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Abstract
In this paper, we consider the controllability of certain class of non-autonomous neutral evolution stochastic functional

differential equations, with time varying delays, driven by a fractional Brownian motion in a separable real Hilbert space.
Sufficient conditions for controllability are obtained by employing a fixed point approach. A practical example is provided to
illustrate the viability of the abstract result of this work.
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1. Introduction

Controllability is one of the fundamental concepts in mathematical control theory and plays an im-
portant role in control systems. Controllability generally means that it is possible to steer a dynamical
control system from an arbitrary initial state to an arbitrary final state using the set of admissible controls.
If the system cannot be controlled completely then different types of controllability can be defined such as
approximate, null, local null and local approximate null controllability. A standard approach is to trans-
form the controllability problem into a fixed-point problem for an appropriate operator in a functional
space. The problem of controllability for functional differential systems has been extensively studied in
many papers [3, 4, 9, 17, 21, 25]. For example, Sakthivel and Ren [24] studied the complete controlla-
bility of stochastic evolution equations with jumps. In [5], Balasubramaniam and Dauer discussed the
controllability of semilinear stochastic delay evolution equations in Hilbert spaces.

It is known that fractional Brownian motion, with Hurst parameter H ∈ (0, 1), is a generalization
of Brownian motion, it reduces to Brownian motion when H = 1

2 . A general theory for the infinite
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dimensional stochastic differential equations driven by a fractional Brownian motion (fBm) is not yet
established and just a few results have been proved. In addition, in many mathematical models the
claims often display long-range memories, possibly due to extreme weather, natural disasters, in some
cases, many stochastic dynamical systems depend not only on present and past states, but also contain the
derivatives with delays. Neutral functional differential equations are often used to describe such systems.
Very recently, neutral stochastic functional differential equations driven by fractional Brownian motion
have attracted the interest of many researchers. One can see [6, 7, 12–15] and the references therein. The
literature concerning the existence and qualitative properties of solutions of time-dependent functional
stochastic differential equations is very restricted and limited to a very few articles. This fact is the main
motivation of our work. We mention here the recent paper by Ren et al. [20] concerning the existence
of mild solutions for a class of stochastic evolution equations driven by fractional Brownian motion in
Hilbert space.

Motivated by the above works, this paper is concerned with the controllability results for a class of
time-dependent neutral functional stochastic differential equations described in the form:

d[x(t) + g(t, x(t− r(t)))] = [A(t)x(t) + f(t, x(t− ρ(t))) +Bu(t)]dt+ σ(t)dBH(t), t ∈ [0, T ],

x(.) = ϕ(.) ∈ C([−τ, 0], L2(Ω,X)), τ > 0,
(1.1)

in a real Hilbert space X with inner product < ., . > and norm ‖.‖, where { A(t), t ∈ [0, T ]} is a family of
linear closed operators from a space X into X that generates an evolution system of operators {R(t, s), 0 6
s 6 t 6 T }. BH is a fractional Brownian motion on a real and separable Hilbert space Y, r, ρ : [0,+∞)→
[0, τ] (τ > 0) are continuous and f,g : [0,+∞) × X → X, σ : [0,+∞) → L0

2(Y,X), are appropriate
functions. Here L0

2(Y,X) denotes the space of all Q-Hilbert-Schmidt operators from Y into X (see Section
2 below). The control function u(.) taking values in L2([0, T ],U) of admissible control functions for a
separable Hilbert space U, B is a bounded linear operator from U into X.

To the best of our knowledge, there is no paper which investigates the study of controllability for time-
dependent neutral stochastic functional differential equations with delays driven by fractional Brownian
motion. Thus, we will make the first attempt to study such problem in this paper.

Our results are inspired by the one in [8] where the existence and uniqueness of mild solutions to
model (1.1) with B = 0, is studied.

The rest of this paper is organized as follows. Section 2 recapitulates some notations, basic concepts,
and basic results about fractional Brownian motion, Wiener integral over Hilbert spaces and recalls some
preliminary results about evolution family. Section 3 gives sufficient conditions to prove the controllability
result for the problem (1.1). Section 4 illustrates the efficiency of the obtained results using an example.

2. Preliminaries

2.1. Evolution families
In this subsection we introduce the notion of evolution family.

Definition 2.1. A set {R(t, s) : 0 6 s 6 t 6 T } of bounded linear operators on a Hilbert space X is called an
evolution family if

(a) R(t, s)R(s, r) = R(t, r), R(s, s) = I if r 6 s 6 t,

(b) (t, s)→ R(t, s)x is strongly continuous for t > s.

Let {A(t), t ∈ [0, T ]} be a family of closed densely defined linear unbounded operators on the Hilbert
space X and with domain D(A(t)) independent of t, satisfying the following conditions introduced by [1].

There exist constants λ0 > 0, θ ∈ (π2 ,π), L, K > 0, and µ, ν ∈ (0, 1] with µ+ ν > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t) − λ0), ‖R(λ,A(t) − λ0)‖ 6
K

1 + |λ|
(2.1)
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and
‖(A(t) − λ0)R(λ,A(t) − λ0)

[
R(λ0,A(t)) − R(λ0,A(s))

]
‖ 6 L|t− s|µ|λ|−ν (2.2)

for t, s ∈ R, λ ∈ Σθ where Σθ :=
{
λ ∈ C − {0} : | arg λ| 6 θ

}
.

It is well known, that this assumption implies that there exists a unique evolution family {R(t, s) :
0 6 s 6 t 6 T } on X such that (t, s) → R(t, s) ∈ L(X) is continuous for t > s, R(·, s) ∈ C1((s,∞),L(X)),
∂tR(t, s) = A(t)R(t, s), and

‖A(t)kR(t, s)‖ 6 C(t− s)−k (2.3)

for 0 < t− s 6 1, k = 0, 1, 0 6 α < µ, x ∈ D((λ0 −A(s))
α), and a constant C depending only on the

constants in (2.1)-(2.2). Moreover, ∂+s R(t, s)x = −R(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈
D(A(s)). We say that A(·) generates {R(t, s) : 0 6 s 6 t 6 T }. Note that R(t, s) is exponentially bounded
by (2.3) with k = 0.

Remark 2.2. If {A(t), t ∈ [0, T ]} is a second order differential operator A, that is A(t) = A for each t ∈ [0, T ],
then A generates a C0−semigroup {eAt, t ∈ [0, T ]}.

2.2. Fractional Brownian motion

For the convenience for the reader we recall briefly here some of the basic results of fractional Brownian
motion calculus. For details of this section, we refer the reader to [18] and the references therein.

Let (Ω,F, P) be a complete probability space. A standard fractional Brownian motion (fBm) {βH(t), t ∈
R} with Hurst parameter H ∈ (0, 1) is a zero mean Gaussian process with continuous sample paths such
that

E[βH(t)βH(s)] =
1
2
(
t2H + s2H − |t− s|2H

)
(2.4)

for s, t ∈ R. It is clear that for H = 1/2, this process is a standard Brownian motion. In this paper, it is
assumed that H ∈ ( 1

2 , 1).
This process was introduced by [11] and later studied by [16]. Its self-similar and long-range depen-

dence make this process a useful driving noise in models arising in physics, telecommunication networks,
finance and other fields.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {βH(t), t ∈ [0, T ]} the one-
dimensional fractional Brownian motion with Hurst parameter H ∈ (1/2, 1). It is well known that βH

has the following Wiener integral representation:

βH(t) =

∫t
0
KH(t, s)dβ(s), (2.5)

where β = {β(t) : t ∈ [0, T ]} is a Wiener process, and KH(t; s) is the kernel given by

KH(t, s) = cHs
1
2−H

∫t
s

(u− s)H− 3
2uH− 1

2du

for t > s, where cH =

√
H(2H−1)

β(2−2H,H− 1
2 )

and β(, ) denotes the Beta function. We put KH(t, s) = 0 if t 6 s.

We will denote by H the reproducing kernel Hilbert space of the fBm. In fact H is the closure of the
set of indicator functions {1[0;t], t ∈ [0, T ]} with respect to the scalar product

〈1[0,t], 1[0,s]〉H = RH(t, s).

The mapping 1[0,t] → βH(t) can be extended to an isometry between H and the first Wiener chaos and
we will denote by βH(ϕ) the image of ϕ by the previous isometry.
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We recall that for ψ,ϕ ∈ H their scalar product in H is given by

〈ψ,ϕ〉H = H(2H− 1)
∫T

0

∫T
0
ψ(s)ϕ(t)|t− s|2H−2dsdt.

Let us consider the operator K∗H from H to L2([0, T ]) defined by

(K∗Hϕ)(s) =

∫T
s

ϕ(r)
∂K

∂r
(r, s)dr.

We refer to [18] for the proof of the fact that K∗H is an isometry between H and L2([0, T ]). Moreover for
any ϕ ∈ H, we have

βH(ϕ) =

∫T
0
(K∗Hϕ)(t)dβ(t).

It follows from [18] that the elements of H may be not functions but distributions of negative order. In
the case H > 1

2 , the second partial derivative of the covariance function

∂RH
∂t∂s

= αH|t− s|
2H−2,

where αH = H(2H− 2), is integrable, and we can write

RH(t, s) = αH
∫t

0

∫s
0
|u− v|2H−2dudv. (2.6)

In order to obtain a space of functions contained in H, we consider the linear space |H| generated by
the measurable functions ψ such that

‖ψ‖2
|H| := αH

∫T
0

∫T
0
|ψ(s)||ψ(t)||s− t|2H−2dsdt <∞,

where αH = H(2H− 1). The space |H| is a Banach space with the norm ‖ψ‖|H| and we have the following
inclusions (see [18]).

Lemma 2.3.
L2([0, T ]) ⊆ L1/H([0, T ]) ⊆ |H| ⊆ H,

and for any ϕ ∈ L2([0, T ]), we have

‖ψ‖2
|H| 6 2HT 2H−1

∫T
0
|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the space of bounded linear
operator from Y to X. For the sake of convenience, we shall use the same notation to denote the norms
in X, Y and L(Y,X). Let Q ∈ L(Y, Y) be an operator defined by Qen = λnen with finite trace trQ =∑∞
n=1 λn < ∞. where λn > 0 (n = 1, 2...) are non-negative real numbers and {en} (n = 1, 2, ...) is a

complete orthonormal basis in Y. Let BH = (BH(t)) be Y− valued fbm on (Ω,F, P) with covariance Q as

BH(t) = BHQ(t) =

∞∑
n=1

√
λnenβ

H
n (t),

where βHn are real, independent fBm’s. This process is Gaussian, it starts from 0, has zero mean and
covariance:

E〈BH(t), x〉〈BH(s),y〉 = R(s, t)〈Q(x),y〉 for all x,y ∈ Y and t, s ∈ [0, T ].
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In order to define Wiener integrals with respect to the Q-fBm, we introduce the space L0
2 := L0

2(Y,X) of
all Q-Hilbert-Schmidt operators ψ : Y → X. We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt
operator, if

‖ψ‖2
L0

2
:=

∞∑
n=1

‖
√
λnψen‖2 <∞,

and that the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
=
∑∞
n=1〈ϕen,ψen〉 is a separable Hilbert

space.
Now, let φ(s); s ∈ [0, T ] be a function with values in L0

2(Y,X), such that
∑∞
n=1 ‖K∗φQ

1
2 en‖2

L0
2
<∞. The

Wiener integral of φ with respect to BH is defined by∫t
0
φ(s)dBH(s) =

∞∑
n=1

∫t
0

√
λnφ(s)endβ

H
n (s) =

∞∑
n=1

∫t
0

√
λn(K

∗
H(φen)(s)dβn(s), (2.7)

where βn is the standard Brownian motion used to present βHn as in (2.5).
Now, we end this subsection by stating the following result which is fundamental to prove our result.

Lemma 2.4 ([8]). Suppose that σ : [0, T ]→L0
2(Y,X) satisfies supt∈[0,T ] ‖σ(t)‖2

L0
2
<∞, and Suppose that {R(t, s),

06 s 6 t 6 T } is an evolution system of operators satisfying ‖R(t, s)‖ 6 Me−β(t−s), for some constants β > 0
and M > 1 for all t > s. Then, we have

E‖
∫t

0
R(t, s)σ(s)dBH(s)‖2 6 CM2t2H( sup

t∈[0,T ]
‖σ(t)‖L0

2
)2.

Remark 2.5. Thanks to Lemma 2.4, the stochastic integral

Z(t) =

∫t
0
R(t, s)σ(s)dBH(s), t ∈ [0, T ],

is well-defined.

3. Controllability result

Henceforth we will assume that the family {A(t), t ∈ [0, T ]} of linear operators generates an evolution
system of operators {R(t, s), 0 6 s 6 t 6 T }. In this section, we derive controllability conditions for time-
dependent neutral stochastic functional differential equations with variable delays driven by a fractional
Brownian motion in a real separable Hilbert space. Before starting, we introduce the concept of a mild
solution of the problem (1.1) and controllability of neutral stochastic functional differential equation.

Definition 3.1. An X-valued process {x(t), t ∈ [−τ, T ]}, is called a mild solution of equation (1.1) if

i) x(.) ∈ C([−τ, T ], L2(Ω,X)),

ii) x(t) = ϕ(t), −τ 6 t 6 0.

iii) For arbitrary t ∈ [0, T ], we have

x(t) =R(t, 0)(ϕ(0) + g(0,ϕ(−r(0)))) − g(t, x(t− r(t)))

−

∫t
0
AR(t, s)g(s, x(s− r(s)))ds+

∫t
0
R(t, s)f(s, x(s− ρ(s)))ds

+

∫t
0
R(t, s)(Bu)(s)ds+

∫t
0
R(t, s)σ(s)dBH(s), P − a.s.

(3.1)
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Definition 3.2. The system (1.1) is said to be controllable on the interval [−τ, T ], if for every initial stochas-
tic process ϕ ∈ C([−τ, 0], L2(Ω,X)), there exists a stochastic control u ∈ L2([0, T ],U) such that the mild
solution x(.) of (1.1) satisfies x(T) = x1, where x1 ∈ L2(Ω,X) and T are the preassigned terminal state and
time, respectively.

We will study the problem (1.1) under the following assumptions:

(H.1) i) The evolution family is exponentially stable, that is, there exist two constants β > 0 andM > 1
such that

‖R(t, s)‖ 6Me−β(t−s), for all t > s,

ii) There exist a constant M∗ > 0 such that

‖A−1(t)‖ 6M∗, for all t ∈ [0, T ].

(H.2) The maps f,g : [0, T ]× X → X are continuous functions and there exist two positive constants C1
and C2, such that for all t ∈ [0, T ] and x,y ∈ X:

i) ‖f(t, x) − f(t,y)‖∨ ‖g(t, x) − g(t,y)‖ 6 C1‖x− y‖.
ii) ‖f(t, x)‖2 ∨ ‖Ak(t)g(t, x)‖2 6 C2(1 + ‖x‖2), k = 0, 1.

(H.3) i) There exists a positive constant L∗ such that L∗M∗ < 1√
6
, and

‖A(t)g(t, x) −A(t)g(t,y)‖ 6 L∗‖x− y‖

for all t ∈ [0, T ] and x,y ∈ X.

ii) The function g is continuous in the quadratic mean sense: for all x(.) ∈ C([0, T ],L2(Ω,X)), we
have

lim
t−→s

E‖g(t, x(t)) − g(s, x(s))‖2 = 0.

(H.4) i) The map σ : [0, T ] −→ L0
2(Y,X) is bounded, that is : there exists a positive constant L such that

‖σ(t)‖L0
2(Y,X) 6 L uniformly in t ∈ [0, T ].

ii) Moreover, we assume that the initial data ϕ= {ϕ(t) : −τ6t6 0} satisfies ϕ∈C([−τ, 0], L2(Ω,X)).

(H.5) The linear operator W from L2([0, T ],U) into L2(Ω,X) defined by

Wu =

∫T
0
R(T , s)Bu(s)ds

has an inverse operatorW−1 that takes values in L2([0, T ],U)\kerW, where kerW= {x ∈ L2([0, T ],U),
Wx = 0} (see [10, 19]), and there exists finite positive constants Mb, Mw such that ‖B‖ 6 Mb and
‖W−1‖ 6Mw.

The main result of this paper is given in the next theorem.

Theorem 3.3. Suppose that (H.1)-(H.5) hold. Then, system (1.1) is controllable on [−τ, T ].

Proof. Fix T > 0 and let BT := C([−τ, T ], L2(Ω,X) be the Banach space of all continuous functions from

[−τ, T ] into L2(Ω,X), equipped with the supremum norm ‖ξ‖BT = sup
u∈[−τ,T ]

(
E‖ξ(u)‖2)1/2

and let us

consider the set
ST = {x ∈ BT : x(s) = ϕ(s), for s ∈ [−τ, 0]}.

ST is a closed subset of BT provided with the norm ‖.‖BT .
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Using the hypothesis (H.5) for an arbitrary function x(.), define the stochastic control

u(t) =W−1{x1 − R(T , 0)(ϕ(0) + g(0,ϕ(−r(0)))) + g(T , x(T − r(T)))

+

∫T
0
AR(T , s)g(s, x(s− r(s)))ds−

∫T
0
R(T , s)f(s, x(s− ρ(s))ds

−

∫T
0
R(T , s)σ(s)dBH(s)}(t).

We will now show using this control that the operator ψ on ST (ϕ) defined by ψ(x)(t) = ϕ(t) for t ∈ [−τ, 0]
and for t ∈ [0, T ]

ψ(x)(t) =R(t, 0)(ϕ(0) + g(0,ϕ(−r(0)))) − g(t, x(t− r(t))) −
∫t

0
R(t, s)A(s)g(s, x(s− r(s)))ds

+

∫t
0
R(t, s)f(s, x(s− ρ(s)))ds+

∫t
0
R(t,ν)σ(s)dBH(s)

+

∫t
0
R(t,ν)BW−1{x1 − R(T , 0)(ϕ(0) + g(0,ϕ(−r(0)))) + g(T , x(T − r(T)))

+

∫T
0
R(T , s)A(s)g(s, x(s− r(s)))ds−

∫T
0
R(T , s)f(s, x(s− ρ(s))ds

−

∫T
0
R(T , s)σ(s)dBH(s)}dν,

has a fixed point. This fixed point is then a solution of (1.1). Clearly, ψ(x)(T) = x1, which implies that the
system (1.1) is controllable.

For better readability, we break the proof into sequence of steps.

Step 1: ψ is well defined. Let x ∈ ST (ϕ) and t ∈ [0, T ], we are going to show that each function ψ(x)(.) is
continuous on [0, T ] in the L2(Ω,X)-sense.

Let 0 < t < T and |h| be sufficiently small. Then for any fixed x ∈ ST , we have

E‖ψ(x)(t+ h) −ψ(x)(t)‖2 6 6E‖(R(t+ h, 0) − R(t, 0))(ϕ(0) + g(0,ϕ(−r(0))))‖2

+ 6E‖g(t+ h, x(t+ h− r(t+ h))) − g(t, x(t− r(t)))‖2

+ 6E‖
∫t+h

0
R(t+ h, s)A(s)g(s, x(s− r(s))ds−

∫t
0
R(t, s)A(s)g(s, x(s− r(s))ds‖2

+ 6E‖
∫t+h

0
R(t+ h, s)f(s, x(s− ρ(s)))ds−

∫t
0
R(t, s)f(s, x(s− ρ(s)))ds‖2

+ 6E‖
∫t+h

0
R(t+ h, s)σ(s)dBH(s) −

∫t
0
R(t, s)σ(s)dBH(s)‖2

+ 6E‖
∫t+h

0
R(t+ h,ν)BW−1{x1 − R(T , 0)(ϕ(0) + g(0,ϕ(−r(0))))

+ g(T , x(T − r(T))) +
∫T

0
R(T , s)A(s)g(s, x(s− r(s)))ds

−

∫T
0
R(T , s)f(s, x(s− ρ(s))ds−

∫T
0
R(T , s)σ(s)dBH(s)}dν

−

∫t
0
R(t,ν)BW−1{x1 − R(T , 0)(ϕ(0) + g(0,ϕ(−r(0))))

+ g(T , x(T − r(T))) −
∫T

0
R(T , s)σ(s)dBH(s)}dν

=6
∑

16i66

E‖Ii(t+ h) − Ii(t)‖2.



E. Lakhel, A. Tlidi, J. Nonlinear Sci. Appl., 11 (2018), 850–863 857

From Definition 2.1, we obtain

lim
h−→0

(R(t+ h, 0) − R(t, 0))(ϕ(0) + g(0,ϕ(−r(0)))) = 0.

From (H.1), we have

‖(R(t+ h, 0) − R(t, 0))(ϕ(0) + g(0,ϕ(−r(0))))‖ 6Me−βt(e−βh + 1)‖ϕ(0) + g(0,ϕ(−r(0)))‖ ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

E‖I1(t+ h) − I1(t)‖2 = 0.

Moreover, assumption (H.2) ensures that

lim
h−→0

E‖I2(t+ h) − I2(t)‖2 = 0.

To show that the third term I3(h) is continuous, we suppose h > 0 (similar calculus for h < 0). We have

‖I3(t+ h) − I3(t)‖ 6
∥∥∥∥∫t

0
(R(t+ h, s) − R(t, s))A(s)g(s, x(s− r(s)))ds

∥∥∥∥
+

∥∥∥∥∥
∫t+h
t

(R(t, s)g(s, x(s− r(s)))ds

∥∥∥∥∥
6I31(h) + I32(h).

By Hölder’s inequality, we have

E‖I31(h)‖ 6 tE
∫t

0
‖R(t+ h, s) − R(t+ h, s))A(s)g(s, x(s− r(s))‖2ds.

By Definition 2.1, we obtain

lim
h−→0

(R(t+ h, s) − R(t, s))A(s)g(s, x(s− r(s))) = 0.

From (H.1) and (H.2), we have

‖R(t+ h, s) − R(t, s))A(s)g(s, x(s− r(s))‖ 6 C2Me
−β(t−s)(e−βh + 1)‖A(s)g(s, x(s− r(s))‖ ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

E‖I31(h)‖2 = 0.

So, estimating as before. By using (H.1) and (H.2), we get

E‖I32(h)‖2 6
M2C2(1 − e−2βh)

2β

∫t+h
t

(1 + E‖x(s− r(s))‖2)ds.

Thus,
lim
h−→0

E‖I32(h)‖2 = 0.

For the fourth term I4(h), we suppose h > 0 (similar calculus for h < 0). We have

‖I4(t+ h) − I4(t)‖ 6
∥∥∥∥∫t

0
(R(t+ h, s) − R(t, s))f(s, x(s− ρ(s)))ds

∥∥∥∥
+

∥∥∥∥∥
∫t+h
t

(R(t, s)f(s, x(s− ρ(s)))ds

∥∥∥∥∥
6I41(h) + I42(h).
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By Hölder’s inequality, we have

E‖I41(h)‖ 6 tE
∫t

0
‖R(t+ h, s) − R(t, s))f(s, x(s− ρ(s))‖2ds.

Again exploiting properties of Definition 2.1, we obtain

lim
h−→0

(R(t+ h, s) − R(t, s))f(s, x(s− ρ(s))) = 0,

and
‖R(t+ h, s) − R(t, s))f(s, x(s− ρ(s))‖ 6Me−β(t−s)(e−βh + 1)‖f(s, x(s− ρ(s))‖ ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

E‖I41(h)‖2 = 0.

On the other hand, by (H.1), (H.2), and the Hölder’s inequality, we have

E‖I42(h)‖ 6
M2C2(1 − e−2βh)

2β

∫t+h
t

(1 + E‖x(s− ρ(s))‖2)ds.

Thus
lim
h→0

I42(h) = 0.

Now, for the term I5(h), we have

‖I5(t+ h) − I5(t)‖ 6
∥∥∥∥∫t

0
(R(t+ h, s) − R(t, s)σ(s)dBH(s)

∥∥∥∥
+

∥∥∥∥∥
∫t+h
t

R(t+ h, s)σ(s)dBH(s)

∥∥∥∥∥
6I51(h) + I52(h).

By Lemma 2.4, we get that

E‖I51(h)‖2 6 2Ht2H−1
∫t

0
‖[R(t+ h, s) − R(t, s)]σ(s)‖2

L0
2
ds.

Since
lim
h→0
‖[R(t+ h, s) − R(t, s)]σ(s)‖2

L0
2
= 0

and
‖(R(t+ h, s) − R(t, s)σ(s)‖L0

2
6MLe−β(t−s)e−βh+1 ∈ L1([0, T ], ds),

we conclude, by the dominated convergence theorem that,

lim
h→0

E‖I51(h)‖2 = 0.

Again by Lemma 2.4, we get that

E‖I52(h)‖2 6
2Ht2H−1LM2(1 − e−2βh)

2β
.

Thus,
lim
h→0

E|I52(h)|
2 = 0.
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For the estimation of term I6, we have

E‖I6(h)‖2 62E‖
∫t+h
t

R(t+ h,ν)BW−1{x1 − R(T , 0)(ϕ(0) + g(0,ϕ(−r(0))))

+ g(T , x(T − r(T))) +
∫T

0
R(T , s)A(s)g(s, x(s− r(s)))ds

−

∫T
0
R(T , s)f(s, x(s− ρ(s))ds−

∫T
0
R(T , s)σ(s)dBH(s)‖

+ 2E‖
∫t

0
(R(t+ h,ν) − R(t,ν))BW−1{x1 − R(T , 0)(ϕ(0) + g(0,ϕ(−r(0))))

+ g(T , x(T − r(T))) +
∫T

0
R(T , s)A(s)g(s, x(s− r(s)))ds

−

∫T
0
R(T , s)f(s, x(s− ρ(s))ds−

∫T
0
R(T , s)σ(s)dBH(s)}dν‖

62[E‖I6,1(h)‖2 + E‖I6,2(h)‖2].

Let’s first deal with I6,1(h), it follows from the conditions (H.1)-(H.5) that

E‖I6,1(h)‖2 66M2M2
bM

2
w

∫t+h
t

{E‖x1‖2 +M2E‖ϕ(0) + g(0,ϕ(−r(0)))‖2

+M2
∗C2T(1 + sup

s∈[−τ,T ]
E‖x(s)‖2) +M2TC2(1 + sup

s∈[−τ,T ]
E‖x(s)‖2)

+M2TC2(1 + sup
s∈[−τ,T ]

E‖x(s)‖2) + 2M2HT 2H−1
∫T

0
‖σ(s)‖2

L0
2
ds}dν.

It results that
lim
h→0

E||I6,1(h)||
2 = 0.

In a similar way, we have

E‖I6,2(h)‖2 66M2
bM

2
w

∫t
0
‖R(t+ h,ν) − R(t,ν)‖2{E‖x1‖2

+M2E‖ϕ(0) + g(0,ϕ(−r(0)))‖2 +M2
∗C2(1 + E‖x‖2)

+M2T 2C2(1 + E‖x‖2) +M2T 2C2(1 + E‖x‖2)

+ 2M2HT 2H−1
∫T

0
‖σ(s)‖2

L0
2
ds}dν.

Since

‖R(t+ h,ν) − R(t,ν)‖2{E‖x1‖2 +M2E‖ϕ(0) + g(0,ϕ(−r(0)))‖2 +M2
∗C4(1 + sup

s∈[−τ,T ]
E‖x(s)‖2)

+M2T 2C2(1 + sup
s∈[−τ,T ]

E‖x(s)‖2) +M2T 2C2(1 + sup
s∈[−τ,T ]

E‖x(s)‖2)

+ 2M2HT 2H−1
∫T

0
‖σ(s)‖2

L0
2
ds}

64M2{E‖x1‖2 +M2E‖ϕ(0) + g(0,ϕ(−r(0)))‖2

+M2
∗C2(1 + sup

s∈[−τ,T ]
E‖x(s)‖2) + 2M2T 2C2(1 + sup

s∈[−τ,T ]
E‖x(s)‖2)

+ 2M2HT 2H−1
∫T

0
‖σ(s)‖2

L0
2
ds} ∈ L1([0, T ],ds]),
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we conclude, by the dominated convergence theorem that,

lim
h→0

E||I6,2(h)||
2 = 0.

The above arguments show that lim
h→0

E‖ψ(x)(t + h) − ψ(x)(t)‖2 = 0. Hence, we conclude that the

function t→ ψ(x)(t) is continuous on [0, T ] in the L2-sense.

Step 2: Now, we are going to show that ψ is a contraction mapping in ST1(ϕ) with some T1 6 T to be
specified later. Let x,y ∈ ST (ϕ), then for any fixed t ∈ [0, T ], we have

E‖ψ(x)(t) −ψ(y)(t)‖2

6 6‖A(t)−1‖2E‖A(t)g(t, x(t− r(t))) −A(t)g(t,y(t− r(t)))‖2

+ 6E‖
∫t

0
R(t, s)A(s)(g(s, x(s− r(s))) − g(s,y(s− r(s))))ds‖2

+ 6E‖
∫t

0
R(t, s)(f(s, x(s− ρ(s))) − f(s,y(s− ρ(s))))ds‖2

+ 6E‖
∫t

0
R(t,ν)BW−1[g(T , x(T − r(T))) − g(T ,y(T − r(T)))]dν‖2

+ 6E‖
∫t

0
R(t,ν)BW−1

∫T
0
R(T , s)A(s)[g(s, x(s− r(s))) − g(s,y(s− r(s)))]ds]dν‖2

+ 6E‖
∫t

0
R(t,ν)BW−1

∫T
0
R(T , s)[f(s, x(s− ρ(s))) − f(s,y(s− ρ(s)))]dsdν‖2.

By assumptions combined with Hölder’s inequality, we get that

E‖ψ(x)(t) −ψ(y)(t)‖2 66L2
∗M

2
∗ sup
s∈[−τ,t]

E‖x(t− r) − y(t− r)‖2

+ 6M2L2
∗

1 − e−2βt

2β
t sup
s∈[−τ,t]

E‖x(s) − y(s)‖2

+ 6M2C2
1

1 − e−2βt

2β
t sup
s∈[−τ,t]

E‖x(s) − y(s)‖2

+ 6tM2M2
bM

2
w[C

2
1E‖x(T − r(T)) − y(T − r(T))‖2

+ L2
∗M

2T 2 sup
s∈[−τ,t]

E‖x(s− r(s)) − y(s− r(s))‖2

+ T 2M2C2
1 sup
s∈[−τ,t]

E‖x(s) − y(s)‖2.

Hence
sup

s∈[−τ,T ]
E‖ψ(x)(s) −ψ(y)(s)‖2 6 γ(t) sup

s∈[−τ,T ]
E‖x(s) − y(s)‖2,

where

γ(t) =6[‖L2
∗M

2
∗ +M

2L2
∗

1 − e−2βt

2β
t+M2C2

1
1 − e−2βt

2β
t

+ tM2M2
bM

2
w(C

2
1 + L

2
∗M

2T 2 + T 2M2C2
1].

By condition (H.3), we have γ(0) = 6L2
∗M

2
∗ < 1. Then there exists 0 < T1 6 T such that 0 < γ(T1) < 1

and ψ is a contraction mapping on ST1 and therefore has a unique fixed point, which is a mild solution
of equation (1.1) on [−τ, T1]. This procedure can be repeated in order to extend the solution to the
entire interval [−τ, T ] in finitely many steps. Clearly, (ψx)(T) = x1 which implies that the system (1.1) is
controllable on [−τ, T ]. This completes the proof.
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4. An illustrative example

In recent years, the interest in neutral systems has been growing rapidly due to their successful appli-
cations in practical fields such as physics, chemical technology, bioengineering, and electrical networks.
We consider the following stochastic partial neutral functional differential equation with finite delays τ1
and τ2 (0 6 τi 6 τ <∞, i = 1, 2):

d [u(t, ζ) + g1(t,u(t− τ1, ζ))] = [ ∂
2

∂2ζ
u(t, ζ) + b(t, ζ)u(t, ζ) + f1(t,u(t− τ2, ζ))

+ v(t, ξ)]dt+ σ(t)dBH(t), 0 6 t 6 T , 0 6 ζ 6 π,

u(t, 0) = u(t,π) = 0, 0 6 t 6 T ,

u(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0], 0 6 ζ 6 π,

(4.1)

where BH is a fractional Brownian motion, b(t, ζ) is a continuous function and is uniformly Hölder
continuous in t, f1, g1 : R+ ×R −→ R are continuous functions.

To study this system, we consider the space X = L2([0,π]) and the operator A : D(A) ⊂ X −→ X given
by Ay = y ′′ with

D(A) = {y ∈ X : y ′′ ∈ X, y(0)) = y(π) = 0}.

It is well known that A is the infinitesimal generator of an analytic semigroup {T(t)}t>0 on X. Fur-
thermore, A has discrete spectrum with eigenvalues −n2, n ∈ N and the corresponding normalized
eigenfunctions given by

en :=

√
2
π

sinnx, n = 1, 2, ....

In addition, (en)n∈N is a complete orthonormal basis in X and

T(t)x =

∞∑
n=1

e−n
2t < x, en > en

for x ∈ X and t > 0.
Now, we define an operator A(t) : D(A) ⊂ X −→ X by

A(t)x(ζ) = Ax(ζ) + b(t, ζ)x(ζ).

By assuming that b(., .) is continuous and that b(t, ζ) 6 −γ (γ > 0) for every t ∈ R, ζ ∈ [0,π], it follows
that the system {

u ′(t) = A(t)u(t), t > s,
u(s) = x ∈ X,

has an associated evolution family given by

R(t, s)x(ζ) =
[
T(t− s) exp(

∫t
s

b(τ, ζ))dτ)x
]
(ζ).

From this expression, it follows that R(t, s) is a compact linear operator and that for every s, t ∈ [0, T ] with
t > s

‖R(t, s)‖ 6 e−(γ+1)(t−s)

In addition, A(t) satisfies the assumption H1 (see [2, 23]).
To rewrite the initial-boundary value problem (4.1) in the abstract form we assume the following:
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i) B : U −→ X is a bounded linear operator defined by

Bu(t)(ξ) = v(t, ξ), 0 6 ξ 6 π, u ∈ L2([0, T ],U).

ii) The operator W : L2([0, T ],U) −→ X defined by

Wu =

∫T
0
S(T − s)v(t, ξ)ds

has an inverse W−1 and satisfies condition (H.5). For the construction of the operator W and its
inverse, see [19].

iii) The substitution operator f : [0, T ]× X −→ X defined by f(t,u)(.) = f1(t,u(.)) is continuous and we
impose suitable conditions on f1 to verify assumption H2.

iv) The substitution operator g : [0, T ]×X −→ X defined by g(t,u)(.) = g1(t,u(.)) is continuous and we
impose suitable conditions on g1 to verify assumptions H2 and H3.

If we put {
x(t)(ζ) = x(t, ζ), t ∈ [0, T ], ζ ∈ [0,π]
x(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0], ζ ∈ [0,π], (4.2)

then, the problem (4.1) can be written in the abstract form{
d[x(t) + g(t, x(t− r(t)))] = [A(t)x(t) + f(t, x(t− ρ(t))]dt+ σ(t)dBH(t), 0 6 t 6 T ,
x(t) = ϕ(t), −τ 6 t 6 0.

Furthermore, if we assume that the initial data ϕ= {ϕ(t) : −τ 6 t 6 0} satisfies ϕ ∈ C([−τ, 0], L2(Ω,X)),
thus all the assumptions of Theorem 3.3 are fulfilled. Therefore, we conclude that the system (4.1) is
controllable on [−τ, T ].
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