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1. Introduction

The concept of fuzziness was first discovered and introduced in the seminal article written by Zadeh
in 1965 [32]. The theory of fuzzy topological spaces was introduced and initiated by Chang [8] and since
then various notions in classical topology have been extended to fuzzy topological spaces. In 1989, Chang
and Zhu [11] introduced the concepts of variational inequalities with fuzzy mappings in abstract spaces
and investigated the existence problems of solutions for some class of variational inequalities for fuzzy
mappings. Recently several classes of variational inequalities, inclusions, and complementarity problems
for fuzzy mappings were studied by Ahmad and Salahuddin [1, 3], Chang and Salahuddin [9], Cho et al.
[14], Ding et al. [16], Ding and Salahuddin [15], Lee and Salahuddin [28], Verma and Salahuddin [29],
Verma et al. [27], and Wang and Chang et al. [10].
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In 1980, Giannessi [19] first introduced the concept of vector variational inequality in a finite dimen-
sional Euclidean spaces. Since then many kinds of vector variational inequalities have been introduced
and studied in abstract spaces. In particular, Chen and Cheng [13], Ahmad and Salahuddin [2], Anas-
tassiou and Salahuddin [4], Anh and Khanh [5], Khanh and Quan [22], Lee and Salahuddin [23, 24], and
Siddiqi et al. [30] have intensively studied some kinds of vector variational inequalities in abstract spaces
and obtained some existence theorems of solutions for their variational inequalities.

In the study of vector variational inequality problems, the assumption of generalized monotonicity
of the operators plays a very important role. Wu and Huang [31] introduced the concepts of relaxed
η-α-pseudomonotonicity mappings and use this concept to study the vector variational like inequalities
in Banach spaces. Ceng and Yao [7] studied the generalized variational like inequality problems with
generalized α-monotone multifunction. Very recently, Verma et al. [21] studied the exponential type
vector variational like inequality problems with exponential invexities.

Motivated by the researches going on in this directions ([6, 12, 15, 18, 20, 25, 26]), the purpose of
this paper is to introduce and study a new class of mixed exponential vector variational inequality problems
and define a new class of αg-relaxed exponential (γ,η)-monotone mappings in fuzzy environment. We
prove the existence of solutions to mixed exponential vector variational inequality problems with fuzzy
mappings by using the KKM-mapping and Nadler’s fixed point theorem.

2. preliminaries

Let E be a nonempty subset of a vector space X and D be a nonempty set. A mapping F from D into
F(E) (the collection of all fuzzy sets of E) is called a fuzzy mapping. If F : D → F(E) is a fuzzy mapping,
then F(x), x ∈ D (denoted by Fx, in the sequel) is a fuzzy set in F(E) and Fx(y),y ∈ E is the grade of
membership of y in Fx.

Let A ∈ F(E) and β ∈ [0, 1], then the set

(A)β = {x ∈ E : A(x) > β}

is called a β-cut set of A.
In the sequel, we assume that X and Y are real Banach spaces and K is a nonempty subset of X.
A nonempty subset C of Y is called convex cone if λC ⊂ C for any λ > 0 and C+C ⊂ C. C is called

pointed cone if C is a convex cone and C ∩ {−C} = {0}, where 0 denotes the zero vector. Also a cone C
is called proper if it is properly contained in Y. Let C : K → 2Y be a multifunction such that for each
x ∈ K,C(x) is closed convex moving cone with apex at origin and intC(x) 6= ∅, where intC(x) denotes the
interior of C(x). The partial ordering 6C(x) on Y induced by C(x) is defined as

1. y 6C(x) z⇔ z− y ∈ C(x);
2. y 66C(x) z⇔ z− y 6∈ C(x);
3. y 6intC(x) z⇔ z− y ∈ intC(x);
4. y 66intC(x) z⇔ z− y 6∈ intC(x) for x,y, z ∈ K;
5. y 66C(x) z⇔ y+w 66C(x) z+w for all x,y, z,w ∈ K;
6. y 66C(x) z⇔ λy 66C(x) λz for any λ > 0.

Lemma 2.1 ([7]). Let (Y,C) be an ordered space induced by the pointed closed convex cone C ⊂ Y with intC 6= ∅.
Then for any x,y, z ∈ Y, the following relations hold:

z 66intC x >C y⇒ z 66intC y, z 6>intC x 6C y⇒ z 6>intC y.

Denote by L(X, Y) the space of all continuous linear mappings from X to Y and by 〈u, x〉 the evaluation
of u ∈ L(X, Y) at x ∈ X. Let T : X→ 2Y be a multifunction. The graph G(T) of T is the set {(x,y) ∈ X× Y :
x ∈ X,y ∈ T(x)}. The inverse T−1 of T is a multifunction from R(T) (the range of T ) to X.
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In the following we assume that K is a nonempty closed convex subset of X, and (Y,C) is an ordered
Euclidean space induced by a closed convex pointed cone valued mapping C : K → 2Y , whose apex at
origin and intC(x) 6= ∅. Let γ ∈ R be a nonzero real number, η : K×K→ X, g : K→ K and f : K×K→ Y be
the mappings, and N : F(L(X, Y))→ F(L(X, Y)) be a mapping. Let T : K→ F(L(X, Y)) be a fuzzy mapping
on 2L(X,Y) and a : K → [0, 1] be a function. Then the mixed exponential vector variational inequality
problems with fuzzy mapping is to find x ∈ K, u ∈ T̃(x) = (Tx)a(x) such that

〈Nu,
1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) 0, ∀y ∈ K. (2.1)

Definition 2.2. A mapping f : X→ Y is said to be C(x)-convex on X, if

f(tx+ (1 − t)y) 6C(x) tf(x) + (1 − t)f(y), ∀x,y ∈ X, t ∈ [0, 1],

i.e.,
tf(x) + (1 − t)f(y) − f(tx+ (1 − t)y) ∈ C(x), ∀x,y ∈ X, t ∈ [0, 1].

Remark 2.3. When C(x) = C, then f : X→ Y is said to be C-convex on X, if

f(tx+ (1 − t)y) 6C tf(x) + (1 − t)f(y), ∀x,y ∈ X, t ∈ [0, 1].

Definition 2.4. A mapping f : K→ Y is said to be the completely continuous if for any sequence {xn} ∈ K,
xn ⇀ x0 ∈ K weakly, then f(xn)→ f(x0).

Definition 2.5. Let f : K → 2X be a set valued mapping. Then f is said to be a KKM-mapping if for any
{y1,y2, . . . ,yn} of K, we have

co{y1,y2, . . . ,yn} ⊂
n⋃
i=1

f(yi),

where co{y1,y2, . . . ,yn} denotes the convex hull of y1,y2, . . . ,yn.

Lemma 2.6 ([17]). Let M be a nonempty subset of a Hausdorff topological vector space X and let f :M→ 2X be a
KKM-mapping. If for each y ∈M, f(y) is a closed set in X and for some y ∈M, f(y) is compact, then⋂

y∈M
f(y) 6= ∅.

Lemma 2.7 ([26]). Let E be a normed vector space and H be a Hausdorff metric on the collection CB(E) of all closed
and bounded subsets of E defined by

H(A,B) = max{sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖}, A,B ∈ CB(E).

(1) If A, B ∈ CB(E), then for each ε > 0 and each x ∈ A, there exists y ∈ B such that

‖x− y‖ 6 (1 + ε)H(A,B).

(2) If A and B are compact subset in E, then for each x ∈ A, there exists y ∈ B such that

‖x− y‖ 6 H(A,B).

Definition 2.8. Let K be a nonempty closed convex subset of X, η : X × X → X be a mapping, and
N : F(L(X, Y)) → F(L(X, Y)) be a single valued mapping, where L(X, Y) is the space of all continuous
linear mappings from X to Y. Suppose that T : K → F(L(X, Y)) is a fuzzy mapping with (Tx)a(x) 6= ∅ for
all x ∈ K, where a : X→ [0, 1] and T̃ : K→ 2L(X,Y) is a nonempty compact set valued mapping defined by
T̃(x) = (Tx)a(x), then
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(i) N is said to be η-hemicontinuous if

lim
t→0+

〈N(x+ t(y− x)),η(y, x)〉 = 〈Nx,η(y, x)〉 for each x,y ∈ K.

(ii) T is said to be H-hemicontinuous, if for any given x,y ∈ K, the mapping t→ H(T(x+ t(y− x)), Tx)
is continuous at 0+, where H is the Hausdorff matric defined on CB(L(X, Y)).

Definition 2.9. A mapping f : X → X is said to be affine if for any xi ∈ K and λi > 0, (1 6 i 6 n) with∑n
i=1 λi = 1, we have

f(

n∑
i=1

λixi) =

n∑
i=1

λif(xi).

Definition 2.10. Let X be an Euclidean space. A function f : X→ R is a lower semicontinuous at x0 ∈ X if

f(x0) 6 lim inf
n
f(xn)

for any sequence {xn} ⊂ X such that {xn} converges to x0.

Definition 2.11. Let X be an Euclidean space. A function f : X → R is said to be weakly upper semicon-
tinuous at x0 ∈ X, if

f(x0) > lim sup
n

f(xn)

for any sequence {xn} ∈ X such that {xn} converges to x0 weakly.

Lemma 2.12 ([6]). Let S be a nonempty, compact, and convex subset of a finite dimensional space and T : S → S

be a continuous mapping. Then there exists x ∈ S such that T(x) = x.

Definition 2.13. Let X, Y be topological spaces and T : X → F(Y) be a fuzzy mapping. T is said to have
fuzzy set valued if Tx(y) is upper semi continuous on X× Y as a ordinary real function.

Lemma 2.14 ([6]). Let A be a closed subset of a topological space X, then characteristic function χA of A is an
upper semi continuous real valued function.

Lemma 2.15 ([6, 10]). Let K be a nonempty closed convex subset of a real Hausdorff topological vector space X,
E be a nonempty closed convex subset of a real Hausdorff space, and a : X → [0, 1] be a lower semi continuous
function. Let T : K→ F(E) be a fuzzy mapping with (Tx)a(x) 6= ∅ for all x ∈ X and T̃ : K→ 2E be a multifunction
defined by T̃(x) = (Tx)a(x). If T is a closed set valued mapping, then T̃ is a closed multifunction.

Definition 2.16. A fuzzy mapping T : K → F(L(X, Y)) is said to be αg-relaxed exponentially (γ,η)-
monotone if for every pair of points x,y ∈ K, we have

〈Tx− Ty,
1
γ
(eγη(x,g(y)) − 1)〉 >C(x) αg(x− y),

where αg : X→ Y with αg(tx) = tqαg(x) for all t > 0 and x ∈ X, where q > 1 is a real number.

Definition 2.17. Let N : F(L(X, Y)) → F(L(X, Y)) be a single valued mapping and a : X → [0, 1] be a
mapping. A fuzzy mapping T : K→ F(L(X, Y)) with compact valued is said to be αg-relaxed exponentially
(γ,η)-monotone with respect to N and g, if for each pair of points x,y ∈ K, we have

〈Nu−Nv,
1
γ
(eγη(x,g(y)) − 1)〉 >C(x) αg(x− y), ∀u ∈ (Tx)a(x), v ∈ (Ty)a(y),

where αg : X→ Y with αg(tx) = tqαg(x) for all t > 0 and x ∈ X, where q > 1 is a real number.
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3. Main results

Theorem 3.1. Let K be a nonempty closed convex and bounded subset of a real ordered Euclidean space X. Let
C : K→ 2Y be a closed convex bounded cone valued mapping with intC 6= ∅ and Y\(−intC(x)) being an upper semi
continuous mapping. Let g : K→ K be a closed convex and continuous single valued mapping and η : K×K→ X

be an affine in the first argument with η(x,g(x)) = 0 for all x ∈ K. Let f : K× K → Y be a C(x)-convex in
the second argument satisfying f(g(x), x) = 0 for all x ∈ K. Let N : F(L(X, Y)) → F(L(X, Y)) be a continuous
mapping and let T̃ : K→ 2L(X,Y) be a nonempty upper semi continuous compact valued mapping induced by fuzzy
mapping T : K→ F(L(X, Y)), i.e. T̃(x) = (Tx)a(x) with a : X→ [0, 1]. If T̃ is H-hemicontinuous and αg-relaxed
exponentially (γ,η)-monotone with respect toN and g, then the following two statements (a) and (b) are equivalent:

(a) there exists x̄ ∈ K and ū ∈ T̃(x̄) = (Tx)a(x) such that

〈Nū ,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x) 0, ∀y ∈ K;

(b) there exists x̄ ∈ K such that

〈Nv ,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x) αg(y− x̄) ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y).

Proof. Let the statement (a) is true, i.e., there exist x̄ ∈ K and ū ∈ T̃(x̄) = (Tx̄)a(x̄) such that

〈Nū,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) 0, ∀y ∈ K. (3.1)

Since T̃ is a αg-relaxed exponentially (γ,η)-monotone with respect to N and g, we have

〈Nv−Nū,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) >C(x̄) αg(y− x̄) + f(g(x̄),y), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y),

⇒ 〈Nv, 1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) >C(x̄) 〈Nū,

1
γ
(eγη(y,g(x̄)) − 1)〉

+αg(y− x̄) + f(g(x̄),y), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y), (3.2)

⇒ 〈Nv, 1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) −αg(y− x̄) >C(x̄) 〈Nū,

1
γ
(eγη(y,g(x̄)) − 1)〉

+ f(g(x̄),y), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y).

From (3.1), (3.2), and Lemma 2.1, we get

〈Nv, 1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) αg(y− x̄), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y).

Conversely, assume that the statement (b) is true, i.e., there exists x̄ ∈ K such that

〈Nv, 1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) αg(y− x̄), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y). (3.3)

Let y ∈ K be any point and yt = ty+ (1 − t)x̄, t ∈ [0, 1]. Since K is convex, yt ∈ K. Let vt ∈ T̃(yt)a(yt),
from (3.3) we have

〈Nvt,
1
γ
(eγη(yt,g(x̄)) − 1)〉+ f(g(x̄),yt) 66intC(x̄) αg(yt − x̄) = t

qαg(y− x̄). (3.4)

However, since

〈Nvt,
1
γ
(eγη(yt,g(x̄)) − 1)〉+ f(g(x̄),yt)
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= 〈Nvt,
1
γ
(eγη(ty+(1−t)x̄,g(x̄)) − 1)〉+ f(g(x̄), ty+ (1 − t)x̄)

= 〈Nvt,
1
γ
(eγtη(y,g(x̄))+(1−t)γη(x̄,g(x̄)) − 1)〉+ tf(g(x̄),y) + (1 − t)f(g(x̄), x̄) (3.5)

6C(x̄) 〈Nvt,
1
γ
(t(eγη(y,g(x̄)) − 1) + (1 − t)(eγη(x̄,g(x̄)) − 1))〉+ tf(g(x̄),y)

= t{〈Nvt,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y)},

it follows from (3.4), (3.5), and Lemma 2.1 that

〈Nvt,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) t

q−1αg(y− x̄).

Since T̃(yt) = (Tyt)a(yt) and T̃(x̄) = (Tx̄)a(x̄) are compact, from Lemma 2.7, for each fixed vt ∈ T̃(yt) =
(Tyt)a(yt), there exists ut ∈ T̃(x̄) = (Tx̄)a(x̄) such that

‖vt − ut‖ 6 H(T̃(yt), T̃(x̄)). (3.6)

Since T̃(x̄) is compact, without loss of generality, we may assume that

ut → ū ∈ T̃(x̄) as t→ 0+.

Also T̃ is H-hemicontinuous, thus it follows that

H(T̃(yt), T̃(x̄))→ 0 as t→ 0+.

Now from (3.6) we have

‖vt − ū‖ 6 ‖vt − ut‖+ ‖ut − ū‖ 6 H(T̃(yt), T̃(xt)) + ‖ut − ū‖ → 0 as t→ 0+.

Since N is continuous, letting t→ 0+, we have

‖〈Nvt,
1
γ
(eγη(y,g(x̄)) − 1)〉− tq−1αg(y− x̄) − 〈Nū,

1
γ
(eγη(y,g(x̄)) − 1)〉‖

6 ‖〈Nvt −Nū,
1
γ
(eγη(y,g(x̄)) − 1)〉‖+ ‖tq−1αg(y− x̄)‖

6
1
γ
‖Nvt −Nū‖‖eγη(y,g(x̄)) − 1‖+ tq−1‖αg(y− x̄)‖ → 0 as t→ 0+.

(3.7)

From (3.4), we have

〈Nvt,
1
γ
(eγη(y,,g(x̄)) − 1)〉+ f(g(x̄),y) − tq−1αg(y− x̄) ∈ Y \ (−intC(x̄)).

Since Y \ (−intC(x̄)) is closed, from (3.7) we have

〈Nū,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) ∈ Y \ (−intC(x̄))

=⇒〈Nū,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) 0, ∀y ∈ K.

This completes the proof.
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Theorem 3.2. Let K be a nonempty closed convex and bounded subset of a real ordered Euclidean space X. Let
C : K → 2Y be a proper pointed closed convex cone valued mapping with intC 6= ∅ and Y \ (−intC(x)) being
an upper semi continuous mapping. Let g : K → K be a closed convex and continuous single valued mapping.
Suppose η : K× K → X is affine in the first argument with η(x,g(x)) = 0 for x ∈ K and continuous in both
variable. Let f : K× K → Y be a completely continuous in the first argument and affine in the second argument
satisfying f(g(x), x) = 0 for x ∈ K. Let αg : X → Y be a weakly lower semicontinuous with respect to g. Let
N : F(L(X, Y)) → F(L(X, Y)) be a continuous mapping and T̃ : K → 2L(X,Y) be a nonempty compact valued fuzzy
mapping induced by fuzzy mapping T : K → F(L(X, Y)), i.e. T̃(x) = (Tx)a(x) and a : X → [0, 1]. If T̃ is
H-hemicontinuous and αg-relaxed exponentially (γ,η)-monotone with respect to N and g, then (2.1) is a solvable,
i.e., there exist x ∈ K and u ∈ T̃(x) = (Tx)a(x) such that

〈Nu,
1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) 0, ∀y ∈ K.

Proof. Let F : K→ 2X be a set valued mapping define by

F(y) = {x ∈ K : 〈Nu,
1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) 0, ∀u ∈ T̃(x) = (Tx)a(x)},y ∈ K.

First we prove that F is a KKM mapping. If F is not a KKM-mapping, then there exists (x1, x2, . . . , xm) ⊂ K
such that

co{x1, x2, . . . , xm} *
m⋃
i=1

F(xi).

This implies that there exists at least an x ∈ co{x1, x2, . . . , xm}, x =
∑m
i=1 tixi, where ti > 0, i = 1, 2 . . . ,m,∑m

i=1 ti = 1, but x 6∈
⋃m
i=1 F(xi). From the construction of F, for any u ∈ T̃(x) = (Tx)a(x), we have

〈Nu,
1
γ
(eγη(xi,g(x)) − 1)〉+ f(g(x), xi) 6intC(x) 0, for i = 1, 2, . . . ,m. (3.8)

Since η is affine in the first argument, it follows from (3.8) that

0 =〈Nu,
1
γ
(eγη(x,g(x)) − 1)〉+ f(g(x), x)

= 〈Nu,
1
γ
(eγη(

∑m
i=1 tixi,g(x)) − 1)〉+ f(g(x),

m∑
i=1

tixi)

= 〈Nu,
1
γ
(e

∑m
i=1 tiγη(xi,g(x)) − 1)〉+

m∑
i=1

tif(g(x), xi)

6C(x) 〈Nu,
1
γ

m∑
i=1

ti(e
γη(xi,g(x)) − 1)〉+

m∑
i=1

tif(g(x), xi)

=

m∑
i=1

ti{〈Nu,
1
γ
(eγη(xi,g(x)) − 1)〉+ f(g(x), xi)} 6intC(x) 0,

this shows that 0 ∈ intC(x). This contradicts the fact that C(x) is proper pointed closed convex cone
valued mapping with intC 6= ∅. Hence F is a KKM-mapping.

Now we define another set valued mapping G : K→ 2X by

G(y) = {x ∈ K : 〈Nv, 1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) αg(y− x), ∀v ∈ T̃(y)},y ∈ K.
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We prove that F(y) ⊂ G(y) for all y ∈ K. In fact, let x ∈ F(y), there exists some u ∈ T̃(x) = (Tx)a(x) such
that

〈Nu,
1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) 0. (3.9)

Since T̃ is a αg-relaxed exponentially (γ,η)-monotone with respect to N and g, for any y ∈ K, v ∈ T̃(y) =
(Ty)a(y), we have

〈Nu,
1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 6C(x) 〈Nv,

1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) −αg(y− x). (3.10)

From (3.9), (3.10), and Lemma 2.1, we have

〈Nv, 1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) αg(y− x), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y).

Therefore x ∈ G(y), i.e., F(y) ⊂ G(y) for all y ∈ K. This implies that G is also a KKM-mapping.
Next we prove that for each y ∈ K,G(y) ⊂ K is closed in the weak topology of X.
In fact, if x̄ ∈ G(y)w, the weak closure of G(y), since X is reflexive, there is a sequence {xn} in G(y)

such that {xn} converges weakly to x̄ ∈ K. Therefore for each v ∈ T̃(y) = (Ty)a(y), we have

〈Nv, 1
γ
(eγη(y,g(xn)) − 1)〉+ f(g(xn),y) 66intC(xn) αg(y− xn),

i.e.,

〈Nv, 1
γ
(eγη(y,g(xn)) − 1)〉+ f(g(xn),y) −αg(y− xn) ∈ Y \ (−intC(xn)).

Since Nv, f, and g are completely continuous, Y \ (−intC(x)) is closed and αg is weakly lower semicon-
tinuous, therefore the sequence

{〈Nv, 1
γ
(eγη(y,g(xn)) − 1)〉+ f(g(xn),y) −αg(y− xn)}

converges to

〈Nv, 1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) −αg(y− x̄),

and
〈Nv, 1

γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) −αg(y− x̄) ∈ Y \ (−intC(x̄)).

Therefore
〈Nv, 1

γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) αg(y− x̄).

Hence x̄ ∈ G(y). This proves that G(y) is weakly closed for all y ∈ K.
Furthermore, since X is reflexive, K ⊂ X is a nonempty closed and convex bounded subset and K is

weakly compact, this implies that G(y) is also weakly compact. Therefore it follows from Lemma 2.6 and
Theorem 3.1 that ⋂

y∈K
G(y) 6= ∅.

So there exists x̄ ∈ K such that

〈Nv, 1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) αg(y− x̄), ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y).

Hence from Theorem 3.1, we can conclude that there exist x̄ ∈ K and ū ∈ T̃(x̄) = (Tx̄)a(x̄) such that

〈Nū,
1
γ
(eγη(y,g(x̄)) − 1)〉+ f(g(x̄),y) 66intC(x̄) 0, ∀y ∈ K,

i.e., (2.1) is solvable.
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Theorem 3.3. Let K be a nonempty closed convex subset of a real ordered Euclidean space X with 0 ∈ K. Let
C : K→ 2Y be a proper pointed and closed convex cone valued mapping such that intC(x) 6= ∅. Let Y \ (−intC(x))
be a upper semi continuous mapping and g : K → K be a closed convex and continuous single valued mapping.
Assume that η : K×K→ X is affine in the first argument with η(x,g(x)) = 0 for all x ∈ K. Let f : K×K→ Y be
a completely continuous mapping in the first argument and affine in the second argument satisfying the condition
f(x,g(x)) = 0 for all x ∈ K. Let αg : X → Y be weakly lower semicontinuous. Let N : F(L(X, Y)) → F(Lc(X, Y))
be a continuous mapping, where Lc(X, Y) is a space of all completely continuous linear mapping from X to Y and
T̃ : K → 2L(X,Y) is a nonempty compact valued and upper semi continuous mapping induced by a fuzzy mapping
T : K → F(L(X, Y)), i.e., T̃(x) = (Tx)a(x) for x ∈ K. If T̃ is H-hemicontinuous and αg-relaxed exponentially
(γ,η)-monotone with respect to N and g and there exists r > 0 such that

〈Nv, 1
γ
(eγη(g(0),y) − 1)〉+ f(y,g(0)) 66intC(0) 0, ∀y ∈ K, v ∈ T̃(y) = (Ty)a(y) with ‖y‖ = r, (3.11)

then (2.1) is a solvable, i.e., there exists x ∈ K and u ∈ T̃(x) = (Tx)a(x) such that

〈Nu,
1
γ
(eγη(y,g(x)) − 1)〉+ f(g(x),y) 66intC(x) 0, ∀y ∈ K.

Proof. For r > 0, denote by Kr = {x ∈ X, ‖x‖ 6 r}. From Theorem 3.2, we know that (2.1) is solvable over
Kr, i.e., there exists xr ∈ K

⋂
Kr and ur ∈ T̃(xr) = (Txr)a(xr) such that

〈Nur,
1
γ
(eγη(y,g(xr)) − 1)〉+ f(g(xr),y) 66intC(xr) 0, ∀y ∈ K

⋂
Kr. (3.12)

Putting y = 0 in (3.12) we have

〈Nur,
1
γ
(eγη(0,g(xr)) − 1)〉+ f(g(xr), 0) 6intC(xr) 0.

If ‖xr‖ = r, then it contradicts to (3.11). Hence r > ‖xr‖. For any z ∈ K, let us choose t ∈ (0, 1) small
enough such that (1 − t)xr + tz ∈ K

⋂
Kr. Putting y = (1 − t)xr + tz in (3.12), we get

〈Nur,
1
γ
(eγη((1−t)xr+tz,g(xr)) − 1)〉+ f(g(xr), (1 − t)xr + tz) 66intC(xr) 0. (3.13)

Since η is affine in the first variable, we have

〈Nur,
1
γ
(eγη((1−t)xr+tz,g(xr)) − 1)〉+ f(g(xr), (1 − t)xr + tz)

= 〈Nur,
1
γ
(e(1−t)γη(xr,g(xr))+tγη(z,g(xr)) − 1)〉+ tf(g(xr), z)

6C(xr) 〈Nur,
1
γ
(1 − t)(eγη(xr,g(xr)) − 1) +

1
γ
t(eγη(z,g(xr)) − 1)〉+ tf(g(xr), z)

= t{〈Nur,
1
γ
(eγη(z,g(xr)) − 1)〉+ tf(g(xr), z)}.

(3.14)

Hence from (3.13), (3.14), and Lemma 2.1, we get

〈Nur,
1
γ
(eγη(z,g(xr)) − 1)〉+ f(g(xr), z) 66intC(xr) 0, ∀z ∈ K.

Therefore, (2.1) is a solvable. This completes the proof.
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