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Abstract

The split common fixed point problem was proposed in recent years which required to find a common fixed point of
a family of mappings in one space whose image under a linear transformation is a common fixed point of another family
of mappings in the image space. In this paper, we study two iterative algorithms for solving this split common fixed point
problem for the class of demicontractive mappings in Hilbert spaces. Under mild assumptions on the parameters, we prove the
convergence of both iterative algorithms. As a consequence, we obtain new convergence theorems for solving the split common
fixed point problem for the class of directed mappings. We compare the performance of the proposed iterative algorithms with
the existing iterative algorithms and conclude from the numerical experiments that our iterative algorithms converge faster than
these existing iterative algorithms in terms of iteration numbers.
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1. Introduction

Linear inverse problems often arise in many real-world applications problems, such as signal and
image processing, medical image reconstruction and compressive sensing, etc.. It often reduced to solve
a particular optimization problem. The split feasibility problem (SFP) is a general way to characterize
many significant optimization problems in the above concerned. The SFP was first introduced by Censor
and Elfving [6] in finite-dimensional Hilbert spaces. It has been studied extensively, see for example
[3, 4, 7, 25, 26] and references therein. In 2009, Censor and Segal [8] introduced the split common fixed
point problem as follows. Let H1 and H2 be real Hilbert spaces and A : H1 → H2 be a bounded linear
operator. Given operators {Ui}

t
i=1 : H1 → H1 and {Tj}

r
j=1 : H2 → H2, where t, r > 1 are nonnegative
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integers, respectively. The split common fixed point problem (say SCFPP for short) is formulated as
finding a point x∗ satisfying the property

x∗ ∈
t⋂
i=1

Fix(Ui), such that Ax∗ ∈
r⋂
j=1

Fix(Tj). (1.1)

Here, Fix(U) denotes the fixed point set of U, i.e., Fix(U) = {x|x = Ux}. In particular, if t = r = 1, then the
SCFPP (1.1) reduces to finding a point x∗ with the property

x∗ ∈ Fix(U), such that Ax∗ ∈ Fix(T). (1.2)

The above problem (1.2) is usually called the two-operators SCFPP or two-sets SCFPP.
The SCFPP (1.1) is a generalization of the split feasibility problem. In fact, let U = PC, T = PQ (here

PC denotes the metric projection onto the corresponding set C), then the two-sets SCFPP (1.2) becomes
the SFP below,

Finding a point x∗ ∈ C, such that Ax∗ ∈ Q,

where C and Q are nonempty closed convex sets in H1 and H2, respectively.
The appearance of the SCFPP (1.1) and (1.2) give researchers a more flexible way to deal with several

type of optimization problems. A natural question was raised immediately: Under what condition on the
mappings Ui and Tj, an iterative algorithm could be defined to solve them. Many interesting works have
been done on this issue, see for example [5, 8–24, 27, 28]. In particular, Censor and Segal [8] proposed an
iterative algorithm to solve the two-sets SCFPP (1.2) for the class of directed mappings (see Definition 2.1)
in finite-dimensional Hilbert spaces,

xk+1 = U(xk − γA
t(I− T)Axk),k > 0, (1.3)

where γ ∈ (0, 2
λ) with λ being the largest eigenvalue of AtA (t stands for matrix transposition). By using

the product space technique, they introduced a parallel iterative algorithm for the general SCFPP (1.1)
which was defined by the iterative procedure,

xk+1 = xk + γ

 t∑
i=1

αi(Ui(xk) − xk) +

r∑
j=1

βjA
t(Tj − I)Axk

 ,k > 0, (1.4)

where {αi}
t
i=1, {βj}rj=1 are nonnegative constants, 0 < γ < 2/L with L =

∑t
i=1 αi+ λ

∑r
j=1 βj. Under some

mild assumptions, they proved that the sequence defined by (1.3) and (1.4) converged to a solution of
problems (1.2) and (1.1), respectively. Wang and Xu [24] proposed a cyclic iterative algorithm for solving
the SCFPP (1.1) of directed mappings.

xk+1 = U[k]1

(
xk + γA

∗(T[k]2 − I)Axk
)

, k > 0, (1.5)

where 0 < γ < 2/ρ(A∗A), ρ(A∗A) being the spectral radius of the operator A∗A, [k]1 := (k mod t) + 1
and [k]2 := (k mod r) + 1, the mod functions which take values in {0, 1, 2, . . . , t− 1} and {0, 1, 2, . . . , r− 1},
respectively. They proved that the sequence {xn} generated by (1.5) converges weakly to a solution of the
SCFPP (1.1) in a infinite-dimensional Hilbert spaces.

To extend the SCFPP (1.1) for a more general class of nonlinear mappings, Moudafi [17] introduced
a relaxed iterative algorithm for the class of quasi-nonexpansive mappings. The relaxed iterative scheme
was defined by the following procedure,

uk = xk + γA
∗(T − I)Axk,

xk+1 = (1 −αk)uk +αkUuk, k > 0,
(1.6)
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where {αk} ⊂ (0, 1) and γ ∈ (0, 1/λ) with λ being the spectral radius of the operator A∗A. Furthermore,
in [16], Moudafi extended the iterative algorithm (1.6) to the class of µ-demicontractive mappings under
the parameters assumptions that {αk} ⊂ (0, 1) and γ ∈ (0, 1−µ

λ ). Weak convergence of iterative algorithm
(1.6) was obtained in [16] and [17], respectively. Inspired by the work of Wang and Xu [24], Tang et
al. [20] introduced a cyclic iterative algorithm for solving the SCFPP (1.1) of demicontractive mappings.
Wang and Cui [23] improved the results of [20] by discarding the requirement of {Ui}ti=1 and {Tj}

r
j=1 are

continuous. Recently, Tang et al. [21] introduced a new simultaneous iterative algorithm for solving the
SCFPP (1.1) of demicontractive mappings and proved its convergence under mild assumptions on the
parameters. The idea of developing simultaneous iterative algorithm came from parallel iterative method
for solving convex feasibility problem.

The purpose of this paper is to continue to study the SCFPP (1.1) for the class of demicontractive
mappings. The contribution of this paper is two folds: (i) Based on the technique used in Wang and Cui
[23], we present a novel convergence analysis for the iterative algorithm appeared in [21]. The convergence
condition required here is weaker than in [21]. (ii) We introduce a new iterative algorithm for solving
the SCFPP (1.1) for the class of demicontractive mappings. The convergence of the proposed iterative
algorithm is also proved. As applications, we obtain new convergence theorems for solving the SCFPP
(1.1) of directed mappings. Numerical experiments compared to the iterative algorithm proposed by [23]
and [21] are presented and discussed.

2. Preliminaries

In this section, we collect some important definitions and useful lemmas which will be used in the
following section. Throughout this paper, let H be a real Hilbert space, 〈·, ·〉 denotes the inner product,
and ‖ · ‖ stands for the corresponding norm. In the sequel we shall use the following notations: (i) Ω
denotes the solution set of SCFPP (1.1); (ii) xk → x and xk ⇀ x stand for the strong convergence and
weak convergence of {xk} to x, respectively; (iii) ωw(xk) = {x : ∃xkj ⇀ x} denotes the weak ω-limit set of
{xk}.

Recall the orthogonal projection operator PC. Let C be a nonempty closed convex subset of a Hilbert
space H, the orthogonal projection PC : H→ C is defined by

PCx = arg min
y∈C
‖x− y‖.

It is well known that PCx is characterized by the inequality:

〈x− PCx, z− PCx〉 6 0, ∀z ∈ C.

Definition 2.1 ([8]). Define a mapping T : H→ H. Assume that Fix(T) is nonempty, then T is said to be

(i) nonexpansive, if ‖Tx− Ty‖ 6 ‖x− y‖ for all x,y ∈ H;
(ii) quasi-nonexpansive, if ‖Tx− q‖ 6 ‖x− q‖ for all x ∈ H and q ∈ Fix(T);

(iii) k-strictly pseudocontractive, if ‖Tx− Ty‖2 6 ‖x−y‖2 + k‖(I− T)x−(I− T)y‖2 for all x,y ∈ H, where
k ∈ [0, 1);

(iv) directed, if 〈Tx− q, Tx− x〉 6 0 for all x ∈ H and q ∈ Fix(T); or equivalently, ‖Tx− q‖2 6 ‖x− q‖2 −
‖Tx− x‖2 for all x ∈ H and q ∈ Fix(T);

(v) k-demicontractive, if ‖Tx−q‖2 6 ‖x−q‖2 +k‖Tx− x‖2 for all x ∈ H and q ∈ Fix(T), where k ∈ [0, 1).

Remark 2.2. The class of demicontractive mappings is fundamental because it includes many types of
nonlinear mappings arising in applied mathematics and optimization. We can see from the above defi-
nitions that the demicontractive mappings contains these mappings such as the directed mappings, the
quasi-nonexpansive mappings, and the strictly pseudocontractive mappings with nonempty fixed point
set.
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The demiclosedness of T usually plays an important role in dealing with the convergence of fixed
point iterative algorithms.

Definition 2.3 ([2]). Let T : H → H, I− T is called demiclosed at zero, if for any sequence {xk} ⊂ H and
x ∈ H, we have xk ⇀ x and (I− T)xk → 0, then x ∈ Fix(T).

Definition 2.4 ([1]). Let C be a nonempty closed convex subset of H and {xk} is a sequence in H. The
sequence {xk} is called Fejér-monotone with respect to C, if

‖xk+1 − z‖ 6 ‖xk − z‖ for all z ∈ C and k > 0.

The concept of Fejér monotone is basic for many iterative algorithms and the following lemma presents
a basic property of Fejér monotone sequence, some other properties can be found in [1, 2].

Lemma 2.5 ([1]). If a sequence {xk} is Fejér-monotone respect to a closed subset of C, then xk ⇀ x∗ ∈ C if and
only if ωw(xk) ⊂ C.

It is well known that the following equalities hold in a real Hilbert space H, see [2] for more.

Lemma 2.6. Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Then

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x,y〉+ ‖y‖2;
(ii) ‖αx+ (1 −α)y‖2 = α‖x‖2 + (1 −α)‖y‖2 −α(1 −α)‖x− y‖2,∀x,y ∈ H and ∀α ∈ [0, 1];

(iii) ‖
∑n
i=1 λixi‖

2
=

∑n
i=1 λi‖xi‖2 − 1

2
∑n
i,j=1 λiλj‖xi − xj‖2, n > 2,

where λi ∈ [0, 1] for all i = 1, 2, . . . ,n with
∑n
i=1 λi = 1.

The following lemma presents two equivalent definitions about the demicontractive mappings and a
characterization of relaxed demicontractive mappings.

Lemma 2.7 ([16]). Let T : H→ H be a k-demicontractive mapping,

(i) Set Tα = (1 − α)I+ αT , α ∈ (0, 1], then Tα is quasi-nonexpansive provided that α ∈ [0, 1 − k] and ‖Tαx−
q‖2 6 ‖x− q‖2 −α(1 − k−α)‖Tx− x‖2, x ∈ H, q ∈ Fix(T).

(ii) The following two inequalities are equivalent to the definition of demicontractive mapping,
(a) 〈x− Tx, x− q〉 > 1−k

2 ‖x− Tx‖
2 for all q ∈ Fix(T), x ∈ H;

(b) 〈x− Tx,q− Tx〉 6 1+k
2 ‖x− Tx‖

2 for all q ∈ Fix(T), x ∈ H.

3. Iterative algorithms for solving the SCFPP (1.1)

In this section, we consider several new iterative algorithms for solving the SCFPP (1.1). In what
follows, we consider a family of βi-demicontractive mappings {Ui}

t
i=1 : H1 → H1 and µj-demicontractive

mappings {Tj}
r
j=1 : H2 → H2. Let β = max{β1,β2, . . . ,βt} and µ = max{µ1,µ2, . . . ,µr}, then {Ui}

t
i=1 are

β-demicontractive mappings and {Tj}
r
j=1 are µ-demicontractive mappings, respectively.

Algorithm 3.1 (Inner simultaneous and outer cyclic iterative algorithm for solving the SCFPP (1.1)). For
any initial x0 ∈ H1, define the iterative sequence uk = xk + γA

∗∑r
j=1 ηj(Tj − I)Axk and the sequence {xk}

is given as follows,
xk+1 = (1 −αk)uk +αkU[k]uk, k > 0, (3.1)

where [k] = (k mod t) + 1, the mod function takes values in {0, 1, 2, . . . , t− 1}, the constant γ > 0, {αk} ⊂
(0, 1), and {ηj}

r
j=1 ⊂ [0, 1] with

∑r
j=1 ηj = 1.

Now we are in the position to prove the convergence of Algorithm 3.1.
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Theorem 3.2. Let A : H1 → H2 be a bounded linear operator, and {Ui}
t
i=1 : H1 → H1 be βi-demicontractive and

{Tj}
r
j=1 : H2 → H2 be µj-demicontractive mappings. Assume that {I−Ui}ti=1 and {I− Tj}

r
j=1 are demiclosed at

zero. If the solution set Ω of SCFPP (1.1) is nonempty, then the iterative sequence {xk} generated by Algorithm 3.1
converges weakly to a solution of the SCFPP (1.1), where the parameters satisfying that γ ∈ (0, 1−µ

λ ), λ = ρ(A∗A)
(i.e., λ is equal to the spectral radius of the operator A∗A) and αk ∈ (δ1, 1 − β− δ2) for some δ1 > 0, δ2 > 0 with
δ1 + δ2 < 1 −β.

Proof. First, we prove that the iterative sequence {xk} is Fejér-monotone with respect to the Ω.
Let p ∈ Ω. By Lemma 2.7 (i), we have

‖xk+1 − p‖2 6 ‖uk − p‖2 −αk(1 −β−αk)‖U[k]uk − uk‖2. (3.2)

It follows from the definition of {uk} and Lemma 2.6 that

‖uk − p‖2 =

∥∥∥∥∥∥xk + γA∗
r∑
j=1

ηj(Tj − I)Axk − p

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
r∑
j=1

ηj(xk + γA
∗(Tj − I)Axk − p)

∥∥∥∥∥∥
2

6
r∑
j=1

ηj
∥∥xk + γA∗(Tj − I)Axk − p∥∥2

= ‖xk − p‖2 +

r∑
j=1

ηjγ
2 ∥∥A∗(Tj − I)Axk∥∥2

+ 2γ
r∑
j=1

ηj〈xk − p,A∗(Tj − I)Axk〉.

(3.3)

For the last term of (3.2) and with the help of Lemma 2.7 (ii), we get

2γ
r∑
j=1

ηj
〈
xk − p,A∗(Tj − I)Axk

〉
= 2γ

r∑
j=1

ηj〈Axk −Ap+ (Tj − I)Axk − (Tj − I)Axk, (Tj − I)Axk〉

= 2γ
r∑
j=1

ηj
(
〈Tj(Axk) −Ap, (Tj − I)Axk〉− ‖(Tj − I)Axk‖2)

6 2γ
r∑
j=1

ηj

(
1 + µ

2
‖(Tj − I)Axk‖2 − ‖(Tj − I)Axk‖2

)

= −γ(1 − µ)

r∑
j=1

ηj‖(Tj − I)Axk‖2.

(3.4)

Substituting (3.4) into (3.3), the inequality (3.2) becomes

‖xk+1 − p‖2 6 ‖xk − p‖2 −αk(1 −β−αk)
∥∥U[k]uk − uk

∥∥2
− γ(1 − µ− γλ)

r∑
j=1

ηj
∥∥(Tj − I)Axk∥∥2 . (3.5)

The condition on the parameters γ and {αk} ensure that αk(1 − β− αk) > 0 and γ(1 − µ− γλ) > 0, it
follows that

‖xk+1 − p‖ 6 ‖xk − p‖,

which means that {xk} is Fejér-monotone with respect p in Ω. Therefore, limk→∞ ‖xk − p‖ exists and {xk}

is bounded.
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Second, we show that ωw(xn) ⊂ Ω. Again from (3.5), we know that

δ1δ2
∥∥U[k]uk − uk

∥∥2
6 ‖xk − p‖2 − ‖xk+1 − p‖2.

Taking the limit on the both side of the above inequality, we obtain

lim
k→∞

∥∥U[k]uk − uk
∥∥ = 0.

Similarly, we have that limk→∞ ‖(Tj − I)Axk‖ = 0 for any j = 1, 2, . . . , r.
Since the sequence {xk} is bounded, so ωw(xk) is nonempty. Let p∗ ∈ ωw(xk). Then there exists a

subsequence {xkn} of {xk} such that xkn ⇀ p∗. By the demiclosed requirement of {I− Tj}rj=1 at zero, we
obtain

(Tj − I)Ap
∗ = 0 for any j = 1, 2, . . . , r.

i.e., Ap∗ ∈
⋂r
j=1 Fix(Tj). Recall the definition of uk = xk + γA

∗∑r
j=1(Tj − I)Axk, then ukn ⇀ p∗ which is

the same as the iterative sequence {xkn}. Since the pool of {1, 2, . . . , t} is finite, we can choose a subsequence
{knl} ⊂ {kn} such that [knl ] = i, i = 1, 2, . . . , t, then∥∥∥Ui(uknl ) − uknl∥∥∥→ 0, as l→∞.

It follows from {I − Ui}
t
i=1 are demiclosed at zero that p∗ ∈ Fix(Ui) for any i = 1, 2, . . . , t, so p∗ ∈⋂t

i=1 Fix(Ui).
Finally, by Lemma 2.5, we can conclude that the iterative sequence {xk} converges weakly to a solution

of the SCFPP (1.1). This completes the proof.

Remark 3.3. Theorem 3.2 improves Theorem 3.2 of [21] by removing the condition that {Ui}
p
i=1 are contin-

uous.

Corollary 3.4. Let A : H1 → H2 be a bounded linear operator, {Ui}
t
i=1 : H1 → H1 be directed mappings,

and {Tj}
r
j=1 : H2 → H2 be directed mappings. Assume that {I−Ui}

t
i=1 and {I− Tj}

r
j=1 are demiclosed at zero.

If the solution set Ω of SCFPP (1.1) is nonempty, then the iterative sequence {xk} generated by Algorithm 3.1
converges weakly to a solution of SCFPP (1.1), where the parameters satisfying that γ ∈ (0, 1

λ), λ = ρ(A∗A) and
αk ∈ (δ1, 1 − δ2) for some δ1 > 0, δ2 > 0 with δ1 + δ2 < 1.

Proof. Since the directed mapping is 0-demicontractive mapping, so the constants {βi}
t
i=1 and {µj}

r
j=1 are

all equal to zero. Therefore, from Theorem 3.2, we can obtain the result of Corollary 3.4.

We call the iterative sequence (3.1) that outer cyclic and inner simultaneous iterative algorithm. The
algorithmic structure of Algorithm 3.1 inspires us to design a new iterative algorithm for solving the
SCFPP (1.1). We exchange the cyclic and outer simultaneous order in Algorithm 3.1 and the new iterative
algorithm is presented as follows.

Algorithm 3.5 (Outer simultaneous and inner cyclic iterative algorithm for solving the SCFPP (1.1)). For
any initial x0 ∈ H1, define the iterative sequence uk = xk + γA

∗ (T[k] − I)Axk and the sequence {xk} is
defined by

xk+1 = (1 −αk)uk +αk

t∑
i=1

wiUiuk,k > 0,

where [k] = (k mod r) + 1, the mod function takes values in {0, 1, 2, . . . , r− 1}, the constant γ > 0, {αk} ⊂
(0, 1), and {wi}

t
i=1 ⊂ [0, 1] with

∑t
i=1wi = 1.

The convergence of Algorithm 3.5 is proved in the following theorem.
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Theorem 3.6. Let A : H1 → H2 be a bounded linear operator, and {Ui}
t
i=1 : H1 → H1 be βi-demicontractive and

{Tj}
r
j=1 : H2 → H2 be µj-demicontractive mappings. Assume that {I−Ui}ti=1 and {I− Tj}

r
j=1 are demiclosed at

zero. If the solution set Ω of SCFPP (1.1) is nonempty, then the iterative sequence {xk} generated by Algorithm 3.5
converges weakly to a solution of SCFPP (1.1), where the parameters γ and {αk} are the same as in Theorem 3.2.

Proof. The proof of Theorem 3.6 is similar to Theorem 3.2. For completeness, we give the detailed steps
below.

Let p ∈ Ω. By Lemma 2.6 and Lemma 2.7 (i), we have

‖xk+1 − p‖2 =

∥∥∥∥∥(1 −αk)uk +αk

t∑
i=1

wiUiuk − p

∥∥∥∥∥
2

=

∥∥∥∥∥
t∑
i=1

wi ((1 −αk)(uk − p) +αk(Uiuk − p))

∥∥∥∥∥
2

6
t∑
i=1

wi ‖(1 −αk)(uk − p) +αk(Uiuk − p)‖2

6 ‖uk − p‖2 −αk(1 −β−αk)

t∑
i=1

wi‖Uiuk − uk‖2.

(3.6)

It is similar to the deduction of (3.3) and (3.4), we know that

‖uk − p‖2 6 ‖xk − p‖2 − γ(1 − µ− γλ)
∥∥(T[k] − I)Axk∥∥2 . (3.7)

By (3.7) and (3.6), we obtain

‖xk+1 − p‖2 6 ‖xk − p‖2 −αk(1 −β−αk)

t∑
i=1

wi‖Uiuk − uk‖2 − γ(1 − µ− γλ)‖(T[k] − I)Axk‖2. (3.8)

Noting the conditions of γ and {αk}, we can conclude that

‖xk+1 − p‖ 6 ‖xk − p‖.

Then, {xk} is Fejér-monotone with respect to Ω. It also follows from (3.8) that

(i) limk→∞ ‖xk − p‖ exists and {xk} is bounded;
(ii) limk→∞ ‖Uiuk − uk‖ = 0 and limk→∞ ∥∥(T[k] − I)Axk∥∥ for any i = 1, 2, . . . , t.

In the following, we prove that ωw(xk) ⊂ Ω. In fact, since ωw(xk) is nonempty, let p∗ ∈ ωw(xk). Then
there exists a subsequence {xkn} of {xk} such that xkn ⇀ p∗. Because of the pool {1, 2, . . . , r} is finite, we
can choose a subsequence {knl} ⊂ {kn} such that [knl ] = j, j = 1, 2, . . . , r, then∥∥∥(Tj − I)Axknl∥∥∥→ 0, as l→∞.

It follows from the demiclosed at zero of the mappings {(I− Tj)}
r
j=1, we have (Tj − I)Ap

∗ = 0 for any
j = 1, 2, . . . , r, i.e., Ap∗ ∈

⋂r
j=1 Fix(Tj).

Since uk = xk + γA
∗(T[k] − I)Axk, ukn ⇀ p∗, and {(I−Ui)}

t
i=1 are also demiclosed at zero. It follows

from the fact (ii) that
(I−Ui)p

∗ = 0 for any i = 1, 2, . . . , t,

i.e., p∗ ∈
⋂t
i=1 Fix(Ui).

Therefore, the requirements of Lemma 2.5 are all satisfied, so we can conclude that the iterative
sequence {xk} converges weakly to a solution of the SCFPP (1.1). This completes the proof.
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Similar to the proof of Corollary 3.4, we can obtain the following corollary from Theorem 3.6 immedi-
ately.

Corollary 3.7. Let A : H1 → H2 be a bounded linear operator, {Ui}ti=1 : H1 → H1 be directed mappings, and
{Tj}

r
j=1 : H2 → H2 be directed mappings. Assume that {I−Ui}ti=1 and {I− Tj}

r
j=1 are demiclosed at zero. If the

solution set Ω of SCFPP (1.1) is nonempty, then the iterative sequence {xk} generated by Algorithm 3.5 converges
weakly to a solution of SCFPP (1.1), where the parameters satisfy γ ∈ (0, 1

λ), λ = ρ(A∗A), and αk ∈ (δ1, 1 − δ2)
for some δ1 > 0, δ2 > 0 with δ1 + δ2 < 1.

4. Numerical experiments

In this section, we compare the performance of the proposed iterative algorithms with cyclic iterative
algorithm [23] and simultaneous iterative algorithm [21]. All the numerical results are completed in a
standard Lenovo laptop with Intel(R) Core(TM) i7-4712MQ CPU 2.3GHz and 4 GB memory. The program
is implemented in MATLAB 2013a.

Recall that the multiple-set split feasibility problem (MSSFP) as follows,

Find a point x∗ ∈
t⋂
i=1

Ci, such that Ax∗ ∈
r⋂
j=1

Qj, (4.1)

where {Ci}
t
i=1 and {Qj}

r
j=1 are nonempty closed convex sets in Euclidean spaces Rn and Rm, respectively.

The MSSFP (4.1) was introduced by Censor et al. [7] for modeling linear inverse problem of intensity-
modulated radiation therapy. Since the MSSFP (4.1) is a special case of the SCFPP (1.1). Based on the
results of Corollary 3.4 and Corollary 3.7, we know that the iterative sequences generated by Algorithms
3.1 and 3.5 converge to a solution of the MSSFP (4.1), respectively. We take the example from [19]. For
convenience, we denote e0 be a zero vector and e1 be a vector with every elements equal to one. The
symbol randn is MATLAB function which generates sequences from normal distribution with mean zero
and variance one.

Example 4.1. The MSSFP (4.1) with A = (aij) and aij ∈ [0, 1] generated from uniformly distribution.
Ci = {x ∈ Rn|‖x− di‖ 6 ri}, i = 1, 2, . . . , t, Qj = {y ∈ Rm|Lj 6 y 6 Uj}, j = 1, 2, . . . , r, where di ∈ [e0, 10e1],
ri ∈ [40, 60], Lj ∈ [10e1, 40e1] and Uj ∈ [50e1, 100e1] are all generated randomly.

We define a function f(x) to measure the distance of a point to all sets of the MSSFP (4.1).

f(x) =
1
2
( t∑
i=1

wi‖x− PCi(x)‖
2 +

r∑
j=1

vj‖Ax− PQj(Ax)‖
2),

where wi > 0, vj > 0 for all i, j and
∑t
i=1wi +

∑r
j=1 vj = 1. We choose wi = vj =

1
r+t in the following

tests. It is clear that a point x∗ is a solution of the MSSFP (4.1) when f(x∗) = 0. In practice, if f(x∗) < ε,
where ε is a given small real number. Then, the point x∗ is accepted as a solution of the MSSFP (4.1). To
ensure a fair comparison, we choose iterative parameter γ = 0.9 1

‖A‖2 and αk = 0.5 for all the compared
iterative algorithms. We report the iteration numbers “Iter” and computation time “T(s)” in CPU .
The numerical results are reported in Tables 1 and 2. We can see from Tables 1 and 2 that the proposed
Algorithms 3.1 and 3.5 converge to a solution of the MSSFP (4.1) with less iteration numbers than the other
two iterative algorithms. All the iterative algorithms converge to the solution in a reasonable amount of
the time under given accuracy. It is observed that the cyclic iterative algorithm [23] is the fastest in CPU
time among these iterative algorithms.
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Table 1: The performance of cyclic iterative algorithm [23], simultaneous iterative algorithm [21], Algorithm 3.1, and Algorithm
3.5 in terms of iteration numbers and computation time when r = t = 10, m = 40,n = 50.

Initial point Methods
ε = 10−6 ε = 10−9 ε = 10−12

Iter T(s) Iter T(s) Iter T(s)

e0

Algorithm 3.1 263 0.22 410 0.30 558 0.44
Algorithm 3.5 264 0.39 410 0.57 556 0.83

Cyclic [23] 2635 0.05 4095 0.07 5555 0.10
Simultaneous [21] 2624 1.83 4100 2.95 5575 4.12

e1

Algorithm 3.1 254 0.18 402 0.29 549 0.40
Algorithm 3.5 255 0.35 401 0.56 547 0.77

Cyclic [23] 2545 0.04 4005 0.07 5465 0.10
Simultaneous [21] 2538 1.81 4014 2.86 5490 3.94

100e1

Algorithm 3.1 1278 0.93 1952 1.40 2636 1.90
Algorithm 3.5 1249 1.77 1915 2.68 2596 3.63

Cyclic [23] 12738 0.23 19478 0.35 26318 0.47
Simultaneous [21] 12545 9.10 19187 13.62 25995 18.45

randn(n, 1)

Algorithm 3.1 210 0.15 339 0.22 469 0.31
Algorithm 3.5 206 0.29 334 0.43 462 0.60

Cyclic [23] 2056 0.03 3336 0.05 4616 0.07
Simultaneous [21] 2092 1.37 3388 2.24 4684 3.09

Table 2: The performance of cyclic iterative algorithm [23], simultaneous iterative algorithm [21], Algorithm 3.1, and Algorithm
3.5 in terms of iteration numbers and computation time when r = t = 30, m = 50,n = 60.

Initial point Methods
ε = 10−6 ε = 10−9 ε = 10−12

Iter T(s) Iter T(s) Iter T(s)

e0

Algorithm 3.1 277 1.92 477 3.27 676 5.10
Algorithm 3.5 278 3.46 476 5.87 673 8.79

Cyclic [23] 8300 0.14 14240 0.25 20180 0.35
Simultaneous [21] 8323 55.38 14308 99.97 20292 140.49

e1

Algorithm 3.1 273 2.08 472 3.37 672 4.93
Algorithm 3.5 273 3.55 471 5.97 668 8.62

Cyclic [23] 8180 0.14 14090 0.25 20030 0.34
Simultaneous [21] 8169 58.11 14153 97.72 20138 140.69

100e1

Algorithm 3.1 1300 9.22 2139 15.77 3019 21.45
Algorithm 3.5 1617 18.02 2799 31.13 3981 43.24

Cyclic [23] 38635 0.67 62486 1.10 86932 1.54
Simultaneous [21] 48895 331.83 84614 591.73 120358 915.29

randn(n, 1)

Algorithm 3.1 277 2.31 477 3.95 676 5.58
Algorithm 3.5 278 3.98 476 6.78 673 9.43

Cyclic [23] 8300 0.15 14240 0.26 20180 0.36
Simultaneous [21] 8323 68.70 14308 118.04 20292 167.59

5. Conclusion

In this paper, we studied iterative methods related to the split common fixed point problem for the
class of demicontractive mappings. We presented a new convergence analysis of an iterative algorithm
proposed by [21] and also have weaken the condition on the given demicontractive mappings. Further-
more, a new iterative algorithm was proposed and its convergence was also proved under some mild
conditions. As applications, we applied the proposed iterative algorithms to solve the multiple-set split
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feasibility problem (4.1). Numerical results showed that our iterative algorithms perform better than the
existing iterative algorithms in terms of iteration numbers. We also demonstrated the efficiency of the
optimization algorithm and its scalability with the size of the problem.
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