.2. According to Theorem 2.2 and arithmetic-geometric mean inequality, we obtain the
desired result.

3. Polar Set

In this section, we get the relationship between Orlicz combination and Orlicz radial combination, and
obtain Brunn-Minkowski type inequality for polar of Orlicz linear combination.

Lemma 3.1. Let K,L ∈ Kn0 and φ ∈ C, then

aK∗+̃φbL
∗ = (aK+φ bL)

∗.

Proof. By the definition of Orlicz combination and h(K∗, ·) = 1
ρ(K,·) , we have, for every u ∈ Sn−1, let
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Kφ = aK+φ bL,

1 = aφ(
h(K,u)
h(Kφ,u)

) + bφ(
h(L,u)
h(Kφ,u)

)

= aφ(
ρ(K∗φ,u)
ρ(K∗,u)

) + bφ(
ρ(K∗φ,u)
ρ(L∗,u)

).

On the other hand, by the definition of Orlicz radial addition,

1 = aφ(
ρ(aK∗+̃φbL

∗,u)
ρ(K∗,u)

) + bφ(
ρ(aK∗+̃φbL

∗,u)
ρ(L∗,u)

).

Thus, from uniqueness of solution to the equation

aφ(
f

ρ(K∗,u)
) + bφ(

f

ρ(L∗,u)
), f ∈ C(Sn−1),

we conclude that aK∗+̃φbL∗ = (aK+φ bL)
∗.

When φ(t) = tp,p > 1, then [aK+p bL]
∗ = aK∗ +−p aL

∗,a,b > 0.

Theorem 3.2. Let K,L ∈ Kn0 , λ ∈ (0, 1) and φ ∈ C. Then

1 > λφ(
|[λK+φ (1 − λ)L]∗|

1
n

|K∗|
1
n

) + (1 − λ)φ(
|[λK+φ (1 − λ)L]∗|

1
n

|L∗|
1
n

).

If φ is strictly convex, then equality holds if and only if K and L are dilates of each other.

Proof. Equation (1.2) implies that

1 > aφ((
|aK∗+̃φbL

∗|

|K∗|
)

1
n ) + bφ((

|aK∗+̃φbL
∗|

|L∗|
)

1
n ).

Combination with Lemma 3.1, this gives the desired inequality. By the equality holds of (1.2), we know
that, if φ is strictly convex, then equality holds if and only if K and L are dilates of each other.

Proof of Theorem 1.3. By Theorem 3.2, it follows that

1 > λφ(
|[λK+φ (1 − λ)L]∗|

1
n

|K∗|
1
n

) + (1 − λ)φ(
|[λK+φ (1 − λ)L]∗|)

1
n

|L∗|
1
n

)

> φ(λ
|[λK+φ (1 − λ)L]∗|

1
n

|K∗|
1
n

+ (1 − λ)
|[λK+φ (1 − λ)L]∗|

1
n

|L∗)
1
n

|,

which gives

φ−1(1) > λ
|[λK+φ (1 − λ)L]∗|

1
n

|K∗|
1
n

+ (1 − λ)
|[λK+φ (1 − λ)L]∗|

1
n

|L∗|
1
n

,

thus
|[λK+φ (1 − λ)L]∗|−

1
n > λ|φ−1(1)K∗|−

1
n + (1 − λ)|φ−1(1)L∗|−

1
n .

We now consider the function f(x) = 1/x, x > 0, obviously, f(x) is convex function, it follows that

|(λK+φ (1 − λ)L)∗|
1
n 6

1

λ|φ−1(1)K∗|−
1
n + (1 − λ)|φ−1(1)L∗|−

1
n

6
1

[|φ−1(1)K∗|−
1
n ]λ[|φ−1(1)L∗|−

1
n ]1−λ

,

which yields
|(λK+φ (1 − λ)L)∗| 6 |φ−1(1)K∗|λ|φ−1(1)L∗|1−λ.

This completes the proof.
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